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Gaussian process (GP) is the dominant model in the non-

parametric Bayesian community, but it is not flexible enough

to model non-stationary/multi-modal data, because a con-

ventionally trained Gaussian process is stationary. To

overcome this problem, the mixture of Gaussian processes

(MGP) [1] was proposed. Compared with GP, the MGP

model is more flexible, but its parameter learning is rather

challenging. When applying the EM algorithm to the case

of MGPs, the E-step is intractable due to two reasons.

First, the posterior distributions of latent indicators are in-

tractable because the samples are correlated. Second, even

though the posterior of latent indicators is given, taking ex-

pectation with respect to these correlated latent indicators

leads to exponential many summation terms. This study

presents a variational hardcut EM (VHEM) algorithm to

tackle the computational difficulties in the E-step, and the-

oretical analysis reveals that the VHEM algorithm plays the

intermediate role between the hardcut EM algorithm [2] and

MCMC-EM algorithm [3].

Mixture of Gaussian processes. Given a dataset D =

{(xi, yi)}Ni=1 where xi ∈ R
d, yi ∈ R and let X =

[x1,x2, . . . ,xN ]T,y = [y1, y2, . . . , yN ]T for brevity. If y and

x are linked by a Gaussian process, then y|X ∼ N (m,C).

For simplicity, we generally assume m to be 0. Given a

covariance function c(·, ·;θ) with parameters θ, the (i, j)-th

element of covariance matrix C is c(xi,xj ;θ). Here, we use

the squared exponential covariance function c(xi,xj |θ) =

θ20 exp(−
∑d

l=1 θ
2
l

(xil−xjl)
2

2
) + σ2

I(xi = xj) where I is

the indicator function, but extensions to the other covari-

ance functions are straightforward. The parameters can be

learned via the Type-II maximum likelihood estimation [4].

The mixture of Gaussian processes assumes there are K

independent GP components. Latent variable zi indicates

the GP component that generates (xi, yi). The informa-

tion flow can be characterized as z → x → y. Given the

mixing proportions {πk}
K
k=1, we first sample zi according

to p(zi = k) = πk. Conditioned on zi = k, the input xi

is generated from the k-th multivariate normal distribution,

xi|zi = k ∼ N (µk,Σk), where µk and Σk are the mean

vector and the covariance matrix of the k-th multivariate

normal distribution. Given z = {z1, . . . , zN}, we can divide

the samples according to the component labels. For each

component, we assume x → y is generated by a Gaussian

process. Let Xk(z) = {xi|zi = k, i = 1, . . . , N} , yk(z) =

{yi|zi = k, i = 1, . . . , N}, and Ck(z) be the covariance ma-

trix of the k-th Gaussian process parameterized by θk , and

then we have yk(z)|Xk(z) ∼ N (0,Ck(z)). These variables

are dependent on z, which is the main difficulty that makes

the inference of MGP rather challenging.

The parameters Θ = {πk,µk,Σk,θk}
K
k=1 are learned by

the EM algorithm. The complete data log-likelihood is

L(Θ, z) = log p(X,y, z;Θ)

=
K
∑

k=1

( N
∑

i=1

I(zi = k)[log πk + log p(xi;µk,Σk)]

+ log p(yk(z)|Xk(z); θk)

)

. (1)

In the E-step, we need to calculate the expectation of

L(Θ,z) with respect to the posterior p(z|X,y;Θold) to ob-

tain the Q-function Q(Θ|Θold) = Ep(z|Θold,D)[L(Θ,z)]. In

the M-step, we optimize Q(Θ|Θold) to get new estimates

of the parameters. The M-step is relatively easy, but the

E-step is very challenging. Since the samples are not i.i.d.

but correlated, the posterior p(z|X,y;Θold) is difficult to

calculate and L(Θ, z) involves KN summation terms in the

expectation, which is prohibitively large for computation.

Two kinds of methods [2,3] have been developed to tackle

this problem. The hardcut EM algorithm [2] approximates

the latent variables z deterministically and ignores the de-

pendency between the samples. Instead of approximating

the posterior, the MCMC-EM algorithm [3] generates sam-

ples from the posterior using the Gibbs sampling technique

and then approximates the expectation using these samples.

VHEM algorithm. To overcome the difficulties in the E-

step, we employ the variational inference to approximate

the posterior. We use a factorized distribution q(z;Λ) =
∏N

i=1 q(zi;λi) to approximate the p(z|X,y;Θold). Here,
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Λ = {λi}Ni=1, λi = {λi,k}
K
k=1 and q(zi;λi) is the probabil-

ity mass function of a categorical distribution, i.e., q(zi =

k) = λi,k. According to the mean-field variational inference

theory [5], the optimal q(z;Λ) satisfies

λi,k ∝ exp(Eq(z
−i;Λ)[log p(X,y, z−i ∪ {zi = k};Θ)]), (2)

where z−i = z − {zi}. Therefore, we can perform the fixed

point iteration based on (2) to find the optimal q(z;Λ).

Although the components of z−i are independent, the

complete log-likelihood is not separable with respect to z−i,

thus the expectation inside (2) is intractable. We apply

the hardcut approximation to side-step this problem. For

j 6= i, we approximate q(zj ;λj) via a deterministic alloca-

tion q̃(zj ;λj) = I(zj = argmaxk=1,2,...,K λj,k). According

to q̃(z−i;Λ), the latent variables z−i are deterministic, and

we write them as z̃−i. We can approximate the intractable

expectation in (2) by log p(X,y, z̃−i ∪ {zi = k};Θ). Some

calculation reveals Eq. (2) can be directly approximated by

λi,k ∝πkp(xi;µk,Σk)

p(yk(z̃−i ∪ {zi = k})|Xk(z̃−i ∪ {zi = k});θk)

p(y−i,k(z̃−i)|X−i,k(z̃−i); θk)
, (3)

where

X−i,k(z) = {xj |zj = k, j = 1, . . . , N and j 6= i} ,

y−i,k(z) = {yj |zj = k, k = 1, . . . , N and j 6= i} .

Finally, we find out that although λi is important in deriv-

ing the algorithm, but it is not essential for implementation

purpose. Instead, we can perform iterations on z̃ directly,

z̃i = argmax
k=1,2,...,K

πkp(xi;µk,Σk)

p(yk(z̃−i ∪ {z̃i = k})|Xk(z̃−i ∪ {z̃i = k});θk)

p(y−i,k(z̃−i)|X−i,k(z̃−i); θk)
. (4)

Once the above variational E-step iteration converges,

we obtain an approximate posterior q̃(z) = I(z = z̃) and

we can calculate the approximate Q-function Q̃(Θ;Θold) =

Eq̃(z)[L(Θ,z)] = L(Θ, z̃). Then we maximize Q̃(Θ;Θold)

with respect to Θ to estimate the parameters. The entire

algorithm is summarized in Algorithm A1 (see Appendix A).

Comparisons with the other algorithms on the learning of

MGPs. The iteration formula (4) is very similar to the Gibbs

sampling step in the MCMC-EM algorithm. The only differ-

ence is that the MCMC-EM algorithm samples zi according

to the probability, while the VHEM algorithm assigns zi to

be the class label with the highest probability.

In the hardcut EM algorithm, dependences among sam-

ples in the same Gaussian process component are ignored,

and we only use p(yi|xi; θk) to measure the probability that

the i-th sample belonging to the k-th Gaussian process com-

ponent. In this way, we do not need to perform iterations

since {zi}Ni=1 are independent. From (4), we can see that

in the VHEM algorithm, when we calculate the probability

that the i-th sample coming from the k-th component, other

samples temporarily assigned with label k are also taken into

consideration. Let

c = c(X−i,k(z̃−i),xi; θk),

C− = c(X−i,k(z̃−i),X−i,k(z̃−i);θk),

then the last term of (4) is given by

log
p(yk(z̃−i ∪ {z̃i = k})|Xk(z̃−i ∪ {z̃i = k}); θk)

p(y−i,k(z̃−i)|X−i,k(z̃−i); θk)

= −
1

2
log(2π) −

1

2
log(θ2k,0 + σ2

k − cTC−1
− c)

−
(y−i,k(z̃−i)TC−1

− c− yi)2

2(θ2
k,0 + σ2

k
− cTC−1

− c)
. (5)

The hardcut EM algorithm can be regarded as a further

approximation of the VHEM algorithm when cTC−1
− is re-

placed by 0. This is not realizable because C−1
− is always

invertible, and cTC−1
− = 0 implies c = 0, which cannot

hold for general covariance functions. However, when xi is

far from the points in X−, we may expect cTC−1
− ≈ 0.

For the case xi lies in the high-probability region of the l-

th component, the difference between the VHEM algorithm

and the hardcut EM algorithm for computing λi,k, k 6= l is

negligible. If xi lies in the overlapping region of the k-th

component and the l-th component, the difference would be

significant.

Furthermore, Eq. (5) also presents an intuitive inter-

pretation on the VHEM algorithm from the perspective of

leave-one-out cross validation [6]. See Appendix B for more

detailed discussion.

Experiments. See Appendix C.

Conclusion. We have proposed a new kind of variational

inference based learning algorithm (VHEM) for the genera-

tive MGP model. The main advantages of the VHEM algo-

rithm are three folds. First, compared with the hardcut EM

algorithm, its derivation relies on variational inference; thus

its theory is more solid and sound. Second, it connects exist-

ing learning algorithms for MGP, including the hardcut EM

algorithm, the MCMC-EM algorithm, and the LOOCV al-

gorithm. Last, it is remarkably faster than the MCMC-EM

algorithm and significantly more accurate than the hard-

cut EM algorithm. The VHEM algorithm is able to achieve

comparable performances with the MCMC-EM algorithm,

with the cost of a little longer running times compared with

the hardcut EM algorithm. To balance performance and

computational cost, the VHEM algorithm is a good choice

for real applications.
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