
SCIENCE CHINA
Information Sciences

. Supplementary File .

SMAF: A Secure and Makespan-aware Framework
for Executing Serverless Workflows

Shuai ZHANG1, Yunfei GUO1, Zehua GUO2*, Hongchao HU1,3 & Guozhen CHEN1,3

1Information Engineering University, Zhengzhou 450002, China;
2Beijing Institute of Technology, Beijing 100081, China;
3Purple Mountain Laboratories, Nanjing 211111, China

Appendix A Experimental results
We focus on the makespan and security performance defined in our model to evaluate the effectiveness of our algorithm. These

two metrics can be obtained based on the scheduling plan. As the Linux container is used as our function environment, the

vulnerabilities of Linux contained are collected from NVD (after 2019). In our evaluation, a real-world scientific workflow which

is called Montage is used. Contrastive analysis is used to show the advantage of our framework. HEFT and Cold Start based

Heterogeneous Earliest Finish Time (CSHEFT) are considered as criteria to be compared with SMAF, as follows.

HEFT: In this algorithm, function scheduling strategy is decided with the aim of optimizing makespan, while the running

environment refresh is not considered. This algorithm can represent the scenario where security performance is not considered.

CSHEFT: In this algorithm, all running environments will be refreshed after the execution of function. This is also known as

”cold start” in serverless computing. Therefore, this algorithm can represent the scenario where HEFT is directly applied to the

serverless workflow without the consideration of environment refresh strategy.

To evaluate the effectiveness of SMAF, makespan and security performance is measured to compare SMAF with HEFT and

CSHEFT. The weight of security performance is set to satisfy the makespan constraint. The average evaluation results of synthetic

workflow and Montage workflow are shown in Fig. 1. Comparing with HEFT algorithm, we observe that the makespan of SMAF

algorithm is a little longer , but the security performance is greatly enhanced, especially for the scenario with little available

containers. When there are adequate containers for the workflow functions, the effect of our framework is weaken. This is because

HEFT will tend to schedule functions to different containers with enough containers, which also reduce the risk of reusing containers.

As for the CSHEFT algorithm, no new security threats will be introduced at the execution of workflow, thus CSHEFT can obtain

the best security performance in these algorithms. However, the makespan is much longer as the cold start of all functions. If there

is a constraint for makespan, the only way for CSHEFT is to increase the number of available running environments. Besides,

inferring from Fig. 1, increasing the number of containers can not always decrease makespan, beacuse of the data transmission time

between functions. These factors will limit the adoption of CSHEFT. Comparing the results for different workflows, we observe

that workflow with more functions also need more running environments. As SMAF can select the environment refresh strategy

carefully, a better tradeoff between security and makespan can be obtained with limited resources. When a suitable number of

containers is set (3 containers for synthetic workflow and 5 containers for Montage workflow), the security performance has around

15 times increase, with around 0.44% makespan cost comparing with traditional HEFT algorithm.

1 2 3 4 5
number of containers

2000

4000

6000

8000

10000

12000

14000

m
ak

es
pa

n

HEFT
CSHEFT
SecWESC

1 2 3 4 5
number of containers

0

0.2

0.4

0.6

0.8

1

no
rm

al
iz

ed
 s

ec
ur

ity

HEFT
CSHEFT
SecWESC

Figure A1 The average evaluation results of Montage workflow. (a) The makespan of Montage workflow with 1000 functions;

(b) The makespan of Montage workflow with 1000 functions.

* Corresponding author (email: guolizihao@hotmail.com)


	Experimental results

