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Appendix A Detailed Derivation of the Variational Hardcut EM (VHEM) Algorithm

Appendix A.1 Derivation of Equation (3)

Recall that we approximate q(zj ;λj) via a deterministic allocation

q̃(zj ;λj) = I(zj = argmax
k=1,2,··· ,K

λj,k).

Under q̃(z−i;Λ), the latent variables z−i are deterministic, and we write as z̃−i. We can approximate the intractable expectation

by

Eq(z−i;Λ)[log p(X,y, z−i, zi = k;Θ)] ≈ Eq̃(z−i;Λ)[log p(X,y, z−i, zi = k;Θ)] = log p(X,y, z̃−i, zi = k;Θ) .

Substituting this approximation into eq (2), and utilizing eq (1), we immediately get

λi,k ∝ exp (log p(X,y, z̃−i, zi = k;Θ))

= πkp(xi;µk,Σk)

K∏
l=1

p(yl(z̃−i ∪ {zi = k})|Xl(z̃−i ∪ {zi = k}); θl).
(A1)

The right-hand side of the above equation is computable, but involves evaluating the likelihood of K Gaussian processes, which is

still inefficient in practice. In the following, we show that we only need to calculate the likelihood of 2 Gaussian processes, which

derives the eq (3). First, let

X−i,k(z) = {xj |zj = k, j = 1, · · · , N and j ̸= i} , y−i,k(z) = {yj |zj = k, k = 1, · · · , N and j ̸= i},

then we have
K∏
l=1

p(yl({z̃−i ∪ {zi = k})|Xl(z̃−i ∪ {zi = k}}); θl)

=p(yk(z̃−i ∪ {zi = k})|Xk(z̃−i ∪ {zi = k}); θk)
∏
l ̸=k

p(y−i,l(z̃−i)|X−i,l(z̃−i); θl)

=
p(yk(z̃−i ∪ {zi = k})|Xk(z̃−i ∪ {zi = k}); θk)

p(y−i,k(z̃−i)|X−i,k(z̃−i); θk)

K∏
l=1

p(y−i,l(z̃−i)|X−i,l(z̃−i); θl).

The last product of K Gaussian process likelihoods are common for all λi,k, thus eq. (A1) can be modified as

λi,k ∝ πkp(xi;µk,Σk)
p(yk(z̃−i ∪ {zi = k})|Xk(z̃−i ∪ {zi = k}); θk)

p(y−i,k(z̃−i)|X−i,k(z̃−i); θk)
,

which is exactly eq (3).

Appendix A.2 VHEM Algorithm Design

Equation (4) establishes the iteration formulae in the variational E-step. Once the iteration converges, we obtain an approximate

posterior q̃(z) = I(z = z̃) and we can calculate the approximate Q-function Q̃(Θ;Θold) = Eq̃(z)[L(Θ, z)] = L(Θ, z̃). From eq

(1), we can see the optimal estimations of {πk,µk,Σk}K
k=1 are similar as in the Gaussian mixture model. The hyper-parameters

{θk}K
k=1 of Gaussian processes can be learned via the gradient descent algorithm for each Gaussian process component separately.

Once we find the latent variables z remains invariant in two consecutive iterations, then the iteration process has converged and we

terminate the EM iteration. In case that the algorithm fails to converge or spends too many steps to converge, we set the maximum

number of iterations to be 20. However, in practice we find the VHEM algorithm converges in several EM iterations. The entire

algorithm is summarized in algorithm A1.
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Algorithm A1 The variational hard-cut EM algorithm for MGPs

Input: dataset {(xi, yi)}N
i=1, the number of components K.

Parameters: mixing proportions {πk}K
i=1, Gaussian mixture model parameters {µk,Σk}K

k=1, Gaussian process parameters

{θk}K
k=1.

Latent variables: latent variables {zi}N
i=1.

1: Initialize {zi}N
i=1 via the k-means algorithm.

2: while not converged do

3: %% M-step

4: for k = 1, 2, · · · , K do

5: Update the mixture parameters of k-th Gaussian mixture component:

Ik = {i|zi = k}, πk =
|Ik|
N

,µk =
1

|Ik|
∑
i∈Ik

xi,Σk =
1

|Ik|
∑
i∈Ik

(xi − µk)(xi − µk)
⊺
.

6: Update θk, σk using gradient ascent in each Gaussian process components.

7: end for

8: %% E-step

9: while not converged do

10: for i = 1, 2, · · · , N do

11:

zi = arg max
k=1,2,··· ,K

πkp(xi;µk,Σk)
p(yk(z̃−i ∪ {z̃i = k})|Xk(z̃−i ∪ {z̃i = k}); θk)

p(y−i,k(z̃−i)|X−i,k(z̃−i); θk)
.

12: end for

13: end while

14: end while

Appendix B Further Comparisons with the Other Algorithms on the Learning of MGPs
VHEM v.s. MCMC EM. Despite the similarity between the VHEM algorithm and the MCMC EM algorithm, their derivations

are very different. The MCMC-EM algorithm is time-consuming in practice since we have to perform sampling in each step, and

it usually takes a long time for the Markov chain to attain the desired stationary distribution. Besides, it is difficult to diagnose

whether the Markov chain has converged. On the contrary, the VHEM algorithm is faster since we avoid the sampling step, and

we can conclude the fixed-point iteration has converged as long as two consecutive iterations lead to the same z̃.

VHEM v.s. hardcut EM. The relationship between the VHEM algorithm and the hardcut EM algorithm has been discussed

in the letter. Here, we present the detailed derivation of equation (5). We ignore the dependency on z̃, i, k for now and write

y− = y−i,k(z̃−i) ,X− = X−i,k(z̃−i) ,t = |{j|z̃j = k and j ̸= i}| ,C− = c(X−,X−; θk),

y+ = [y−; yi] ,X+ = [X−;x
⊺
i ] ,c = c(X−,xi; θk) ,C+ =

C− c

c⊺ θ2
k,0 + σ2

k

 .

Then

log
p(yk(z̃−i ∪ {z̃i = k})|Xk(z̃−i ∪ {z̃i = k}); θk)

p(y−i,k(z̃−i)|X−i,k(z̃−i); θk)
= log

N (y+|0,C+)

N (y−|0,C−)

= −
t + 1

2
log(2π) −

1

2
log detC+ −

1

2
y
⊺
+C

−1
+ y+ +

t

2
log(2π) +

1

2
log detC− +

1

2
y−C

−1
− y−.

Note that

log detC+ = log det

C− c

c⊺ θ2
k,0 + σ2

k

 = log detC− + log(θ
2
k,0 + σ

2
k − c

⊺
C

−1
− c),

C
−1
+ =

C− c

c⊺ θ2
k,0 + σ2

k

−1

=

C−1
− + 1

θ2
k,0

+σ2
k
−c⊺C

−1
− c

C−1
− cc⊺C− − 1

θ2
k,0

+σ2
k
−c⊺C

−1
− c

C−1
− c

− 1

θ2
k,0

+σ2
k
−c⊺C

−1
− c

c⊺C−1
−

1

θ2
k,0

+σ2
k
−c⊺C

−1
− c

 ,

y
⊺
+C

−1
+ y+ = y

⊺
−C

−1
− y− +

y⊺
−C−1

− cc⊺C−1
− y−

θ2
k,0 + σ2

k − c⊺C−1
− c

−
2yiy

⊺
−C−1

− c

θ2
k,0 + σ2

k − c⊺C−1
− c+

+
y2
i

θ2
k,0 + σ2

k − c⊺C−1
− c

.

Therefore,

log
p(yk(z̃−i ∪ {z̃i = k})|Xk(z̃−i ∪ {z̃i = k}); θk)

p(y−i,k(z̃−i)|X−i,k(z̃−i); θk)
= −

1

2
log(2π) −

1

2
log(θ

2
k,0 + σ

2
k − c

⊺
C

−1
− c) −

(y⊺
−C−1

− c − yi)
2

2(θ2
k,0 + σ2

k − c⊺C−1
− c)

, (B1)

which is exactly eq (5).

VHEM v.s. LOOCV. Equation (5) ( or equivalently, eq. (B1)) gives an alternative perspective of the iteration formulae. We

find that eq. (5) is exactly the log-probability of yi|y−i,k,X−i,k,xi given θk. Therefore, the update of z̃i can be rewritten as

z̃i = argmax
k=1,2,··· ,K

πkp(xi;µk,Σk)p(yi|y−i,k(z̃−i),X−i,k(z̃−i),xi; θk)

= argmax
k=1,2,··· ,K

πkp ((xi, yi)|y−i,k(z̃−i),X−i,k(z̃−i);µk,Σk, θk) .
(B2)
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Table C1 Parameter settings of S1, S7 and S16.

Dataset Component πk µk Σk [θ0, θ1, σ]

S1

1 1/3 −6 1.5 [2.00, 3.33, 0.10]

2 1/3 0 1.5 [0.75, 10.00, 0.10]

3 1/3 6 1.5 [1.50, 1.25, 0.10]

S7

1 0.2 −12 1.5 [2.00, 3.33, 0.10]

2 0.2 −6 1.5 [0.75, 10.00, 0.10]

3 0.2 0 1.5 [1.50, 1.25, 0.10]

4 0.2 6 1.5 [0.50, 2.50, 0.10]

5 0.2 12 1.5 [1.50, 5.00, 0.10]

S16

1 0.25 [−3,−3]

[
2 0

0 2

]
[2.00, 3.33, 0.30]

2 0.25 [−3, 3]

[
2 0

0 2

]
[0.75, 10.00, 0.30]

3 0.25 [3,−3]

[
2 0

0 2

]
[1.50, 1.25, 0.30]

4 0.25 [3, 3]

[
2 0

0 2

]
[0.50, 2.50, 0.30]

This formula is rather intuitive: we assign zi to be the class that best explains (xi, yi) given all other samples. Similar formulae

also appears in the LOOCV (Leave-One-Out Cross Validation) algorithm. However, the LOOCV algorithm is established for the

discriminative mixture of Gaussian processes, which is a different structure of MGP, and leave-one-out probabilities are used as

gating functions. Besides, the LOOCV algorithm is derived by maximizing the leave-one-out likelihood, while the VHEM algorithm

is based on performing variational inference and hardcut approximation on data likelihood. Equation (B2) can also be used for a

more efficient implementation of the VHEM algorithm, which only requires computing one Gaussian process likelihood.

Appendix C Experimental Results
We conduct experiments on various typical synthetic datasets. These synthetic datasets are referred to as S1, · · · ,S16, respectively.

Among them, S1 and S7 are basic datasets which have 3 and 5 Gaussian processes components respectively. The parameter settings

of S1 and S7 are listed in table C1. Other datasets excluding S16 are modified based on S1 and S7 by varying the noise level,

mixing proportions and overlapping level. Specifically, S2 − S6 are modified based on S1 as follows:

(a) S2 (a more noisy dataset): σ1 = σ2 = σ3 = 0.2.

(b) S3 (a less noisy dataset): σ1 = σ2 = σ3 = 0.05.

(c) S4 (an unbalanced dataset): π1 = 0.2, π2 = 0.5, π3 = 0.3.

(d) S5 (a mildly overlapping dataset): Σ1 = Σ2 = Σ3 = 1.0.

(e) S6 (a heavily overlapping dataset): Σ1 = Σ2 = Σ3 = 2.0.

S8−S12 are generated based on S7 in a similar way. We generate 900 samples in S1−S6, 1500 samples in S7−S12. S13−S15 are also

modified based on S1, but in these datasets the task is more challenging. Specifically, in S13 we set σ1 = σ2 = σ3 = 0.5, and in S14

we set σ1 = σ2 = σ3 = 1.0. Therefore, the noise levels are relatively high in S13 and S14. As for S15, we set Σ1 = Σ2 = Σ3 = 3.0,

thus the components are heavily overlapped. In S16, the input variable x is two-dimensional, and there are 4 Gaussian process

components. The parameter settings of S16 are also listed in table C1. For each dataset, 1/3 of the samples are randomly selected

for training, and the rest samples are used for testing. These datasets are illustrated in fig. C1.

For comparison, we also report the results of other MGP learning algorithms such as hardcut EM, MCMC EM, and LOOCV,

as well as typical non-linear regression methods: a single Gaussian process, Support Vector Regression (SVR), and Feedforward

Neural Network (FNN). Besides, to illustrate the superiority of the MGP model, we consider k-means GP, which split the datasets

into several parts via the k-means algorithm and then trains GP in each component separately. We use the squared exponential

covariance function in all Gaussian processes. For SVR, we use the Gaussian kernel with an adaptive kernel scale. The feedforward

neural network consists of three hidden layers with 10, 10 and 5 neurons respectively. The structure of the FNN is selected from 30

possible configurations by 5-fold cross-validation. We set the number of components equal to the ground-truth K in the generative

model. For MCMC EM algorithm, we generate 25 samples in each E-step. For the hardcut EM algorithm, the VHEM algorithm

and the LOOCV algorithm, since the latent variables z are deterministic in the M-step, we terminate the iteration once we find z

remains invariant in two consecutive EM iterations.

We evaluate these methods by the Rooted Mean Square Error (RMSE) and running time. Suppose {(xi, yi)}N
i=1 are testing

samples, and {ŷi}M
i=1 are prediction results, then the RMSE is defined by

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 . (C1)

The results are reported in table C2. The results of these methods may be influenced by the initialization, therefore the reported

results are averaged over 10 runs. We observe that the VHEM algorithm outperforms the hardcut EM algorithm consistently. While

the MCMC EM algorithm obtains better results on some datasets, it spends significantly longer running time. The VHEM is a

little slower than the hardcut EM algorithm since it involves iterations in the E-step, but it obtains comparable or even better

results than the MCMC EM algorithm. Theoretically, the MCMC EM is supposed to obtain the best result since there is no

approximation in the E-step. However, the Gibbs sampling steps may introduce fluctuations. More severely, it is challenging to

diagnose the convergence of the Markov chain in practice, and it may take prohibitively long to converge. Therefore, the results

of the MCMC EM algorithm usually have larger standard deviations, and sometimes the average RMSEs are even not as good

as VHEM. Besides, the differences hardcut EM, MCMC EM, and VHEM are relatively small when the overlapping level is low

(i.e., on S5 and S11), and relatively large when the overlapping level is high (i.e., on S6, S12 and S15). This is consistent with

the theoretical analysis in appendix Appendix B. When the components are mildly overlapped, the results of k-means GP are

comparable or even better than MGP methods. However, when the components are heavily overlapped, MGP (MCMC EM) and
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Figure C1 Illustrations of the typical synthetic datasets S1 − S15. Samples belonging to different components are shown in

different colors.



Tao Li, Jinwen Ma, et al. Sci China Inf Sci 5

Table C2 Average rooted mean square errors and running times (in seconds) of various methods on synthetic datasets S1-S16.

The results are averaged over 10 runs, and the best results are in bold.

Method
Dataset S1 S2 S3 S4

RMSE Time RMSE Time RMSE Time RMSE Time

GP 0.2986± 0.0000 0.56± 0.11 0.4216± 0.0000 0.58± 0.03 0.2853± 0.0000 0.58± 0.05 0.3602± 0.0000 0.58± 0.02
SVR 0.5775± 0.0270 0.01± 0.01 0.5365± 0.0204 0.01± 0.01 0.7280± 0.0801 0.01± 0.00 0.5054± 0.0318 0.01± 0.00
FNN 0.5390± 0.0728 0.35± 0.15 0.5510± 0.0784 0.27± 0.12 0.4585± 0.0942 0.46± 0.22 0.4339± 0.0775 0.27± 0.07

k-means GP 0.2281± 0.0000 0.41± 0.00 0.4339± 0.0000 0.41± 0.00 0.3504± 0.1040 0.44± 0.01 0.3475± 0.0100 0.45± 0.00
MGP (LOOCV) 0.1947± 0.0000 1.28± 0.19 0.4462± 0.0000 0.48± 0.11 0.3501± 0.0000 17.87± 0.22 0.3478± 0.0006 28.56± 18.96

MGP (hardcut EM) 0.2340± 0.0000 0.70± 0.10 0.4129± 0.0000 0.68± 0.02 0.2686± 0.0000 1.15± 0.06 0.2834± 0.0000 1.50± 0.04
MGP (MCMC EM) 0.1639± 0.0037 312.31± 130.79 0.3079± 0.0014 173.91± 97.31 0.2336± 0.0060 460.59± 72.63 0.2306± 0.0012 361.89± 118.68

MGP (VHEM) 0.1633± 0.0000 6.02± 0.05 0.3050± 0.0000 5.94± 0.03 0.2278± 0.0000 8.10± 0.09 0.2304± 0.0000 10.30± 0.29

Method
Dataset S5 S6 S7 S8

RMSE Time RMSE Time RMSE Time RMSE Time

GP 0.3014± 0.0000 0.65± 0.01 0.3345± 0.0000 0.44± 0.00 0.4447± 0.0000 2.48± 0.01 0.5437± 0.0000 1.89± 0.01
SVR 0.4406± 0.0232 0.01± 0.01 0.4981± 0.0309 0.01± 0.00 1.1147± 0.0657 0.02± 0.00 0.7824± 0.0215 0.02± 0.00
FNN 0.4480± 0.0648 0.25± 0.07 0.4144± 0.0454 0.29± 0.06 0.9026± 0.2473 0.35± 0.15 0.6020± 0.0902 0.47± 0.24

k-means GP 0.1813± 0.0000 0.42± 0.00 0.2962± 0.0000 0.37± 0.00 0.3469± 0.0094 0.73± 0.04 0.4722± 0.0301 0.73± 0.02
MGP (LOOCV) 0.1743± 0.0000 12.92± 0.38 0.2615± 0.0000 7.09± 0.06 0.3451± 0.0424 4.47± 0.66 0.8197± 0.1615 3.22± 3.59

MGP (hardcut EM) 0.1724± 0.0000 1.10± 0.02 0.2986± 0.0000 2.28± 0.01 0.3408± 0.0004 1.30± 0.05 0.4739± 0.0000 2.87± 0.03
MGP (MCMC EM) 0.1689± 0.0025 157.50± 96.41 0.2229± 0.0047 408.96± 106.23 0.3139± 0.0137 722.66± 411.33 0.3208± 0.0084 740.45± 376.68

MGP (VHEM) 0.1675± 0.0000 5.97± 0.04 0.2256± 0.0000 13.09± 0.07 0.3172± 0.0000 33.10± 2.54 0.3162± 0.0000 26.39± 0.14

Method
Dataset S9 S10 S11 S12

RMSE Time RMSE Time RMSE Time RMSE Time

GP 0.3186± 0.0000 1.96± 0.01 0.3139± 0.0000 2.21± 0.01 0.2652± 0.0000 3.45± 0.01 0.4067± 0.0000 2.07± 0.01
SVR 0.8760± 0.0590 0.02± 0.00 0.8818± 0.0304 0.02± 0.00 0.8447± 0.0355 0.02± 0.01 1.0229± 0.0584 0.02± 0.00
FNN 0.5602± 0.0764 0.40± 0.16 0.5815± 0.1120 0.46± 0.19 0.5261± 0.0467 0.45± 0.19 0.6737± 0.0748 0.37± 0.10

k-means GP 0.2905± 0.0000 0.67± 0.00 0.2827± 0.0023 0.74± 0.03 0.1682± 0.0003 0.73± 0.00 0.4009± 0.0000 0.63± 0.01
MGP (LOOCV) 0.2880± 0.0000 2.14± 0.07 0.2535± 0.0000 5.15± 0.11 0.2375± 0.0162 2.86± 3.07 0.3995± 0.0000 18.09± 0.09

MGP (hardcut EM) 0.2821± 0.0000 2.89± 0.09 0.2666± 0.0000 2.10± 0.01 0.1695± 0.0000 1.43± 0.02 0.3791± 0.0000 2.18± 0.02
MGP (MCMC EM) 0.2255± 0.0473 1236.03± 156.74 0.2234± 0.0035 681.89± 327.97 0.1694± 0.0002 744.05± 423.48 0.3402± 0.0014 704.16± 359.57

MGP (VHEM) 0.2092± 0.0161 26.88± 4.85 0.2248± 0.0000 31.48± 0.21 0.1695± 0.0000 6.12± 0.07 0.3365± 0.0000 27.34± 0.14

Method
Dataset S13 S14 S15 S16

RMSE Time RMSE Time RMSE Time RMSE Time

GP 0.6980± 0.0000 0.59± 0.01 1.1408± 0.0000 0.72± 0.05 0.6659± 0.0000 0.76± 0.01 0.9737± 0.0000 4.93± 2.20
SVR 0.7514± 0.0175 0.01± 0.00 1.2630± 0.0163 0.04± 0.15 0.8577± 0.0497 0.02± 0.01 1.2807± 0.0205 0.04± 0.03
FNN 0.9356± 0.3466 0.32± 0.08 1.4482± 0.5019 0.39± 0.62 0.8646± 0.2342 0.54± 0.30 1.2415± 0.1202 0.69± 0.17

k-means GP 0.7545± 0.0000 0.43± 0.00 1.1386± 0.0000 0.58± 0.40 0.6425± 0.0023 0.49± 0.08 0.8923± 0.0004 0.96± 0.38
MGP (LOOCV) 0.7415± 0.0000 5.29± 0.04 1.1653± 0.0000 4.44± 0.58 0.7570± 0.0000 11.92± 0.68 0.9445± 0.0001 3.56± 0.86

MGP (hardcut EM) 0.6418± 0.0000 1.27± 0.02 1.1411± 0.0000 1.06± 0.20 0.6579± 0.0000 1.20± 0.05 0.8899± 0.0001 3.40± 0.22
MGP (MCMC EM) 0.6206± 0.0055 595.62± 50.75 1.1361± 0.0073 529.00± 124.51 0.6174± 0.0290 564.71± 36.73 0.8632± 0.0996 3889.66± 866.21

MGP (VHEM) 0.6140± 0.0000 11.11± 0.02 1.1366± 0.0000 5.59± 0.29 0.6097± 0.0000 9.89± 0.16 0.8320± 0.0042 32.58± 9.59

Table C3 Classification accuracy rates (CARs) of k-means GP, LOOCV, hardcut-EM, MCMC-EM and VHEM on synthetic

datasets S1-S16. The best results are in bold.

Method
Dataset S1 S2 S3 S4 S5 S6 S7 S8

Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

k-means GP 98.33% 99.50% 99.33% 99.33% 99.20% 98.50% 98.60% 98.58% 99.67% 99.67% 97.00% 98.33% 92.03% 92.46% 96.24% 95.84%
LOOCV 98.00% 99.00% 99.33% 99.33% 90.33% 93.00% 68.62% 68.62% 99.00% 99.67% 68.00% 65.83% 98.25% 98.61% 96.41% 95.64%

Hardcut EM 98.33% 99.17% 99.33% 99.33% 99.33% 98.50% 98.67% 98.50% 100.00% 99.67% 95.67% 97.33% 98.54% 98.43% 99.20% 98.70%
MCMC EM 98.67% 98.99% 99.67% 99.33% 99.39% 98.40% 98.98% 98.53% 99.50% 99.67% 97.63% 98.18% 94.78% 94.58% 99.67% 98.80%

VHEM 98.67% 99.00% 99.67% 99.33% 99.33% 98.33% 99.00% 98.67% 99.33% 99.67% 98.00% 98.00% 98.80% 98.60% 99.80% 98.80%

Method
Dataset S9 S10 S11 S12 S13 S14 S15 S16

Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

k-means GP 98.40% 99.10% 96.97% 97.56% 99.80% 99.73% 97.40% 97.40% 98.67% 98.33% 99.00% 98.17% 94.55% 94.67% 96.57% 96.90%
LOOCV 98.00% 99.00% 98.40% 98.60% 94.99% 96.52% 96.00% 97.00% 99.33% 97.67% 98.67% 98.00% 99.00% 94.67% 96.59% 96.75%

Hardcut EM 98.60% 99.20% 98.40% 98.40% 99.80% 99.80% 96.80% 97.30% 98.67% 98.33% 99.00% 98.50% 94.67% 94.67% 96.54% 96.73%
MCMC EM 97.44% 96.85% 99.40% 99.05% 99.80% 99.80% 99.03% 97.21% 99.08% 97.66% 98.72% 98.07% 98.12% 94.63% 96.92% 96.71%

VHEM 97.60% 97.50% 99.00% 99.10% 99.80% 99.80% 98.20% 97.30% 99.00% 97.50% 98.67% 98.00% 99.00% 94.67% 94.83% 95.14%

MGP (VHEM) outperform k-means GP significantly. The noise level of S13 is relatively high, and we still find that MGP (VHEM)

achieves better results than other methods. However, if we further increase the noise level, the task becomes very difficult and the

results of various methods are similar on S14. The results on S16 demonstrate the effectiveness of the VHEM algorithm when the

dimension of the input variable is larger than 1. It is worth noting that the time consumption of the MCMC EM algorithm on

S16 is very high because of expensive sampling steps, and the standard deviation of the result is relatively high, while the VHEM

algorithm can obtain better results within one minute.

To further demonstrate the effectiveness of VHEM and compare it with hardcut EM and MCMC EM, we also consider their

performances on component identification. Component identification concerns whether the algorithm successfully reveals the un-

derlying mixture structure and correctly assigns the samples to their corresponding components. To evaluate the component

identification performances, we calculate the Classification Accuracy Rate (CAR), which is defined as

CAR = max
ξ∈ΠK

1

N

N∑
i=1

I(zi = ξ(ẑi)),

where ΠK denotes the set of K-permutations. Since there are no theoretical guarantees that the EM algorithm will classify the

samples into correct clusters, this metric reflects the effectiveness of the algorithms in terms of revealing the mixture structure

empirically. The CARs of four algorithms are shown in table C3. We can see that the component identification results of these

algorithms are almost perfect on all datasets, except LOOCV. Hardcut EM, MCMC EM, and VHEM achieve comparable CARs and

none of them has obvious advantages in general. However, when the overlapping level is high (i.e., on S6, S12 and S15), the CARs

of hardcut EM and k-means GP drop marginally, while VHEM still achieves high CARs. Besides, k-means GP rarely achieves the

best CAR, therefore we conclude that it is necessary to consider the temporal structure to accurately model the data rather than

directly dividing samples into groups based on the input variable alone.
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