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Abstract In order to improve the adaptability and robustness of gliding guidance under complex envi-

ronments and multiple constraints, this study proposes an intelligent gliding guidance strategy based on

the optimal guidance, predictor-corrector technique, and deep reinforcement learning (DRL). Longitudinal

optimal guidance was introduced to satisfy the altitude and velocity inclination constraints, and lateral ma-

neuvering was used to control the terminal velocity magnitude and position. The maneuvering amplitude

was calculated by the analytical prediction of the terminal velocity, and the direction was learned and deter-

mined by the deep Q-learning network (DQN). In the direction decision model construction, the state and

action spaces were designed based on the flight status and maneuvering direction, and a reward function

was proposed using the terminal predicted state and terminal constraints. For DQN training, initial data

samples were generated based on the heading-error corridor, and the experience replay pool was managed

according to the terminal guidance error. The simulation results show that the intelligent gliding guidance

strategy can satisfy various terminal constraints with high precision and ensure adaptability and robustness

under large deviations.
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1 Introduction

Hypersonic vehicles have been a research hotspot for the past 15 years. Gliding guidance with the con-
straints of terminal latitude, longitude, altitude, velocity magnitude, and inclination is a key technology
for hypersonic vehicles [1]. Traditional standard trajectory tracking guidance [2], predictor-corrector
guidance [3], and quasi-equilibrium gliding guidance [4] are mainly organized based on flight dynamics
and control theory and can solve the gliding guidance problem under a single mission and standard condi-
tion. However, in the face of various flight missions, large deviations of the environment and vehicle body
make the above methods redesign the standard trajectory or adjust the guidance parameters manually,
which is inconvenient in actual flight processes. Therefore, improving adaptability and robustness is a
key problem to be solved in gliding guidance, and intelligent control is an important technical approach.

Artificial intelligence (AI) based on machine learning is a hot topic in current research. As an algorithm
that embodies intelligent decision-making, reinforcement learning (RL) has been recognized by many
scholars [5]. RL selects actions that act on the environment, iterations, trials, and errors to obtain the
greatest benefits [6]. Q-learning is a typical RL method and has been a preliminary research subject in the
field of path planning and parameter determination [7]. Ref. [8] investigated a high-order RL problem for
both simulations and real flight tests. In this problem, a quadrotor performs the task of taking pictures
of a disaster site, whereas the environment is completely unknown at first. The quadrotor must learn the
interest location and the most efficient way to get there. As for the intercept guidance problem, Gaudet
et al. [9] employed RL to learn a homing-phase guidance law that is optimal with respect to the missile’s
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airframe dynamics, sensor and actuator noise, and delays. Aiming at the gliding guidance problem of
hypersonic vehicles, Luo et al. [10] established a three-dimensional gliding guidance model and discrete
reinforcement learning model, and used a Q-table to determine the lateral maneuver amplitude of velocity
control. The above research results explore intelligent guidance using traditional discrete reinforcement
learning, which mainly solves decision-making problems with low dimensions of the state space and action
space.

As is well known, both flight states and guidance commands are time-continuous variables, so the
discretization of states and actions in RL will inevitably affect decision-making accuracy and efficiency.
A common improvement method of deep reinforcement learning (DRL) currently uses a deep neural
network (DNN) to represent the value function in Q-learning; the input information is the state and
action, and the output information is the value function [11, 12]. This method can effectively use the
generalization ability of neural networks to solve decision-making problems with high-dimensional input
and low-dimensional output [13]. Hovell et al. [13] introduced a novel deep learning guidance method,
which consists of a learned guidance strategy that feeds velocity commands to a conventional controller
to track. Control theory was combined with DRL to lower the learning burden and facilitate the transfer
of the trained system from simulation to reality. Furthermore, Hovell et al. [14] employed DRL to design
a spacecraft docking controller when the target aircraft was fixed and rotated in a two-dimensional plane.
However, fuel consumption and arrival time constraints were not considered. In [15], RL was utilized to
generate reference bank angle commands for directing the aircraft within close proximity of the updraft,
and the problem of online trajectory generation was reduced to a simple search in a static “state-action”
value table. DRL has also been applied in aerospace applications, mostly in simulations. A simulated
fleet of a wildfire surveillance vehicle used DRL to control the flight path of the vehicle [16]. In addition,
reinforcement meta-learning is a new type of RL. For the exo-atmospheric interception of maneuvering
targets that only have a line-of-sight angle and rate information, reinforcement meta-learning is employed
to optimize the policy to adapt to the target acceleration, and the policy has superior performance when
compared to the augmented zero-effort misguidance with perfect target acceleration knowledge [17].
Furthermore, Gao et al. [18] designed an intelligent controller via DRL to reduce steady-state error, and
the outstanding dynamic performance of the controller was demonstrated by comparing it with a linear
matrix inequality controller. The above research results demonstrate the application of DRL in various
types of vehicle guidance and control, but rarely involve long-period gliding guidance problems, lack of
deep Q-learning network (DQN) initialization design, experience replay pool management, and training
process optimization.

Aiming at the gliding guidance problem of long-distance flight with complex missions and environments,
the study draws on the “offline training + online use” model, and designs a multi-constrained intelligent
guidance strategy based on the optimal guidance, predictor-corrector technique, and DQN. This study
uses the analytical optimal guidance to satisfy the terminal altitude and velocity inclination and controls
the terminal velocity and position by lateral maneuvering. The maneuvering amplitude was determined
by analytical prediction, and the direction was determined by DQN. In DQN training, the reward function
is designed by the analytical prediction of terminal states, the initial data samples are generated using
the heading-error corridor, and the experience replay pool is managed based on the terminal error. By
combining the maneuvering direction decision based on the trained DQN, the optimal guidance, and the
maneuvering amplitude solution, multi-constrained gliding guidance is then realized.

2 Intelligent gliding guidance statement

2.1 Intelligent gliding guidance strategy

Gliding guidance needs to control the vehicle to achieve long-distance flight safely and stably while
satisfying the requirements of terminal latitude, longitude, altitude, velocity magnitude, and inclination
with high precision. The gliding flight is mainly in a complex and changeable near space, and there are
large deviations in the flight environment and aerodynamic coefficients. In addition, gliding vehicles are
faced with complex flight missions, and even flight missions are changed online. Therefore, ensuring the
accuracy of terminal guidance, improving the robustness of complex deviations, and the adaptability of
multiple tasks are key issues that must be resolved in gliding guidance. In view of the aforementioned
gliding guidance problem, the intelligent guidance strategy shown in Figure 1 is proposed.
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Figure 1 (Color online) Block diagram of intelligent gliding guidance strategy.

For the guidance strategy, the optimal guidance, predictor-corrector technique, and DRL are combined
to achieve the guidance goal. The analytical optimal guidance method studied in the previous research was
used to control the velocity direction to meet the constraints of terminal altitude and velocity inclination.
In addition, lateral maneuvering is used to control the velocity and position, where the maneuvering
amplitude is calculated by analytical prediction, and the direction is learned and determined by the
DRL.

Maneuvering direction decision via DRL is the core section of this paper, which needs to take the
multi-dimensional continuous actual flight states as the inputs and the finite-dimensional maneuvering
direction as the output. Therefore, this paper introduces DRL to realize intelligent decision-making. The
DRL decision-making model construction includes a state space based on real-time flight status, an action
space with maneuvering direction, and a reward function that integrates the terminal position accuracy
and velocity error. Using the ballistic data obtained from numerical integration, the DQN parameters
were trained using the gradient descent method.

Finally, the optimal guidance, predictor-corrector technique, and trained DQN were comprehensively
used to generate intelligent gliding guidance commands.

2.2 Optimal gliding guidance

In a previous study, we established a performance index with minimum energy consumption and designed
optimal parameters in the longitudinal and lateral directions that can satisfy the constraints of the
terminal latitude, longitude, altitude, and velocity inclination. The guidance law, expressed as the
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required overload, is given as follows [19]:

{

u∗
y = g

v2 (ChLR − Cθ) + 1,

u∗
z = v2(σLOS−σv)

g(LRf−LR) ,
(1)

where u∗
y = ny and u∗

z = nz are the optimal guidance laws, also called the required overloads, in the
longitudinal and lateral directions, respectively. g is the Earth’s gravitational acceleration at the current
altitude, v is the velocity magnitude, LR is the range from the initial point to the current position, and
LRf is the total range of the gliding phase. σv and σLOS are the velocity azimuth angle and line-of-sight
(LOS) angle measured from the north in a clockwise direction, respectively. The LOS angle can be
computed according to the current position P (λ, φ) and target T (λf , φf ).

tanσLOS =
sin (λf − λ)

cosφ tan φf − sinφ cos (λf − λ)
, (2)

where λ is the longitude, φ is the latitude, and the subscript f represents the terminal value. The optimal
guidance requirements Ch and Cθ are obtained based on optimal control theory [19].







Ch =
6((LR−LRf )(θf+θ)−2h+2hf )

k2(LR−LRf )
3 ,

Cθ =
2(LRLRf (θ−θf)−L2

Rf (2θ+θf)+L2
R(2θf+θ)+3(LRf+LR)(hf−h))

k2(LR−LRf )
3 ,

(3)

where h is the altitude, hf is the terminal altitude constraint, θ is the velocity inclination constraint,
and θf is the terminal velocity inclination constraint. Based on the longitudinal and lateral overload
commands, the angle of attack α∗ and bank angle υ∗ can be calculated as follows:

{

α∗ = C−1
L

(

2mg
ρv2Sm

,
√

n2
y + n2

z

)

,

υ∗ = arc tan (ny/nz) ,
(4)

where ρ is the atmospheric density, m is the vehicle mass, Sm is the reference area, and C−1
L is the inverse

function calculation, specifically for inverse interpolation using the aerodynamic lift coefficient.

3 Maneuvering amplitude of velocity control

3.1 Terminal velocity prediction

Based on the vehicle’s current position (λ, φ) and terminal position (λf , φf ), the remaining flight range
can be calculated:

LRgo = Rearc cos (sinφ sin φf + cosφ cosφf cos (λf − λ)) , (5)

where Re is the average radius of Earth. By combining the current flight velocity v and its derivative v̇,
the remaining time Tgo is obtained as follows:

Tgo ≈
−v cos θ +

√

v2 cos2 θ + 2v̇LRgo

v̇
. (6)

At relatively low altitudes, the atmospheric density and aerodynamic lift are sufficiently large; thus, the
gliding flight condition can be satisfied. Consequently, the longitudinal forces of the vehicle are balanced;
that is, the aerodynamic lift acting in the positive direction is equal to the gravity acting in the negative
direction.

L ≈ mg, (7)

where L is the aerodynamic lift. For a gliding flight, the lift-to-drag ratio RL/D is large, and the range of
change is small. Therefore, RL/D can be set as a constant in a certain guidance cycle, and the aerodynamic
drag can be expressed as

D =
L

RL/D
≈

mg

RL/D
, (8)
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where L is the aerodynamic drag. Based on the simplified aerodynamic drag in (8), the velocity differential
can be transformed into

v̇ = −
D

m
− g sin θ = −

g

RL/D
− g sin θ. (9)

When the vehicle satisfies the gliding flight condition, the velocity inclination angle and its derivative are
small; therefore, the right side of differential equation (9) can be regarded as a constant. The definite
integral in (9) and the predicted terminal velocity can be obtained as follows:

∫ tf

tc

v̇dt =

∫ tc+Tgo

tc

(

−
g

RL/D
− g sin θ

)

dt

⇒ vfp = v −

(

g

RL/D
+ g sin θ

)

Tgo,

(10)

where tc is the current flight time.

3.2 Maneuvering amplitude calculation in velocity control

The purpose of velocity control is to make the predicted remaining velocity ∆vp = v − vfp equal the
required remaining velocity ∆vr = v − vf . Let kv denote the ratio of the remaining velocity:

kv =
∆vr
∆vp

=
v − vf
v − vfp

. (11)

The goal of terminal velocity control is
lim

LR→LRf

kv = 1. (12)

Because the performance index in (1) is the minimum energy consumption, which means that the terminal
velocity is the highest. Therefore, terminal velocity control reduces the maximum terminal velocity to
a given constraint value by increasing the velocity loss. To achieve velocity control, the coefficient kv is
introduced to correct the current aerodynamic drag acceleration ADc.

ADr = kvADc. (13)

It is known that the aerodynamic drag acceleration is related to the angle of attack, Mach number,
atmospheric density, vehicle mass, and reference area, whereas the angle of attack is the most direct way
to obtain the drag acceleration ADr . Therefore, the required angle of attack αDr for velocity control can
be obtained by inverse interpolation using the drag coefficient CD.

αDr = C−1
D

(

2m

ρv2Sm
, ADr

)

. (14)

The offline obtained standard aerodynamic coefficient CD must have deviations; therefore, the angle of
attack calculated based on the standard drag coefficient CD will affect the guidance accuracy. To this
end, we estimate the drag coefficient ĈD using the online measured drag acceleration and recalculate the
angle of attack α∗

Dr via ĈD to enhance robustness.

{

ĈD = 2mADc

ρv2Sm
,

α∗
Dr

= Ĉ−1
D

(

2m
ρv2Sm

, ADr

)

,
(15)

where ĈD is the estimated drag coefficient calculated by online measured aerodynamic drag acceleration
ADc, α∗

Dr is the angle of attack required for velocity control obtained by inverse interpolation using
drag coefficient and online flight states. α∗

Dr can be directly output to the vehicle control system in
theory. However, this operation is a unilateral destruction of the original optimal guidance law, which
will inevitably affect the gliding ballistic characteristics and guidance accuracy. Therefore, it is better
to unify α∗

Dr and the overload command in the original optimal guidance. Based on the angle of attack
α∗
Dr, the required total overload Ntotal including velocity control can be obtained as

Ntotal =
ρv2SmCL(α

∗
Dr , v)

2mg
. (16)



Zhu J W, et al. Sci China Inf Sci March 2023 Vol. 66 132202:6

Action evaluation network (DQN) 

Maximum of

Maneuvering 

direction
…

…

Q(s, a
1
)

Q(s, a
2
)

Q(s, a
n
)

Q(s, a
x
)

Q(s, a
x
) }

v

h

θ

∆σ

L
go

a
x

...

...

...

..
.

..
.

...

Figure 2 (Color online) Intelligent decision of maneuvering direction via DQN.

According to the velocity control strategy, the longitudinal guidance command is still the optimal overload
command, whereas the lateral overload must be adjusted as

nz =
√

N2
total − n∗

y
2, (17)

where nz is magnitude of lateral overload.

4 DRL for maneuvering direction decision

Eq. (17) gives the magnitude of the lateral overload command used for terminal velocity control. However,
another key factor is the sign of the lateral overload; that is, the maneuvering direction needs to be
determined.

nz =
√

N2
total − n∗

y
2 · sign (nz) , (18)

where sign(x) represents the sign of variable x. The sign(x) needs to take the actual flight status as an
input to satisfy the terminal velocity constraints and eliminate the heading error. This study uses DRL
to learn the maneuvering direction decision strategy; therefore, we construct the DRL framework model,
including the DQN structure, state and action space, and the reward function. The intelligent decision
logic for the maneuvering direction via DQN is shown in Figure 2.

4.1 DRL framework model construction

The basis of DRL is RL and DNN [11]. RL is the process of obtaining a set of expected cumulative
benefits from Jπ and strategy π, as shown in (19) through the accumulation of a large amount of data
and parameter optimization [6].

Jπ = Eπ

[

n
∑

t=0

γtP (st, at, st+1 )fR( st, at, st+1)

]

, (19)

where Jπ is the expected cumulative benefits from the initial state s0 to the terminal state sf through
n steps under the action of the strategy π; Eπ [·] is the mathematical expectation calculation; st and at
are the state and action at t steps, and fR(st, at, st+1) is the corresponding reward; P (st, at, st+1) is the
state transition probability; γ ∈ [0, 1] is the discount factor. In addition, the decision of the maneuvering
direction satisfies the Markov decision process (MDP):

MDP = (S,A, P, fR, γ). (20)

Action space A is one of the key parts of RL, in which the action needs to impact the flight state to
control the gliding flight by adjusting the action. The DQN method is used to make decisions on the
maneuvering direction; therefore, the action space can be designed as a set of maneuvering overload signs.

A = {−1, 1} . (21)
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State space S refers to a collection of flight states that can accurately describe gliding flights and guidance
tasks. The flight states of three-dimensional gliding flight include velocity, velocity inclination, azimuth
angle, longitude, latitude, and altitude. In addition, gliding guidance tasks are characterized by terminal
constraints. To reduce input parameters and enhance versatility, we integrate flight status and terminal
constraints into relative states and then construct a concise and efficient state space.

S = {v, h, θ,∆σ, LRgo} . (22)

The remaining range-to-go LRgo includes the current and target latitude and longitude, and the heading
error ∆σ includes the position and azimuth information.

∆σ = σv − σLOS. (23)

The states in (22) are time-continuous variables that need to be discretized in traditional RL. The more
intensive the state discretization, the higher the learning accuracy; however, this will reduce the learning
efficiency. For gliding vehicles flying in large airspaces, the range of changes of each state is relatively large;
for example, the remaining range LRgo can reach several thousand kilometers. Therefore, the traditional
state-space construction method has a contradiction between high-precision rapid decision-making and
a sharp increase in dimensionality. Therefore, the DRL method is used to realize maneuvering direction
decision-making.

As shown in Figure 2, the DQN constructed in this study includes an input layer, two middle layers,
and an output layer. Each middle layer contains 200 neurons and uses the ReLU “tansig” activation
function. The input and output parameters are as follows:

{

Dinput = {v, h, θ,∆σ, Lgo, ax},

Doutput = Q(s, ax),
(24)

where ax is a certain action in action space A and Q(s, ax) represents the reward value of the input flight
states and action. To improve training efficiency, the sample data were normalized during training.















vnormal =
v−vf
v0−vf

, θnormal = θ × 180
π
,

hnormal =
h−hf

h0−hf
, ∆σnormal = ∆σ × 180

π
,

Lgonormal =
Lgo−Lgof

Lgo0
−Lgof

,

(25)

where the subscript “f” represents the terminal constraint, and the subscript “0” indicates the initial
glide state.

4.2 Reward function design

The reward function is a key section of maneuvering direction decision making, which is used to calculate
the reward value of the vehicle after the execution of the action. The reward value directly determines
the scientific nature of the action judgment and DQN training efficiency, especially for long-range gliding
guidance. In this study, the purpose of the maneuvering direction decision is to satisfy the terminal
position and velocity magnitude, which means that terminal state errors can be used to calculate the
return value and evaluate the current action. Consequently, the reward function is designed as follows:

fR = −1000
|vfp − vf |
√

µe/Re

− 1000
|Perror|

Re
, (26)

where vfp is the predicted terminal velocity, Perror is the terminal position error, µe is the gravitational
constant, Re is the mean radius of Earth. Both vfp and Perror were calculated by numerical integration
from the current flight states to the terminal conditions. In the prediction process, the guidance commands
are generated by longitudinal optimal guidance, whereas the lateral guidance is obtained by terminal
velocity prediction and current DQN parameters. The reward value calculation logic is illustrated in
Figure 3. In (26), the closer the predicted value is to the terminal constraint, the greater the reward. As
shown in Figure 4, the reward value varies linearly with terminal errors, and the maximum reward is 100.
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5 DQN training for maneuvering direction decision

The DQN training needs to construct data samples, set training goals, and train network parameters.
Considering the particularity of long-distance gliding flight, this section uses the heading-error corridor to
initialize the network and proposes an experience replay pool management and training strategy suitable
for long-distance flight.

5.1 DRL algorithm structure

A DQN is a multilayer DNN that can approximate the action value function. There are two networks
with the same structure but different parameters in the DRL: the evaluation network and the target
network.

First, we use the same method to initialize the evaluation network and the target network. In each
training cycle, take the action evaluation network whose internal parameter is w, calculate the estimated
value Q(s, a;w) of all actions in the current state, and output the action at with the maximum value.
Secondly, act at on the vehicle, calculate the reward value rt, and get the next state st+1. The experience
tuple et = (st, at, rt, st+1) is stored in a database D = e1, . . . , eN . D = e1, . . . , eN contains the experience
information of multiple gliding trajectories, such that it is called an experience replay pool. Finally, sample
experience data e ∼ D randomly, construct a loss function based on the target Q-value QT (st+1, at+1;wT )
and evaluated Q-value Q(st, at;w), and then use gradient descent to update the network parameters.
Based on the current states, action and reward value, the target value for training can be calculated
based on the target network [11, 12].

yt =

{

rt, st+1 = sf ,

rt + γmaxat+1
QT (st+1, at+1;wT ) , st+1 6= sf .

(27)

The loss function based on the target value and estimated value is [11]

Lt (w) = Eπ

[

1

2
(yt −Q (st, at;w))

2

]

. (28)
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The gradient of LT (w) relative to each network parameter w is [11]

∇wLt (w) = Eπ [(yt −Q (st, at;w))∇wQ (st, at;w)] (29)

with above process repeated continuously, and the network parameter is updated using (29). We obtained
a set of network parameters that can make maneuvering-direction decisions. When the parameters of
the evaluation network were updated C times, the weight of the current evaluation network was copied
to the target network. In the next C evaluation network parameter update, the target network is used
to generate a target value based on (27), as the learning target for the evaluation network. The DQN
algorithm with the two networks is illustrated in Figure 5.

The general method of DRL is given above. For long-distance and long-time gliding flight, we are most
concerned with the satisfaction of terminal constraints. Therefore, during gliding flight, some actions
with small return value will not affect the success or failure of guidance, but will reduce the learning
efficiency and accuracy. To this end, in the RL iterative process, we employ the guidance accuracy
after the calculation of the whole trajectory to manage the experience pool data. The improved DQN
training algorithm is shown in Algorithm 1. In Algorithm 1, DRL needs to calculate the complete gliding
trajectory repeatedly during the iterative training process, and the trajectory data will be stored in the
experience pool for DQN parameter training if the terminal accuracy satisfies the requirements, that is
∆sf < ǫ. In the improved method, the DQN parameter is trained using the success gliding trajectory
data. The terminal error range ǫ can be set larger in the initial training stage to explore more actions,
and then reduces continuously to ensure training convergence and guidance accuracy.

5.2 Network parameter initialization via heading error

Initialization is the first step in DQN training. The gliding flight is long, and the gliding guidance needs
to judge the maneuvering direction at each time, so that the decision-making space for glide guidance is
huge. The traditional random initialization method leads to low learning efficiency and slow convergence
rate. Therefore, this study comprehensively uses the heading-error corridor and random methods to
generate trajectory data to initialize the network parameters.

It is known that the premise of velocity control is to ensure that the terminal position constraint,
that is, to control the heading error within a certain range. Therefore, this study determines the lateral
overload sign based on the heading-error corridor to ensure terminal guidance accuracy and reduce the
bank angle reversal times. The heading-error corridor is shown in Figure 6.

In Figure 6, LR1, LR2, LR3 and LRf are the range nodes of the corridor and the boundary values, and
all of the above parameters are set manually. The corridor boundary value in Figure 6 can be described
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Algorithm 1 Intelligent gliding guidance training process

Initialize experience replay memory D to capability N ;

Initialize evaluation and target network w = wT ;

Set training parameters;

1: for episode = 1 to M do

2: Initialize flight states s0 = {v0, h0, θ0, ∆σ0, Lgo0};

3: while LR < LRf do

4: With ǫ-greedy strategy, select action at =

{

random, ǫ probablity,

maxa Q (st, a;w) , 1 − ǫ probablity;

5: Execute action at, obtain reward rt and next state st+1;

6: Construct array et = {st, at, rt, st+1};

7: Store array et in experience pool D (if D is full, delete the old array);

8: end while

9: if ∆sf < ǫ then

10: Sample {e1, e2, . . . , eNe} from D randomly;

11: For j = 1, 2, . . . , Ne, set yi =

{

rj+1, sj+1 = sf ,

rj+ + γ maxaj+1
Q (sj+1, aj+1;wT ) , sj+1 6= sf ;

12: Calculate loss function Lj (w) = Σj (yj − Q (sj , aj ;w))2;

13: Train the network parameters w using the gradient descent method;

14: end if

15: Reset target network parameters wT = w every C steps.

16: end for

by the following piecewise linear function:

∆σmax (LR) =











∆σ1, LR1 < LR < LR2,

∆σ1 +
∆σ2−∆σ1

LR3−LR2
(LR − LR2) , LR2 < LR < LR3,

∆σ2, LR > LR3.

(30)

For the heading-error corridor, shown in Figure 6 and (30), the error range is large enough to reduce the
bank angle reversal times when the vehicle is far from the target. As the vehicle approaches the target,
the error range decreases linearly and maintains a small value to ensure position accuracy.

The logic of lateral overload sign determination for terminal velocity control is that the lateral overload
sign remains unchanged when ∆σ is within the error corridor; the sign will be negative to reduce the
heading error if ∆σ exceeds the upper boundary of the error corridor. In contrast, the lateral overload
command is positive if ∆σ exceeds the lower boundary.

sign (nz)corridor =











−1, LR1 < LR < LR2,

1, LR2 < LR < LR3,

sign (nz0) , LR > LR3,

(31)

where nz0 represents the lateral overload command at a previous moment. Here, we employ the maneu-
vering sign in (31) and a random method to determine the maneuvering sign.

sign(nz) =

{

random, ǫ probablity,

sign(nz)corridor, 1− ǫ probablity,
(32)
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Table 1 Simulation and DQN training conditions

Simulation condition Value DQN training parameter Value

Initial velocity 6500 m/s Learning episodes 1000

Initial velocity inclination 0◦ Guidance period 2 s

Initial position (0◦E, 0◦N) Discount factor γ = 0.9

Initial altitude 65 km Target network update period C = 3

Initial heading error 0◦ Data sampling interval 200 km, 20 km (last 5% of total range)

Terminal altitude 30 km Learning rate 0.005

Terminal velocity inclination 0◦ Size of experience pool 104

Target position (95◦E, 10◦N) Sampling size for each training 2000

where ǫn = 0.5. By substituting the maneuvering sign determined using (32) into (18) and combining
it with longitudinal optimal guidance, the gliding trajectory can be calculated. With the entire glide
trajectory, we can store the ballistic data, maneuvering sign, and reward value, and train the DQN
parameters.

6 Simulations and analysis of guidance performance

CAV-H was used to verify the guidance performance [20]. The initial conditions, terminal altitude, and
DQN training parameters are listed in Table 1.

The control capability constraints were as follows: maximum angle of attack, 20◦; maximum rate, 5◦/s;
maximum bank angle, 70◦; and maximum rate, 20◦/s. We employ the ǫ-greedy strategy to train the DQN
parameters, in which ǫ = 0.5, in the initial 1/3 total range; ǫ = 0.3 in the middle 1/3 total range; and
ǫ = 0.1 in the last 1/3 total range. In the construction of the experience pool, the terminal velocity error
range ∆vf was gradually reduced from 100 to 20 m/s, and the position error range ∆Pf was reduced
linearly from 100 km to 100 m. Because the velocity prediction error decreases as the remaining distance
decreases, the velocity control is set in the last 60%–90% of the total range. In the terminal 1% range,
only optimal guidance is provided to ensure position and velocity inclination precision.

6.1 Nominal performance test

The terminal parameters were set as follows: longitude, 95◦; latitude, 10◦; velocity inclination, 0◦; and
velocity, 2800 m/s. The training results are shown in Figure 7. It can be seen from the training results
that the intelligent gliding guidance strategy and DQN training method can achieve perfect convergence
effects.

As shown in Figures 7(a) and (b), in the initial training stage, DRL needs to explore more actions, and
the neural network converges, so there are large errors in the terminal position, velocity, and altitude,
resulting in a small return value. According to the glide guidance strategy, the lateral maneuver for
velocity control primarily affects the position error. Therefore, in the process of learning the DQN, the
position error is large, convergence rate is slow, and terminal position error is approximately 16 m. In
Figure 7(c), because the overload command magnitude is directly calculated from the predicted terminal
velocity, the velocity error only exists in the initial five episodes and then converges to zero rapidly. It
can be observed in Figure 7(d), that the lateral maneuver has little impact on the altitude. The altitude
has a maximum error of 2 km in the initial learning stage and then converges to the constraint value
accurately, with an error of approximately 10 m. Figures 7(e) and (f) give the evaluated value and target
value of the Q-value, respectively, which are very close, indicating the good convergence effect of the
DQN. The offline trained DQN parameters are stored and will be used in online gliding guidance.

In the process of gliding flight, the actual flight status is transferred to the above DQN to obtain the
maneuvering direction command for velocity control. Combining the lateral maneuver and longitudinal
optimal guidance, the gliding trajectory curve obtained is shown in Figure 8. Because velocity control
is realized by lateral maneuvering, there is a large amplitude modification in the bank angle during
the velocity control phase, while the angle of attack has a relatively small variation range, as shown
in Figure 8(a). Owing to the above control variables, the heading error and ground trajectory have
corresponding variations. In Figure 8(b), the heading error is within 15◦, and the reduction in the
relative distance causes a mutation in the LOS angle; thus, the heading error varies from 0◦ to 1.942◦

rapidly at the end of flight. As shown in Figures 8(c)–(f), the terminal position error is 36.848 m, the
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Figure 7 (Color online) Key flight states in DQN training process. (a) Reward value; (b) terminal position error; (c) terminal

position error; (d) terminal altitude; (e) evaluated Q-value; (f) target Q-value.

velocity magnitude error is almost zero, the altitude error is 5 m, and the velocity slope angle error is
0.001◦. It can be seen from the simulation results that intelligent gliding guidance can control the vehicle
to satisfy the terminal constraints with high accuracy under the premise of strong process constraints.

6.2 Adaptability simulation verification

Adaptability to diversified missions is an important aspect of intelligent gliding guidance. To this end, we
set different initial point positions and terminal velocity constraints, and employed the DQN parameters
obtained in Subsection 6.1, to make online decisions on maneuvering direction under different guidance
tasks. The initial position, terminal velocity constraints, and terminal guidance results are listed in
Table 2 and Figure 9. It can be seen from the simulation results that the intelligent gliding guidance
strategy can satisfy various terminal constraints with high accuracy under different initial positions and
terminal velocity constraints without any adjustment of the DQN model and parameters. All terminal
position errors were within 70 m, and the velocity errors were almost zero.

6.3 Robustness simulation verification

There are various deviations in the flight environment and vehicle body model. Therefore, to verify the
robustness, we added constant deviations of the atmospheric density and aerodynamic coefficients during
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Figure 8 (Color online) Main gliding trajectories of intelligent guidance. (a) Control variables; (b) heading error; (c) ground

trajectory; (d) velocity; (e) altitude; (f) velocity inclination.

Table 2 Terminal status in different initial positions

Initial Required Position Terminal Terminal

position velocity (m/s) error (m) velocity (m/s) altitude (km)

(0◦E, 0◦N) 2800 36.848 2800 29.995

(5◦E, 0◦N) 2800 65.524 2800 30.003

(5◦W, 0◦N) 2800 24.803 2800 30.007

(0◦E, 3◦N) 2800 17.608 2800 29.982

(0◦E, 5◦N) 2800 26.006 2800 30.05

(0◦E, 3◦S) 2800 17.051 2800 29.997

(0◦E, 5◦S) 2800 35.826 2800 30.018

the entire flight course in the ballistic calculation; the deviations are unknown to the guidance system.
Taking the initial position as (0◦E, 0◦N) and the terminal position as (90◦E, 10◦N) as an example for
simulation verification, the terminal guidance results are presented in Table 3. It can be seen from the
calculation results that the constant deviation inevitably affects the guidance accuracy, especially for
large deviations.

For the atmospheric density deviation, the available overload and control ability of the vehicle increase
as the atmospheric density increases. Therefore, when the atmospheric density increases by 20%, the
terminal constraints can still be satisfied with high accuracy. Conversely, the control ability decreases
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Table 3 Terminal results under constant deviation in the whole course

Deviation item
Deviation value Required velocity Actual velocity Position error Terminal altitude

(%) (m/s) (m/s) (m) (km)

Without deviation 0 2800 2800 27.325 30.016

20 2800 2800 37.596 29.97

10 2800 2800 43.684 30.02

Atmospheric density
5 2800 2800 31.814 29.987

−5 2800 2800 11.354 30

−10 2800 2800 89.143 30.308

−20 2800 2800 97.924 30.956

20 2800 2800 1263.127 30.002

10 2800 2800 34.927 29.974

Lift coefficients
5 2800 2800 15.493 29.992

−5 2800 2800.1 11.889 29.976

−10 2800 2800 132.334 30.001

−20 2800 2031.6 12.808 29.995

20 2000 2000 37.803 29.995

10 2800 2800 73.592 30.003

5 2800 2800 43.449 30.002

Drag coefficients −5 2800 2800 48.922 30.041

−10 2800 2800 19.59 30.013

−15 2800 2800 144.27 30.61

−20 2800 2800 1023.1 31.453

as the atmospheric density decreases, and the reduction in aerodynamic drag also increases the terminal
velocity when the velocity is uncontrolled. Therefore, the residual velocity to be consumed increases with
a decrease in atmospheric density; therefore, the vehicle needs to adopt more serious maneuvering flights
to satisfy the terminal velocity of 2800 m/s, which produces greater terminal position and altitude errors.

Increasing the lift coefficient can increase the lift-to-drag ratio and terminal velocity when the velocity
is not controlled. Consequently, it can be observed from Table 3 that the vehicle has a sufficient capacity
to consume the remaining velocity when the lift coefficient increases. When the lift coefficient increases
and the required velocity remains at 2800 m/s, the greater remaining velocity causes more serious maneu-
vering, resulting in a larger terminal position error. In contrast, the control capability decreases as the
lift coefficient decreases, and the uncontrolled terminal velocity is also reduced. When the lift coefficient
is reduced by 10%, the terminal position error reaches 132 m. When the deviation further increases to
−20%, the vehicle can only fly with optimal guidance without velocity control, and the maximum termi-
nal velocity can only reach 2031.6 m/s. In contrast to the lift coefficient, the control ability decreases as
the drag coefficient increases. The guidance accuracy after the drag coefficient deviation was affected by
the control ability and residual velocity. Excessive residual velocity leads to a serious maneuvering flight
and increases the guidance error.

From the calculation results presented in Table 3 and the above analysis, it can be observed that the
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Table 4 Statistical characteristics of terminal parameters under random deviation

G1 (Intelligent guidance law) G2 (Guidance law in [10])

Mean value Mean square error Mean value Mean square error

Position error (m) 1.331 4.212 12.465 5.113

Velocity (m/s) 2801.181 2.7042 2806.421 1.667

Altitude (km) 30.001 0.003 30.001 0.003

Velocity inclination (◦) −0.0018 0.0186 0.0021 0.0187
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Figure 10 (Color online) Distribution of terminal parameters under random deviation. (a) Position error; (b) velocity;

(c) altitude; (d) velocity inclination.

constant deviation can directly affect the residual velocity, actual control ability, and guidance precision.
With sufficient control ability, the intelligent gliding guidance strategy can use the same set of DQN
parameters to satisfy multiple terminal constraints without any adjustment of the guidance models and
methods.

In the actual flight process, in addition to the full-range constant deviation under the above extreme
conditions, random deviations also occur. For this reason, the random deviation of the standard normal
distribution was added to the atmospheric density and aerodynamic coefficients to verify robustness. The
mean square error is 3σ = 30% when the altitude is greater than 40 km and reduces to 3σ = 15% at low
altitudes. The statistical results and distribution of terminal parameters of 1000 simulated shootings for
intelligent guidance (G1) and the guidance law in [10] (G2), are listed in Table 4 and Figure 10. The
calculation results show that the intelligent gliding guidance method can effectively deal with the influence
of external deviations. The overload command of the intelligent gliding guidance is directly calculated
according to the terminal velocity, and the direction is determined by the DQN. The 3σ statistical results
show that the terminal position error is within 5 m, which is better than the result of G2. In addition,
the velocity error of G1 was within 4 m/s, whereas the error of G2 was approximately 8 m/s. Because
velocity control is mainly embodied in lateral guidance, the terminal altitude and velocity inclination error
of G1 and G2 are basically the same. The altitude deviation was less than 5 m, the velocity inclination
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deviation was less than 0.05◦.

7 Conclusion

This study proposes a multi-constrained intelligent gliding guidance strategy based on the optimal guid-
ance, predictor-corrector technique, and DRL. Analytical optimal guidance was used to satisfy the con-
straints of terminal latitude, longitude, altitude, and velocity inclination. Lateral maneuvering is used
to control the terminal velocity, in which the amplitude is calculated by analytical prediction and the
direction is determined by the DQN. The key points of this study are as follows. First, we proposed
an intelligent decision-making model of maneuvering direction based on DQN, which mainly includes
the design of time continuous state space and finite-dimensional action space, and the construction of
a reward function based on terminal state prediction. The second is the efficient training of DQN pa-
rameters, which includes an initial sample design based on the heading-error corridor and the experience
pool management for long-period gliding decision-making. The following conclusion was drawn through
theoretical derivation and simulation verification.

(1) Comprehensive utilization of optimal guidance, predictor-corrector technique, and DRL methods
can satisfy terminal constraints with high precision and reduce the complexity and dimension of DQN
models.

(2) Maneuvering direction selection is an intelligent decision-making problem that takes continuous
high-dimensional flight status as input and finite-dimensional maneuvering sign as output, which can be
effectively solved by a DQN.

(3) The training efficiency of the DQN can be improved effectively with the help of the construction of
the initial sample using the heading-error corridor and the experience replay pool management according
to the terminal status during training.

(4) Owing to the strong generalization ability of the DQN, intelligent guidance can still achieve different
tasks and resist different forms of process interference without model and parameter modification.

Robustness to uncertainties is key to gliding guidance. Increasing the uncertainty of the environment
and vehicle body in DQN training is an effective way to enhance robustness, and it is one of the primary
objectives of future research.
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