
SCIENCE CHINA
Information Sciences

. Supplementary File .

DBKEM-AACS: A Distributed Key Escrow Model in
Blockchain with Anonymous Authentication and

Committee Selection

Axin XIANG1,2, Hongfeng GAO1,3*, Youliang TIAN1,2,4* & Liang WAN1,5*

1College of Computer Science and Technology, Guizhou University,Guiyang 550025, China;
2Institute of Cryptography and Data Security, Guizhou University, Guiyang 550025, China;

3Network and Information Management Center, Guizhou University, Guiyang 550025, China;
4State Key Laboratory of Public Big Date, Guizhou University, Guiyang 550025, China;

5Institute of Computer Software and Theory, Guizhou University, Guiyang 550025, China

Appendix A Preliminaries

Appendix A.1 CHURP scheme

The CHURP scheme is proposed by Maram et al. [1]. On the basis of the previous proactive secret sharing schemes, its core thought

is to introduce the idea of the ”dimension-switching” to prevent the destruction of whole proactive secret sharing scheme due to

the number of corrupted nodes in the process of share updating exceeding the preset threshold value. The handoff in CHURP that

achieve the update of shares from the old committee to the new committee is shown in Figure A1, in which three phases of the

handoff process about the above idea are as follows:

HandoffHandoff

Epoch e Epoch e+1

Figure A1 The Handoff during the epoch.

(1) Share reduction. Introducing a binary polynomial B(x, y), which is of order 〈t, 2t〉, and nodes switch from the t-order

dimension of B(x, y) to the 2t-order dimension, so that each node in the new committee gains a reduced share B(x, j), which is an

univariate polynomial of variable x.

(2) Share proactivization. The new committee generates a 0-sharing polynomial Q(x, y), which satisfies Q(0, 0) = 0 and is of

order 〈t, 2t〉, and calculates B′(x, j) = B(x, j) +Q(x, j), so each new committee node gains a new reduced share B′(x, j), which is

independent of old reduced share B(x, j).

(3) Full-share distribution. nodes switch from the 2t-order dimension of B(x, y) to the t-order dimension, and generate full

shares B′(h, y) through new reduced shares {B′(x, j)}j , which are an univariate polynomial of variable y.

Appendix A.2 Smart contract

Smart contract is an executable code deployed on blockchain, which does not rely on any central organization to automatically

execute the contract on behalf of all participants and has the characteristics of enforcement, tamper-proof and verifiability. When a

certain precondition is met, the contract will automatically execute. By encoding the rules in real world, encrypting and then storing

it on blockchain, it is ensured that all participants can run on the synchronized version without being unilaterally tampered. We

introduce the contract structure of a smart contract verifiable framework proposed by Dorsala et al. [2] into the DBKEM-AACS to

construct multiple contracts, and take solidity development documentation (https://docs.soliditylang.org/en/latest) as a reference

to compile smart contracts for performance analysis based on the designed contract pseudocode.

Appendix A.3 Physically Unclonable Functions

Physically Unclonable Functions (PUFs) were proposed by Lim et al. [3]. Silicon PUF is an input-output mapping γ : {0, 1}m →
{0, 1}n, where m is the bit length of an input, n is the bit length of an output, and a n-bits output value clearly identified by a

m-bits input value, which has the characteristics of unclonable, unpredictability. The most important thing is that its function is

only related to the embedded object. Based on the above characteristics, Krzywiecki et al. [4] propose anonymous authentication

scheme using PUF for the first time. Along that line, we introduce the idea of a PUF based anonymous authentication scheme

proposed by Chatterjee et al. [5] into the DBKEM-AACS to construct an anonymous authentication scheme suitable for blockchain

in the paper, which have the strictly-secure anonymity.

* Corresponding author (email: hfgao@gzu.edu.cn, youliangtian@163.com, wanliangtr@163.com)

https://docs.soliditylang.org/en/latest

Xiang A X, et al. Sci China Inf Sci 2

Appendix B The pseudocodes for all contract

ACC-Contract

Function Init(): Set state := Iint, A := 0, tx := Search(), wk := Search(), tx′i := Search(),

CND := Perform(CNSC − Contract), wk′i := Search()

Function Create(): Upon receiving (”Create”, txi, wki, pki, e) from BNi:

assert state = Iint, epoch is e, tx and wk

assert tx′i == txi and wk′i == wki

assert txi 6 tx, wki 6 wk and pki

set state := Created

Function ADefine(): Upon receiving (”Initializ activeness”, pki) from BNi:

assert state = Created

If check (txi! = 0 and wki == 0):

set A := min(1, 0.5 + txi/tx)

If check (txi == 0 and wki! = 0):

set A := min(1, 0.5 + wki/wk)

If check (txi! = 0 and wki! = 0):

set A := min(1, 0.5 + wki/wk+txi/tx)

Else:

set A := 0.5

set state := Initializd activeness

Function AUpdate(): Upon receiving (”Update activeness”, A, pki, e + 1) from BNi:

assert state = Initializd activeness

assert epoch is e + 1

If check (pki in CND):

set A := Perform formula (1)

Else:

set A := Perform formula (2)

set state := Updated activeness

Figure B1 Activeness calculation contract.

Xiang A X, et al. Sci China Inf Sci 3

CNSC-Contract

Function Init(): Set state := Iint, $reward := 0, $deposit := {NULL}, PCND := {NULL}, END :=

{NULL}, CND := {NULL}
Function Create(): Upon receiving (”Create”, pken, den, N , r, e, Ai(e), pki, dbni) from EN and BNi:

assert state = Iint, and r > N ∗ dbni
assert epoch is e and there are n candidate nodes

set $reward := r, $deposit := $deposit ∪ (dbni, pki)

set state := Created

Function Sort(): Upon receiving (”Sort node”, pken, $deposit, pki) from EN :

assert state = Created

assert ledger [pki] > dbni // where ledger is the balance of an account

If check (ledger [CNSC] == den + n ∗ dbni):
set PCND := BubbleSort(pki) // where BubbleSort is a sorting algorithm

Else:

stop CNSC−Contract

set state := Sorted node

Function ECJ(): Upon receiving (”Select committee”, pken, PCND, N) from EN :

assert state = Sorted node

assert N , PCND and its node number |PCND|
If check (|PCND| > N):

For search (pki ∈ PCND):

set CND := Selection(PCND, N) // where Selection is a selection algorithm

Else:

stop CNSC−Contract

set state := Selected committee

Function Return(): Upon receiving (”Return”, pken, CND, END) from EN :

assert state = Selected committee

assert |CND| == N

assert CND, END

transfer dbni to the address of pki ∈ END

set ledger[pki] := ledger[pki] + r (pki ∈ CND)

set state := Returned

Figure B2 Committee node selection contract.

Xiang A X, et al. Sci China Inf Sci 4

NAC-Contract

Function Init(): Set state := Iint, k′i := 0, function H, random Ni, di := 0, GMi := 0, V v := FALSE,

h := 0, NDL := {NULL}, GD := {NULL}
Function Create(): Upon receiving (”Create”, pki, H(ri), H(Ni)), ki, ri ⊕mi, H(ri ⊕mi)) from ENi:

assert state = Iint, ki and k′i

set di := H(Ni)‖pki‖(H(ri)⊕Ni)

set GM := di‖ri ⊕mi‖H(ri ⊕mi)‖”Grant”‖ki
set state := Created

Function Login(): Upon receiving (”Login”, pki, di) from ENi:

assert state = Created

set NLD := NLD ∪ (pki, di)

set state := Logined

Function Grant(): Upon receiving (”Grant”, pki, GMi) from ENi:

assert state = Logined, di and V v

Go to VerifyD()

assert state = V erified authorization message

set V v := V erifyD()

If check (V v == TRUE):

set GD := GD ∪ (pki, di, (ri ⊕mi)‖H(ri ⊕mi)‖”Grant”‖ki)
Else:

stop NAC − Contract

set state := Granted

Function VerifyD(): Upon receiving (”Verify authorization message”, GMi, di) from function Grant():

assert state = Pre−Grant, V v, GMi and H(ri ⊕mi)

set h := H(ri ⊕mi)

assert CND, END

If check (h == H(ri ⊕mi)):

set V v := TRUE

RETURN V v

set state := V erified authorization message

Figure B3 Node authentication contract.

Xiang A X, et al. Sci China Inf Sci 5

NAC-Contract(continue)

Function Authenticate(): Upon receiving (”Authenticate”, H(r), d, k′i) from ENi:

assert state = Granted

assert di, k
′
i

If check (k′i 6 ki):

Go to VerifyH()

assert state = V erified authorization

set V v := V erifyH()

If check (V v == TRUE):

set k′i := k′i + 1

send (di, GMi) to ENi

set GMi := di||ri ⊕mi||H(ri ⊕mi)‖”Grant”‖k′i
Else:

stop NAC − Contract

Else:

Go to Revoke()

set state := Authenticated

Function VerifyH(): Upon receiving (”Verify authorization”, di, H(ri), pki) from function Authenticity():

assert state = Pre−Authenticate

assert pki, H(Ni) and (H(ri)⊕Ni) in di

set V v := FALSE

If check (pki == pki and H(H (ri)⊕ (H (ri)⊕Ni)) == H (Ni)):

set V v := TRUE

RETURN V v

set state := V erified authorization

Function Revoke(): Upon receiving (”Revoke permission”, di, pki, ki, k
′
i) from function Authenticity():

assert state = Authenticated

If check (k′i > ki):

assert (pki, di||ri ⊕mi‖”Revoke”‖k′i)
set state := Revoked permission

Figure B4 Node authentication contract(continue).

Xiang A X, et al. Sci China Inf Sci 6

KEC-Contract

Function Init(): Set state := Iint, k := 0, C := {NULL}, Epoch := 0, s := {NULL},c := 0, SI := 0,

w := 0, CND := call (CNSC − Contract), U ′ := {NULL}, C ′ := {NULL}, SIH := 0,

h := 0, CND′ := call (CNSC − Contract), hash function H, Cv := TRUE, SJ := 0,

A := call(NAC − Contract), CB := 0, S := 0, ki := 0

Function Create(): Upon receiving (”Create”, k′, e, CND, CND′, pki) from ENi:

assert state = Iint

set Epoch := e

set C := CND, C ′ := CND′

set k := k′

set state := Created

Function Distribute(): Upon receiving (”Distribute”, pki, C, rh‖pkh, Bi(h, y)) from ENi and Ci:

assert state = Created

assert epoch is Epoch, C and k

set w := H(ski)

set C := C ∪ rh‖pkh
For search(pkh ∈ C):

set c := Bi(h, y)⊕ rh

set s := s ∪ (c‖H(c)‖pkh‖pki)
set state := Distributed

Function Update(): Upon receiving (”Update”, C ′, rj‖pkj , sj , s′i, shi) from ENi, Ci and C ′i:

assert state = Distributed

set Epoch := Epoch + 1

assert epoch is Epoch

set U ′ := {C ′}j∈{2t+1}

set Cv := CV erify(sj)

assert state = V erified

If check (Cv == TRUE):

set SJ := sj

Else:

stop KEC − Contract

set Cv := CV erify(s′i)

assert state = V erified

If check (Cv == TRUE):

set SI := s′i

Else:

stop KEC − Contract

set Cv := CV erify(shi)

assert state = V erified

If check (Cv == TRUE):

set SIH := shi

Else:

stop KEC − Contract

set state := Updated

Figure B5 Key escrow contract

Xiang A X, et al. Sci China Inf Sci 7

KEC-Contract(continue)

Function Recover(): Upon receiving (”Recover”, ri, B
′
i(h, y)‖H(B′i(h, y))‖pkh‖pki) from ENi and C ′i:

assert state = Pre−Recover and Distributed

set Cv := CV erify(B′i(h, y)‖H(B′i(h, y))‖pkh)

assert state = V erified

If check (Cv == TRUE):

store B′i(hi, y)‖H(B′i(hi, y))‖pkhi
in local memory

Else:

stop KEC − Contract

If check (ki 6 k):

For search (pkhi
∈ C ′):

set CB := (B′i(h1, y)‖B′i(h2, y)‖. . . ‖B′i(ht+1, y))⊕ ri

set S := CB‖H(CB)‖pki
set ki := ki + 1

Else:

stop KEC − Contract

set state := Recovered

Function CVerify(): Upon receiving (”Verify”, s = c′i ||H (c′i)|| pki) from function Update() and Recover():

assert state = Pre− V erify

assert V v, GM and H(r ⊕m)

set h := H(c′i), c := c′i

If check (h == H (c)):

set Cv := TRUE

Else:

set Cv := FALSE

RETURN Cv

set state := V erified

Figure B6 Key escrow contract(continue)

Appendix C Key sub-share update

This part uses the idea of the ”dimension-switching” [1]. Assuming that the ability of adversary to corrupt nodes in the old

and new committees is: the adversary can corrupt t nodes at most in one epoch to ensure the security of keys in the handoff

process, that is, it is strong enough to resist the collusion attack of 2t corrupted nodes. Actually, when the epoch e ends, and then

go to the handoff phase of next epoch e + 1, in which ENi calls CNSC-Contract to complete the selection of a new committee

C
(e+1)
i = {P e+1

1 , P e+1
2 , ..., P e+1

n } and public, where new committee nodes are also sorted according to lexicographic order of their

public keys. Furthermore, the handoff process is divided into three stages including share reduction, share proactivezation, and

full-share distribution. the execution details are as follows:

a. Share reduction.

• Firstly, KEC-Contract randomly selects 2t+1 nodes from C
(e+1)
i to make up a temporary new committee U ′ = {C(e+1)

i }j∈{2t+1},

and obtains their response values rj , where j = 1, 2, ..., 2t+ 1.

• Secondly, the nodes in C
(e)
i calculate the temporary reduction share Bi(h, y), the secure temporary reduction share cji =

Bi (h, j)⊕ rj and the certificate of temporary reduction share H(cji) for each node in U ′, and connect them with public key pkj by

using ”‖” to obtain sj=cji‖H(cji)‖pkj , and then input sj into KEC-Contract, so as to publicly publish it on the blockchain, where

h=1, 2, ..., n.

• Finally, each node U ′j in U ′ retrieves sj by using their public key pkj and completes the correctness verification of sj through

a hash function H, cji , and H(cji). And then U ′j obtains Bi(h, j) by calculating the formula cji ⊕ rj . Furthermore, constructing

the reduced share Bi(x, j) of node pkj by collecting t + 1 temporary reduction shares that have been correctly verified, such as

Xiang A X, et al. Sci China Inf Sci 8

{(hk, Bi (hk, j)) |k = 1, 2, · · · t+ 1}. The calculation formula is as follows:

a0 + a1h1 + · · ·+ at(h1)t + f(j) + ch1j = Bi(h1, j)

a0 + a1h2 + · · ·+ at(h2)t + f(j) + ch2j = Bi(h2, j)

.

.

.

a0 + a1ht+1 + · · ·+ at(ht+1)t + f(j) + cht+1j = Bi(ht+1, j)

(C1)

where ai (i = 1, 2, ..., t) is unknown, f(j) is an unknown constant of the 2t-order univariate polynomial f(y) for y, and chkj (k =

1, 2, ..., t + 1) is also unknown. Therefore, aiming at t + 1 unknowns ai that are all different, chkj and f(y), Bi(x, j) can be

constructed based on the following Lagrange interpolation formula:

Bi(x, j) =
∑t+1

k=1
Bi(hk, j)

∏t+1

k 6=l, l=1

(x− hl)

(hk − hl)
(mod q)

= (a0 + f(j)) + (a1 + cj)x+ a2x
2

+ · · ·+ atx
t

(mod q)

(C2)

where Bi(0, j) = a0 + f(j), the coefficient a1 + cj of x, and the coefficient ai (i = 2, 3, ..., t) are all known.

b. Share proactivization.

• Firstly, KEC-Contract randomly selects 2t + 1 nodes from new committee C
(e+1)
i to form the temporary new committees

U ′ = {C(e+1)
i }j∈{2t+1}. Subsequently, each node U ′j in U ′ randomly selects a 〈t, 2t〉-order 0-shared binary polynomial Qi(x, y) =

ci1x+ ci2x
2 + · · ·+ cin + di1y + di2y

2 + · · ·+ di2ty
2t, which satisfies Qi(0, 0) = 0.

• Secondly, U ′j calculates the new reduction share B′i(x, j) = Bi(x, j) + Qi(x, j), where the equation satisfies B′i(0, 0) =

Bi(0, 0) +Qi(0, 0), the secure new reduction share c′i = Bi
′ (x, j)⊕ rj , the certificate of new reduction share H(c′i), and connects

them with the public key pkj to obtain s′i = c′i
∥∥H(c′i) ‖pkj , and then inputs s′i to KEC-Contract.

• Finally, KEC-Contract executes the function CVerify() to complete the correctness verification of s′i through a hash function

H, c′i, and H(c′i). If the verification passes, it will be publicly published on the blockchain, otherwise ignored.

c. Full-share distribution.

• Firstly, for any node P ′h (h=1, 2, ..., n) in the new committee C
(e+1)
i , each node U ′j in U ′ that has performed the operation

of share proactivization calculates the temporary full-share B′i(h, j), the secure temporary full-share chi = Bi
′ (h, j) ⊕ rh, the

certificate of temporary full-share H(chi), and connects them with the public key pkh to obtain shi = chi ‖H(chi)‖pkh, and then

inputs shi to KEC-Contract, so as to publicly publish on the blockchain.

• Secondly, P ′h obtains shi from the blockchain through his (or her) pkh and completes the correctness verification of shi through

a hash function H, chi , and H(chi), if the verification passes, the XOR operation will be used to obtain B′i(h, j) by combining with

rh, otherwise ignored.

• Finally, P ′h collects 2t+ 1 temporary full shares that have been correctly verified, such as {(jk, B′i(h, jk)|
k = 1, 2, · · · , 2t+ 1}, to construct the full share B′i(h, y) of node P ′h. The calculation formula is as follows:

e0 + g(h) + e1j1 + e2(j1)2 + · · ·+ e2t(j1)2t + chj1 = B′i(h, j1)

e0 + g(h) + e1j2 + e2(j2)2 + · · ·+ e2t(j2)2t + chj2 = B′i(h, j2)

.

.

.

e0 + g(h) + e1j1 + e2(j2t+1)2 + · · ·+ e2t(j2t+1)2t + chj2t+1 = B′i(h, j2t+1)

(C3)

where e0, ei = (bi + di) (i = 1, 2, ..., 2t) are all unknown, g(h) is an unknown constant of the 2t-order univariate polynomial g(x)

for x, and chjk (k = 1, 2, ..., t + 1) is unknown. Therefore, aiming at 2t+1 unknowns ei that are all different, g(h) and chjk,

B′i(h, y) can be constructed based on the following Lagrange interpolation formula:

B
′
i(h, y) =

∑2t+1

k=1
Bi(h, jk)

∏2t+1

k 6=l, l=1

(y − jl)
(jk − jl)

(mod q)

= (e0 + g(h)) + (e1 + ch)y + e2y
2

+ · · ·+ e2ty
2t

(mod q)

(C4)

where B′i(h, 0) = e0 + g(j), the coefficient e1 + ch of y, and the coefficient ei (i = 2, 3, ..., 2t) are all known.

Appendix D Security analysis

Appendix D.1 Adversary model

In this section, we consider the details of the adversary model [1, 6] of the DBKEM-AACS, which can resist the active attack.

On the one hand, we suppose a powerful active adversary A, which can whenever perform attack on the committee nodes that in

view of a (t + 1, n) threshold secret sharing scheme, there are at most t nodes corrupted by A in the old and new committees,

respectively. On the other hand, aiming at an anonymous authentication scheme, assuming that A is a semi-honest adversary in

the process of identity authentication.

Definition 1. In the case that adversary A only has the ability to corrupt no more than t nodes during the handoff phase, the

DBKEM-AACS satisfies the following properties:

Confidentiality: if adversary A can only corrupt no more than t nodes in any epoch, A will not get any information about the

secret key.

Integrity: if adversary A can only corrupt no more than t nodes during the process of handoff, after the handoff, the key shares

for honest node still can be calculated correctly, and the secret key remains unchanged.

Definition 2. In the case that adversary A only has the ability to perform the active attack, the DBKEM-AACS satisfies the

following property:

Correctness: if adversary A is semi-honest during the process of authentication, A cannot prevent the node from being correctly

authenticated and the secret key can be correctly restored.

Xiang A X, et al. Sci China Inf Sci 9

Appendix D.2 Security analysis

We analyze the security of the proposed model (DBKEM-AACS) in this article based on the definition of threat model in Section

4.2. On the basis of the assumption that an anonymous authentication scheme is designed in Section 4.3.2 is based on a secure

channel, so as to the security of the proposed scheme in Section 4.3.3 is mainly to analyze the attack capability of an active

adversary A. Therefore, according to Definition 1 and Definition 2 in Section 4.2, in this section, we ensure that the security

of the DBKEM-AACS by analyzing the security of the proposed scheme in Section 4.3.3. The key point of our analysis is to

closely focus on the idea of ”dimension-switching” in [1], so that while ensuring the security of the process of key share update, the

DBKEM-AACS must meet the confidentiality, integrity and correctness. The proof process is as follows:

Confidentiality. The meaning of confidentiality in this article is that given the attack capability of the active adversary A,

he cannot obtain any information about the secret key ski based on the known information obtained. In order to prove the

confidentiality of the DBKEM-AACS, we propose the following lemmas.

Lemma 1. If adversary A corrupts no more than t nodes in the old committee and no more than t nodes in the temporary new

committee, the information obtained by A in the stage of share reduction cannot be used to obtain any information for ski.

Proof. Supposing that A obtains 2t reduced-shares Bi(x, j) and t full-shares Bi(h, y) in the new and old committees. If A wants

to obtain the ENi’ s ski, the binary polynomial Bi(x, y) for ENi firstly needs to be recovered, so the system of 2t + 1-variables

linear congruence equations and the system of t + 1-variables linear congruence equations are established which same as formula

(5) and formula (7), but the numbers of their equations are 2t and t, respectively. If there are 2t+ 1 unknowns, there is no unique

solution to the establishment of a system of equations containing t equations. Moreover, the establishment of a system of equations

containing 2t equations cannot uniquely solve t + 1 unknown number. And then we can conclude that the capability of A is not

enough to obtain any information for ski in the share reduction phase.

In addition, based on the collision-resistance [?,?] of a hash function and the negligible probability attack [?] of a XOR function,

what its definition is that let X = A ⊕ B, where X, A, B are k-bit numbers, if X is known, the probability that A successfully

produce X in combination with B is P (k) = 2−k, in which as long as k is large enough, P (k) is negligible, the PPT A cannot

obtain any additional information from the distribution process of reduced-shares and full-shares.

Lemma 2. If adversary A corrupts no more than t nodes in the temporary new committee, then A cannot destroy the process

to proactivizate the key sub-shares in the stage of share proactivization.

Proof. Given that a 〈t, 2t〉-order 0-shared binary polynomial Qi(x, y) with confidentiality and integrity, any 2t+1 t-order univariate

polynomial Qi(x, j) can calculate an 〈t, 2t〉-order Qi(x, y) by establishing a system of 2t+ 1-variables linear congruence equations.

Therefore, in a temporary new committee with at least 2t+ 1 nodes but there are t corrputed nodes, as long as there is an honest

node, Qi(x, y) can be restored to cover up Bi(x, j).

In addition, based on the collision-resistance of a hash function and the negligible probability attack of a XOR function, the

PPT A cannot obtain any additional information from the distribution process of reduced-shares.

Lemma 3. If adversary A corrupts no more t nodes in the new committee, the information obtained by A in the distribution

phase of full-shares cannot be used to obtain any information for ski.

Proof. According to Lemma 1, assuming that Qi(x, y) can be generated correctly and randomly, so based on the formula B′i(x, y) =

Bi(x, y) + Qi(x, y), we can get B′i(x, j) is completely independent of Bi(x, j). No matter how many nodes A corrupts in the

temporary new committee, A can only get t B′i(h, y) in the distribution phase of full-shares. Because the order of the selected

binary polynomial is 〈t, 2t〉, aiming at t+ 1 unknown numbers, there is no unique solution to establish a system of equations with t

equations, then it can be concluded that the capability of A is not enough to get any information for ski in the distribution phase

of full-share.

In addition, based on the collision-resistance of a hash function and the negligible probability attack of a XOR function, the

PPT A cannot obtain any additional information from the distribution phase of full-shares.

In summary, by Lemma 1, 2 and 3, we can conclude that A cannot obtain any information for ski during the update phase of

key sub-shares, thus ensuring the confidentiality of the DBKEM-AACS.

Integrity. The meaning of integrity in this article is that the nodes in the new committee can correctly calculate the sub-shares

of the same ski. In order to prove the integrity of the DBKEM-AACS, we propose the following lemmas.

Lemma 4. If adversary A can corrupt no more than t nodes in the old committee and no more than t nodes in the temporary

new committee, then after the phase of share reduction, at least t + 1 nodes in temporary new committee correctly reconstruct

Bi(x, j).

Proof. Given that the number of nodes in the old committee is n, which satisfies n > 2t+ 1, the number of A to corrupt nodes in

the old committee is no more than t, and at least t+ 1 nodes correctly send Bi(h, j) to the temporary new committee. In addition,

given that the number of nodes in the temporary new committee is 2t+ 1, and the maximum number of A to corrupt nodes in the

temporary new committee is t. Therefore, based on the collision-resistance of a hash function and the negligible probability attack

of a XOR function, there are at least t+ 1 nodes correctly obtain at least t+ 1 Bi(h, j), respectively. Due to the order of B(x, y)

is 〈t, 2t〉, so at least t+ 1 Bi(x, j) can be reconstructed correctly.

Lemma 5. If the adversary A corrupts no more than t nodes in the temporary new committee, then at least t+1 nodes in the

temporary new committee will correctly reconstruct B′i(x, j) after the stage of share proactivization.

Proof. Given that the number of nodes in the temporary new committee is 2t+1, assuming that a 〈t, 2t〉-order 0-shared binary

polynomial Q(x, y) with confidentiality and integrity and the number of A to corrupt nodes in the old committee is no more than

t. Under the premise of ensuring the confidentiality of the process of share proactivization, this process can always be executed

correctly. Therefore, according to the formula B′(x, y) = B(x, y) + Q(x, y), On the basis of the collision-resistance of a hash

function and the negligible probability attack of a XOR function, it is ensured that at least t+1 temporary new committee nodes

correctly reconstruct B′i(x, j), which satisfies B′(0, 0) = B(0, 0) = ski

Lemma 6. If adversary A corrupts no more than t nodes in the new committee, then after the full-share is distributed, at least

t+1 new committee nodes correctly reconstruct B′i(h, y).

Proof. Given that the number of new committee nodes is n′, which satisfies n′ > 2t + 1, the maximum number of A to corrupt

nodes in the new committee is t. Based on the Proof of Lemma 5, at least t+1 new committee nodes can correctly reconstruct

B′i(h, y).

In summary, by Lemma 4, 5 and 6, A cannot prevent the new committee nodes from correctly calculating the sub-shares of the

same ski during the phase of key share update, thereby ensuring the integrity of the DBKEM-AACS.

Xiang A X, et al. Sci China Inf Sci 10

Correctness. The meaning of correctness in this article is that ENi can be correctly authenticated by the smart contract and

ski can be correctly restored. In order to prove the correctness of the DBKEM-AACS proposed in this paper, we propose the

following lemmas.

Lemma 7. If A is semi-honest adversary, ENi can be correctly authenticated.

Proof. Assuming that A is not malicious, that is, it will not carry out purposeless or meaningless attacks. In the case of based

on the secure channel, it is guaranteed that the anonymous authentication process will not suffer from various active or passive

attacks. Therefore, ENi can be correctly authenticated by judging whether the equation H(Ni) == H(H(r) ⊕ (H((r) ⊕ Ni) is

established.

Lemma 8. If active attack capability of adversary A is t nodes at most, ENi will have ability to correctly recover ski.

Proof. Based on the above proof of confidentiality and integrity, the collision-resistance of a hash function, the negligible

probability attack of a XOR function, Lemma 7 and the characteristics B′(0, 0) = B(0, 0) + Q(0, 0) = B(0, 0) of the formula

B′(x, y) = B(x, y) +Q(x, y), under the premise of ensuring that at least t+ 1 B′i(h, y) can be accurately obtain, ENi can establish

a system of equations with t+1 equations to acquire B′i(x, y), thus correctly recovering ski, which satisfies ski = B′i(0, 0) = Bi(0, 0).

In summary, by Lemma 7 and 8, A is not enough to affect the correct authentication of the nodes and the correct recovery of

ski during the process of key escrow, thereby ensuring the correctness of the DBKEM-AACS.

Appendix E performance analysis
We implement our experiment in solidity 0.8.0, Python 3.7 and JavaScript VM. The contracts designed in Section 4.3 are encoded

by using the Solidity language, and the Gas consumption generated by each function in all contracts is counted in the form of a

table to show the calculation cost and economy cost, where numerical value is accurate to three digits after the decimal point,

and using the Python language to visualize the Gas consumption of the supplementary function. In order to unify the conversion

ratio between Gas and $, we will define Gas price as 1 Gas=1 Gwei and 1 ETH=109 Gwei. In addition, the current conversion

price between Ether and $ is 1 ETH=$3556.0, which is real world costs in November 2021. However, because smart contracts have

many deficiencies in programming, we may make appropriate adjustments to each contract in actual compilation to facilitate the

implementation.

In table E1, we list the calculation cost and the economic cost of main functions in ACC-Contract. The contract is specifically

used to calculate a node activeness. Observe that the cost of the function Iint() is relatively large (Other contracts in our paper

have the same phenomenon), but the information that it has been initialized can be used over multiple times between the hosting

node and the committee. In addition, in order to facilitate the design and implementation of ACC-Contract, we redefine the type

of activeness in the actual encoding, because the current smart contract compiled by the solidity language does not support the

assignment and modification of the float type, and can only be simply defined. Therefore, we define the original floating-point

type bounded by 1 as an integer bounded by 10, what happens that if the upgrade of smart contracts overcomes the defects of

floating-point type, we will redefine it as a floating-point type bounded by 1.

Table E1 Costs of ACC-Contract

Function Caller Gas Consumption $ Consumption

Iint() Blockchain node 472224+cost(Search()) 1.679+ cost(Search())

Create() Blockchain node 92283 0.328

ADefine() Blockchain node 52746 0.188

AUpdate() Blockchain node 31035+cost(Search()) 0.110+ cost(Search())

Table E2 Costs of Search() and its supplementary functions

Function Caller Gas Consumption $ Consumption

Search() ACC-Contract 473709 1.685

SHA256() (compute 70 times) Search() 149490 0.532

In ACC-Contract, in order to solve the problem of querying the number of related transaction and mining, we perform a

simulation experiment of a function Search() for block query, and show its performance overhead in table E2, where the structure

of which has a total input of 64 transactions and 6 blocks. Aiming at the problem that the judgment symbol ”==” in the smart

contract is not compatible with the type of string, because the type of transaction or block defined in code are all string types,

we input the hash calculation result by using SHA256() to make judgement. Therefore, the function Search() also includes the

performance overhead of the hash calculation using SHA256(), where the function of SHA256() is to call the library function of

the SHA256 algorithm has been defined in smart contracts: Taking string type data as input to obtain the hash value of bytes32

type. Figure E1 shows how the function Search() increases over the number of blocks and the number of transactions. It can be

concluded that the growth of Gas consumption after 20 transactions and 2 blocks has stabilized, which can guarantee the normal

operation of ACC-Contract.

The table E3 shows the calculation cost and economic cost of main functions in CNSC-Contract, where assuming that there are

a committee with 5 nodes and 4 nodes in it that need to be selected. We select the bubble sort algorithm that is stable and has

a computational complexity of O(n2) to carry out the sorting process in this article, and the gas consumption of the bubble sort

algorithm varies with the input size as showed in Figure E2. In view of the problem that smart contracts cannot achieve flexible

deletion of node information, we set the node state value, such as state = 0 or state = 1, to determine whether a node in the

PCND has been selected as a committee node.

In table E4, we list the calculation cost and economic cost of main functions in NAC-Contract. From the table, we can know

that due to the existence of the function Login(), the Gas consumption of the originally designed function Create() at compile time

is the function Login() at compile time, the Gas consumption of the function Grant() includes the Gas consumption of the function

VerifyD(), and then the Gas consumption of the function Authenticate() includes the Gas consumption of the function VerifyH().

Xiang A X, et al. Sci China Inf Sci 11

Figure E1 The Gas consumption of Search()

Table E3 Costs of CNSC-Contract

Function Caller Gas Consumption $ Consumption

Iint() Escrow Node 983780 3.498

Create() Escrow Node 21567 0.077

Rank() Escrow Node 114197 0.406

ECJ() Escrow Node 349373 1.242

Return() Escrow Node 35115 0.125

Figure E2 The Gas consumption of Rank()

The table E5 shows the calculation cost and economic cost of the supplementary functions in NAC-Contract. In order to

perform the hash calculation of SHA256() accurately, we compile the function uint2str() in NAC-Contract, the function of which is

to convert an integer type to a string type as the input of the function SHA256(). The Gas consumption of the function VerifyH()

includes the Gas consumption of the function uint2str(). In order to facilitate the comparison of judgment equations, the function

SHA256() is introduced for type conversion. Figure E3 shows the Gas consumption of the function uint2str(). It can be seen from

the figure that the Gas consumption for a single input value tends to be stable.

In table E6, we list the calculation cost and economic cost of main functions in KEC-Contract. Since KEC-Contract is not a

contract that is continuously executed until the final result is obtained, the correlation between its main functions in it is weaker

than other contracts. Therefore, when compiling KEC-Contract, the Gas consumption of each main function includes the part

Xiang A X, et al. Sci China Inf Sci 12

Table E4 Costs of NAC-Contract

Function Caller Gas Consumption $ Consumption

Iint() Escrow Node 1799384 6.399

Login() or Create() Escrow Node 94462 0.336

Grant() Escrow Node 143409 0.510

Authenticate() Escrow Node 50593 0.180

VerifyD() Escrow Node 27161 0.097

VerifyH() Escrow Node 33339 0.119

Revoke() Escrow Node 44424 0.158

Retrun() Escrow Node 38658 0.137

Table E5 Costs of Search() and its supplementary functions

Function Caller Gas Consumption $ Consumption

uint2str() (compute 1 time) NAC-Contract 24363 0.087

SHA256() (compute 2 times) NAC-Contract 22967+22871 0.082+0.0.081

Figure E3 The Gas consumption of uint2str()

of Gas consumption of Create(). It can be seen from the table that the Gas consumption of function Update() and function

CVerify() includes Gas consumption of three stages, such as share reduction, share automation, and full-share distribution. Similar

to table E5, table E7 shows the calculation cost and economic cost of the supplementary functions of KEC-Contract.

Table E6 Costs of KEC-Contract

Function Caller Gas Consumption $ Consumption

Iint()+2*CNSC+1*NAC (include Create()) Escrow Node 1537192+2*CNSC+1*NAC 5.466+2*CNSC+1*NAC

Distribute() (include Create()) or Create() Escrow Node 524418 1.865

Update() (include Create()) Escrow Node 129100+115100+115100 0.495+0.409+0.409

Recover() (include Create()) Escrow Node 739589 2.630

CVerify() Escrow Node 25369+24031+24031 0.090+0.085+0.085

Table E7 Costs of the supplementary functions of KEC-Contract

Function Caller Gas Consumption $ Consumption

uint2str() (compute 1 time) KEC-Contract 52253 0.186

SHA256() (compute 2 times) KEC-Contract 36235 0.129

The table E8 conducts the comparison of function between our paper and other papers such as reference [1] and reference [6]. We

can conclude from the table that our paper proposes a key escrow model in blockchain by combining smart contracts (SC), anony-

Xiang A X, et al. Sci China Inf Sci 13

mous authentication (AA) and committee selection (CS) compared to the [1] and [6], meanwhile, the communication complexity

(CC) in our paper is approximately equal to the [1] and less than the [6], where t ≈ n.

Table E8 Function analysis of DBKEM-AACS

key management in Blockchain SC AA CS CC

In [6] NO NO NO NO NO O(n4)

In [1] YES YES NO NO NO O
(
n2
)
∼ O

(
n3
)

In our aper YES YES YES YES YES O(n3)

To sum up, the Gas consumption of the function Iint() in each contract is relatively large, but on the whole, all values after

the initial execution can be used multiple times. Therefore, the average Gas consumption per time is acceptable. In addition,

why the Gas consumption of other main functions in KEC-Contract except the function Iint() is relatively high is because the Gas

consumption of the function Create() is also included.

References

1 Maram S K D, Zhang F, Wang L, et al. CHURP: Dynamic-Committee Proactive Secret Sharing. In: Proceedings of the 2019

ACM SIGSAC Conference on Computer and Communications Security, London, 2010. 2369-2386

2 Dorsala M R, Sastry V N, Chapram S. Fair payments for verifiable cloud services using smart contracts. Computers & Security,

2020, 90: 101712

3 Lim D, Lee J W, Gassend B, et al. Extracting secret keys from integrated circuits. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 2005, 13: 1200-1205

4 Chatterjee U, Mukhopadhyay D, Chakraborty R S. 3PAA: A Private PUF Protocol for Anonymous Authentication. IEEE

Transactions on Information Forensics and Securitys, 2021, 16: 756-769

5 Krzywiecki L. Anonymous Authentication Scheme Based on PUF. In: Proceedings of International Conference on Information

Security and Cryptology, Seoul, 2015: 359-372

6 Schultz D A, Liskov B, Liskov M D. MPSS: Mobile Proactive Secret Sharing. ACM Transactions on Information and System

Security, 2010, 13: 34:1-34:32

	Preliminaries
	CHURP scheme
	Smart contract
	Physically Unclonable Functions

	The pseudocodes for all contract
	Key sub-share update
	Security analysis
	Adversary model
	Security analysis

	performance analysis

