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Abstract The evolution of the probability distribution for a continuous-time probabilistic logic network

(CT-PLN) is determined by its transition rate matrix (TRM), which is a constant matrix that can be

identified from the observed data. In the literature, the asymptotical stability criterion of a CT-PLN is

expressed by using the transition probability matrix of discretization under a specific sampling period. In

this paper, we derive several improved criteria that are directly expressed in terms of the TRM. We prove

that a CT-PLN is asymptotically stable with respect to a given set if and only if the largest invariant subset

(LIS) in the set is non-empty and the complementary set of the LIS contains no invariant subset. Thus,

the asymptotical stability of a CT-PLN can be verified by applying the existing LIS algorithm twice. In

addition, the condition that the complementary set of the LIS contains no invariant subset can be replaced

by one of the more easily verifiable conditions, namely, the reachability condition and the rank condition.

The reachability condition states that the LIS is reachable from every state outside, and the rank condition

states that the complementary sub-matrix of the TRM with respect to the LIS is of full rank. For a CT-PLN

being not asymptotically stable, a method of determining the domain of attraction is proposed. Finally,

examples are provided to demonstrate the advantages of the proposed method.

Keywords asymptotical stability, continuous-time probabilistic logic network, semi-tensor product of ma-
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1 Introduction

Developing a complete control theory for complex biological systems has always been a significant subject
in the field of systems biology [1]. One fundamental step towards achieving this goal involves the selection
of a suitable mathematical model that describes the essential dynamical behavior of biological systems and
is convenient for synthesis. Logic dynamical networks (LDNs), such as discrete-time Boolean networks
[2] and discrete-time probabilistic Boolean networks [3], are extensively-employed mathematical models
for gene regulatory networks (GRNs). To better characterize the continuous-time evolution behaviors,
continuous-time Boolean networks [4,5] and continuous-time probabilistic Boolean networks [6] have been
adopted to simulate GRNs. However, establishing a unified method for the analysis and control design of
LDNs is difficult. The semi-tensor product (STP) of matrices and the theory of the vector representation
of logic [7] have established a unified theoretical framework for LDNs. Over the past few years, many
control-related problems for LDNs have been studied within this new framework [7–22].

Stability is the most basic requirement for any practical system. Guo et al. [23] investigated asymp-
totical stability and asymptotical feedback stabilization for continuous-time probabilistic logic networks
(CT-PLNs), in which the stability criterion was expressed in terms of the transition probability matrix
(TPM). For a CT-PLN, the TPM is a matrix-valued function of time generated by the transition rate
matrix (TRM) using the matrix exponential. The TRM is a constant matrix that can be identified from
the experimental data [6]. Thus, it is more convenient to express the stability criteria in terms of the
TRM. This is the basic motivation for this study. Nevertheless, the TRM does not directly represent the
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Table 1 Notations

Notation Definition Notation Definition

AT Transpose of matrix A S \ T Set {x ∈ S|x /∈ T }

1n n-dimensional vector (1, 1, . . . , 1)T Sc (S ⊆ ∆n) Set ∆n \ S

0n n-dimensional vector (0, 0, . . . , 0)T δi−n Set ∆n \ {δin}

Rowi(A) The i-th row of matrix A [a : b] Set of integers k with a 6 k 6 b

Colj(A) The j-th column of matrix A Idx Mapping Idx : δin 7→ i with i ∈ [1 : n]

In n-order identity matrix Idx(M) Set {Idx(x)|x ∈ M}

δjn Colj(In) [β]i The i-th component of vector β

∆n Set {δ1n, δ
2
n, . . . , δ

n
n} [A]i,j The (i, j)-th entry of matrix A

|S| Cardinality of set S A ≻ 0 [A]i,j > 0, ∀i, j

transition probability between states. To establish the TRM-based stability criteria, we must directly
relate the reachability between states to the transition rates of probability, which is a non-trivial task.

In this study, we establish several TRM-based stability criteria for CT-PLNs, which are easier to verify
than the existing TPM-based criteria. First, based on the invariant subset theory developed for CT-
PLNs, we prove that a CT-PLN is asymptotically stable with respect to a given set if and only if the
following conditions (a) and (b) are satisfied.

(a) The largest invariant subset (LIS) contained in the given set is non-empty.
(b) The complementary set of the LIS contains no non-empty invariant subset.
The LIS in any set can be directly calculated from the TRM by using an LIS algorithm, and the

asymptotical stability of a CT-PLN can be verified by calling the algorithm twice.
Second, we prove that condition (b) can be replaced by more convenient conditions. The first alternative

condition is called the reachability condition:
(b′) The LIS is reachable from every state outside with a positive probability.
Condition (b′) is equivalent to the condition that, in the state transition rate graph (STRG), every

state outside the LIS has a path to the inside. We propose a new reachability matrix to characterize
the existence of a path between any two states. Unlike the definition in [23], the reachability matrix in
this study is defined in terms of the TRM instead of the TPM, using which condition (b′) can be easily
verified.

The second alternative condition for condition (b) is called the rank condition:
(b′′) The complementary sub-matrix of the TRM with respect to the LIS is of full rank.
The complementary sub-matrix of the TRM with respect to the LIS is the sub-matrix obtained by

deleting the rows and columns corresponding to the states in the LIS. Based on conditions (b′) and
(b′′), the asymptotical stability of a CT-PLN can be verified by calling the LIS algorithm only once.
Particularly, the asymptotical stability with respect to a fixed point can be evaluated directly by using the
reachability condition or the rank condition. Moreover, in the case that a CT-PLN is not asymptotically
stable with respect to the given set, a method to determine the domain of attraction is proposed.

The remainder of this paper is organized as follows. The notations throughout this paper are listed in
Table 1. The model description of CT-PLNs is presented in Section 2. The main results are presented in
Section 3. Examples are presented in Section 4, and the conclusion is drawn in Section 5.

2 Model description of CT-PLNs

Consider a CT-PLN with n nodes. The state of the i-th node at time t is defined as Xi(t) which belongs
to the ri-valued logic domain, Dri := [0 : ri − 1], with ri ∈ {2, 3, . . .}, ∀i ∈ [1 : n]. Moreover, the state of
the entire network at time t is defined as X(t) = (X1(t), X2(t), . . . , Xn(t)) ∈ Dr := Dr1 ×Dr2 ×· · ·×Drn ,

with r := (r1, r2, . . . , rn). For each i ∈ [1 : n], let xi(t) := δ
ri−Xi(t)
ri denote the vector form of Xi(t). In

addition, let x(t) := x1(t)⋉x2(t)⋉· · ·⋉xn(t) ∈ ∆N denote the vector form ofX(t), where N := r1r2 · · · rn
and “⋉” denotes the STP of matrices [7].

In this study, the CT-PLN is modeled as a continuous-time homogeneous Markov chain with a state
space ∆N . Then, the transition probability between any two states is only related to the time interval θ.
Let P (θ) denote the TPM of the network, with

[P (θ)]i,j = Pr
{

x(t + θ) = δiN
∣

∣x(t) = δjN
}

(1)
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for any time t, which satisfies limθ→0+ P (θ) = P (0) = IN and P (α + β) = P (α)P (β), ∀α, β > 0. The
right derivative of P (θ) at θ = 0 exists and is finite [24]. The TRM is defined as

Q := lim
∆θ→0+

P (∆θ)− P (0)

∆θ
, (2)

which satisfies
(i) [Q]i,i 6 0, ∀i ∈ [1 : N ];
(ii) [Q]i,j > 0, ∀i, j ∈ [1 : N ] with i 6= j; and

(iii)
∑N

i=1[Q]i,j = 0, ∀j ∈ [1 : N ].

The matrices P (θ) and Q are related via the Kolmogorov equation Ṗ (θ) = QP (θ). Thus, P (θ) = eQθ.
We use Q[r] to represent a CT-PLN with TRM Q and quantification level vector r, and we use x(t;x0)
to represent the solution to the CT-PLN, Q[r], with initial state x(0) = x0.

The STRG of the CT-PLN, Q[r], is a weighted digraph, D = (V , E , w), where V := ∆N denotes the
vertex set; E := {(δjN , δiN ) ∈ ∆N ×∆N |[Q]i,j > 0} represents the directed edge set, and e = (δjN , δiN ) ∈ E

is called the directed edge from δjN to δiN ; w : E → (0,+∞) is the weight of the directed edge, and

w(e) := [Q]i,j for every e = (δjN , δiN ) ∈ E . The weighted matrix W of the STRG is an N -order

matrix with [W ]i,j := w(e) for e = (δjN , δiN ) ∈ E , and [W ]i,j := 0 otherwise. In fact, it is valid that
[W ]i,j = [Q]i,j for i 6= j and [W ]i,j = 0 for i = j. The reachability matrix R is defined as

R := IN +

N−1
∑

v=1

W v. (3)

Lemma 1 (Lévy dichotomy [25]). Assume that Q is the TRM of the CT-PLN Q[r]. Then, for any
i, j ∈ [1 : N ] with i 6= j, there exists a t̄ > 0, such that [eQt̄]i,j > 0 if and only if [eQt]i,j > 0 holds for
any t > 0.

Lemma 2 ([26]). Assume that Q is the TRM of the CT-PLN Q[r]. Then, for any i, j ∈ [1 : N ] with
i 6= j, [eQt]i,j > 0 for any t > 0 if and only if the STRG has a path from δjN to δiN .

Remark 1. It was proved in [26] that for a continuous-time homogeneous Markov chain with a countable
infinity of states, the transition probability from state j to state i with i 6= j is positive if and only if there
is a finite positive transition rate chain from state j to state i. It is easily checked that this conclusion
is also valid for a continuous-time finite homogeneous Markov chain. Based on this, we give Lemma 2
without proof.

Lemma 3. Assume that Q is the TRM of the CT-PLN Q[r]. Then, for any i, j ∈ [1 : N ] with i 6= j,
[eQt]i,j > 0, ∀t > 0 if and only if [R]i,j > 0.

Proof. (Necessity) According to Lemma 2, [eQt]i,j > 0, ∀t > 0 implies that the STRG has a path from

δjN to δiN . Because the state space ∆N is finite, we can find a simple path, i.e., a path without a loop,

with the length being less than or equal to N − 1, from δjN to δiN . This means that either [Q]i,j > 0
or [Q]i,dℓ

[Q]dℓ,dℓ−1
· · · [Q]d1,j > 0, where indices j, d1, d2, . . . , dℓ, i are pairwise distinct, and ℓ 6 N − 2.

Thus,

[R]i,j =

[

IN +

N−1
∑

v=1

W v

]

i,j

>
[

W ℓ+1
]

i,j

> [W ]i,dℓ
[W ]dℓ,dℓ−1

· · · [W ]d1,j

= [Q]i,dℓ
[Q]dℓ,dℓ−1

· · · [Q]d1,j
> 0. (4)

(Sufficiency) According to (3), [R]i,j > 0 implies that there exists an ℓ ∈ [1 : N − 1], such that

[W ℓ]i,j > 0; i.e., there exists a path from δjN to δiN in the STRG. This yields [eQt]i,j > 0, ∀t > 0
according to Lemma 2.

Remark 2. Since for any i ∈ [1 : N ], [eQt]i,i > 0, ∀t > 0 is valid1) and [R]i,i > 0 according to (3), we
ignore the discussion for the case of i = j in Lemma 3.

1) This claim can be deduced from the result of page 143 in [24].
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3 Asymptotical stability of CT-PLNs

3.1 Definition of stability and invariant subset

Definition 1. Consider a CT-PLN Q[r].
(1) The domain of attraction of a given set M ⊆ ∆N is defined as

A(M) :=
{

x0 ∈ ∆N

∣

∣

∣ lim
t→+∞

Pr{x(t;x0) ∈ M} = 1
}

. (5)

(2) The network is said to be asymptotically stable with respect to xe ∈ ∆N , if A({xe}) = ∆N . The
network is said to be asymptotically stable with respect to M ⊆ ∆N , if A(M) = ∆N (see [23]).

Remark 3. The case of M = ∆N is trivial because any CT-PLN Q[r] is asymptotically stable with
respect to its state space ∆N . Therefore, we always assume M 6= ∆N in this study.

Definition 2 ([23]). A subset, I ⊆ ∆N , is said to be an invariant subset of CT-PLN Q[r], if for any
initial state, x0 ∈ I, Pr{x(t;x0) ∈ I} = 1 holds for any t > 0. The union of all invariant subsets contained
in subset M ⊆ ∆N is also invariant, and it is defined as I(M), which is called the LIS of CT-PLN Q[r]
with respect to M.

Proposition 1 ([23]). A subset, I ⊆ ∆N , is an invariant subset of CT-PLN Q[r] if and only if
∑

i∈Idx(I)

[Q]i,j = 0, ∀j ∈ Idx(I). (6)

For a given sampling period T , the sampling sequence ξT (k) := x(kT ), k ∈ {0, 1, 2, . . .} of the CT-PLN
Q[r] is a discrete-time homogeneous Markov chain with its 1-step TPM, P = eQT . In this study, the
LIS of ξT (k) in M ⊆ ∆N is defined as IT (M). Please refer to [12] for the definition of the LIS for
discrete-time homogeneous Markov chains.

Lemma 4. A subset, I ⊆ ∆N , is an invariant subset of CT-PLNQ[r] if and only if it is also an invariant
subset of ξT (k) under any given sampling period T .

Proof. This claim can be deduced from the proof of Proposition 1. Please refer to [23].

3.2 TRM-based criteria for asymptotical stability

Theorem 1. CT-PLN Q[r] is asymptotically stable with respect to M ⊆ ∆N if and only if I(M) 6= ∅
and I([I(M)]c) = ∅.

Proof. (Necessity) If CT-PLN Q[r] is asymptotically stable with respect to M, then for any positive
number T , ξT (k) is stable in distribution2) with respect to M. According to Theorem 3 in [12] and
Lemma 4, I(M) = IT (M) 6= ∅ and I([I(M)]c) = IT ([IT (M)]c) = ∅.

(Sufficiency) If I(M) 6= ∅ and I([I(M)]c) = ∅, then according to Lemma 4, for any T̄ > 0, IT̄ (M) =
I(M) 6= ∅ and IT̄ ([IT̄ (M)]c) = I([I(M)]c) = ∅. This implies that ξT̄ (k) has no invariant subsets in
[IT̄ (M)]c. Thus, for every x0 ∈ [IT̄ (M)]c, there exists a positive integer kx0

∈ [1 : N − |IT̄ (M)|],
such that Pr{x(kx0

T̄ ;x0) ∈ IT̄ (M)} > 0. According to the non-decreasing property of the transition
probability from any state to an invariant subset [12], it is valid that

Pr
{

x(k̄T̄ ;x0) ∈ IT̄ (M)
}

> 0, ∀x0 ∈ [IT̄ (M)]c, (7)

where k̄ := maxx0∈[IT̄ (M)]c kx0
. Thus, for any x0 ∈ ∆N , Pr{x(k̄T̄ ;x0) ∈ IT̄ (M)} > 0 is valid. According

to Theorem 3 and Proposition 2 in [12], it is valid that

lim
n→∞

∑

v∈Idx(IT̄ (M))

Rowv((e
QT̄ )n) = 1T

N . (8)

According to Proposition 2 in [23] and Lemma 4, it is valid that

lim
t→+∞

∑

v∈Idx(I(M))

Rowv(e
Qt) = 1T

N . (9)

Thus, CT-PLN Q[r] is asymptotically stable with respect to M owing to I(M) ⊆ M.

2) Please refer to [12] for the definition of the stability in distribution for discrete-time homogeneous Markov chains.
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Corollary 1. CT-PLN Q[r] is asymptotically stable with respect to δiN ∈ ∆N if and only if [Q]i,i = 0
and I(δi−N ) = ∅.

Remark 4. The proof of Theorem 1 shows that CT-PLN Q[r] is asymptotically stable with respect to
M ⊆ ∆N if and only if it is asymptotically stable with respect to I(M).

The LIS in a given set can be calculated by using the LIS algorithm proposed in [23]. In the following,
we show that condition I([I(M)]c) = ∅ in Theorem 1 can be replaced by more convenient conditions.
Thus, the asymptotical stability of a CT-PLN can be verified by calling the LIS algorithm only once.
The first alternative condition is the reachability condition.

Theorem 2. CT-PLN Q[r] is asymptotically stable with respect to M ⊆ ∆N if and only if
(1) I(M) 6= ∅ and
(2) for any δvN ∈ [I(M)]c, the STRG has a path from δvN to I(M); or equivalently,

∑

v∈Idx(I(M))

Rowv(R) ≻ 0. (10)

Proof. According to Lemma 3,
∑

v∈Idx(I(M))Rowv(R) ≻ 0 if and only if for any j ∈ Idx([I(M)]c),

there exists an i ∈ Idx(I(M)), such that [eQt]i,j > 0, ∀t > 0, i.e., IT ([IT (M)]c) = ∅, ∀T > 0, which is
equivalent to I([I(M)]c) = ∅ based on Lemma 4. Then according to Theorem 1, this claim holds.

Corollary 2. CT-PLN Q[r] is asymptotically stable with respect to δiN ∈ ∆N if and only if
(1) [Q]i,i = 0 and
(2) for any v 6= i, the STRG has a path from δvN to δiN ; or equivalently, Rowi(R) ≻ 0.

In the following, we prove that condition I([I(M)]c) = ∅ in Theorem 1 can be replaced by the rank
condition.

Definition 3. Consider a CT-PLN Q[r]. For a given non-empty subset M ⊆ ∆N , the sub-matrix
of Q with respect to M, which is defined as QM, is the sub-matrix of Q obtained by deleting all
rows and columns with indices within Idx(Mc). The sub-matrix of Q with respect to Mc is called the
complementary sub-matrix of Q with respect to M.

Proposition 2. Consider a CT-PLN Q[r]. Then, for a given non-empty subset M ⊆ ∆N , I(M) = ∅
if and only if sub-matrix QM is of full rank.

Proof. (Sufficiency) We prove the inverse negative proposition. If I(M) 6= ∅, then, according to
Proposition 1 and the properties of the TRM, we can easily verify thatQI(M) is a TRM and det(QI(M)) =
0. We define r := |M|; then there exist an N -order permutation matrix M and an r-order permutation
matrix V , such that

MQMT =

(

QM ∗

∗ ∗

)

, V QMV T =

(

QI(M) ∗

O ∗

)

,

where O denotes the zero matrix with the appropriate dimensions and “∗” denotes a matrix block with
the appropriate dimensions. Thus, QM is singular.

(Necessity) If I(M) = ∅, then for every j ∈ Idx(M),

∑

v∈Idx(Mc)

[

eQt
]

v,j
> 0, ∀t > 0 (11)

holds by using Lemma 1. Thus, for any j ∈ Idx(M), the STRG has a path from δjN to Mc according to
Lemma 2. We define

Q̄ :=

(

QM 0r

βT 0

)

, (12)

where β is an r-dimensional constant vector that is selected such that the sum of every column of Q̄ is
zero. Thus, Q̄ can be regarded as the TRM of a CT-PLN with a state space ∆r+1 and a fixed point
δr+1
r+1 . Under these conditions, for any j ∈ [1 : r], the STRG defined by Q̄ has a path from δjr+1 to δr+1

r+1.
Note that

eQ̄ = Ir+1 +

∞
∑

v=1

Q̄v

v!
=

(

eQM 0r

γT 1

)

, (13)
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where

γT = βT

(

Ir +

∞
∑

v=1

Qv
M

(v + 1)!

)

. (14)

Then according to Lemma 2, γ ≻ 0. Consequently, ρ(eQM) 6 ‖eQM‖1 < 1, where ρ(·) and ‖ · ‖1 denote
the spectral radius and the one-norm of a square matrix, respectively; that is, eQM is strictly Schur
stable. Thus, QM is of full rank.

Theorem 3. CT-PLN Q[r] is asymptotically stable with respect to M ⊆ ∆N if and only if I(M) 6= ∅
and the complementary sub-matrix of Q with respect to I(M) is of full rank.

Proof. This claim is a direct consequence of Theorem 1 and Proposition 2.

Corollary 3. CT-PLN Q[r] is asymptotically stable with respect to δiN ∈ ∆N if and only if
(1) [Q]i,i = 0 and
(2) rank(Qδi−

N
) = N − 1; or equivalently, det(Qδi−

N
) 6= 0.

Corollary 4. CT-PLN Q[r] is asymptotically stable with respect to δiN ∈ ∆N if and only if [Q]i,i = 0
and rank(Q) = N − 1.

Proof. Note that [Q]i,i = 0 implies that Coli(Q) = 0N . Therefore, there exists an N -order permutation
matrix M , such that

MQMT =

(

0 αT

0N−1 Qδi−
N

)

, (15)

where αT = ([Q]i,1, [Q]i,2, . . . , [Q]i,i−1, [Q]i,i+1, . . . , [Q]i,N ). This implies that

rank(Q) = rank(MQMT)

= rank

(

0 0T
N−1

0N−1 Qδi−
N

)

= rank(Qδi−
N
),

(16)

where the second equality is derived by adding Rowv(MQMT) to Row1(MQMT) for every v ∈ [2 : N ]
and combining it with the properties of the TRM. Thus, according to Corollary 3, the claim holds.

Remark 5. Compared with the TPM-based results presented in [23], the main advantage of the TRM-
based stability criteria proposed in this study is that the TRM is a constant matrix, which contains the
complete information needed to determine the stability. Thus, we avoid the unnecessary calculation of
the TPM of the discretized CT-PLN under a specific sampling period.

3.3 Domain of attraction for non-asymptotically stable CT-PLNs

Theorem 4. Assume that CT-PLNQ[r] is not asymptotically stable with respect to a given non-empty
subset M ⊆ ∆N . Then A(M) = Θ with

Θ :=







δjN ∈ ∆N

∣

∣

∣

∣

∣

∣

∑

v∈Idx(I([I(M)]c))

[R]v,j = 0







. (17)

Proof. According to Theorem 1, CT-PLN Q[r] being not asymptotically stable with respect to M
implies that either I(M) = ∅ or I([I(M)]c) 6= ∅. If I(M) = ∅, then, A(M) = ∅. In this case, Eq. (17)
is verified. In the following, we assume that I(M) 6= ∅ and I([I(M)]c) 6= ∅.

First, we prove Θ ⊆ A(M). Indeed, according to the definition of I([I(M)]c) and (17), it is valid
that I(Θ) = Θ, and for any δjN ∈ Θ \ I(M), the STRG of CT-PLN Q[r] has a path from δjN to I(M).
Then, the sub-matrix QΘ is a TRM. We define b := |Θ| and construct a bijection η : Θ → ∆b with
η(δihN ) = δhb , h ∈ [1 : b]. Moreover, we define η(G) := {η(g)|g ∈ G} for a non-empty subset G ⊆ Θ. Then,

for any δjN ∈ Θ \ I(M), the STRG of the CT-PLN with the TRM QΘ and the state space ∆b also has a

path from η(δjN ) to η(I(M)). Let x̃(t) denote the state vector of this network in the vector form. Then,
according to Theorem 2, it is valid that

lim
t→+∞

Pr
{

x̃(t; η(δjN )) ∈ η(I(M))
}

= 1, ∀δjN ∈ Θ. (18)
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p53

Mdm2C Mdm2N

Dam

Figure 1 Four-node network for the p53-Mdm2 model. Normal and blunt arrows indicate positive and negative regulation,

respectively.

Note that I(M) ⊆ M implies that η(I(M)) ⊆ η(M); then Eq. (18) yields

lim
t→+∞

Pr
{

x̃(t; η(δjN )) ∈ η(M)
}

= 1, ∀δjN ∈ Θ, (19)

namely,
lim

t→+∞
Pr
{

x(t; δjN ) ∈ M
}

= 1, ∀δjN ∈ Θ. (20)

Thus, Θ ⊆ A(M).
Second, we prove A(M) ⊆ Θ by showing that Θc ⊆ [A(M)]c. Indeed, Eq. (17) implies that for any

δjN ∈ Θc \ I([I(M)]c), the STRG of CT-PLN Q[r] has a path from δjN to I([I(M)]c). According to
Lemma 3, there exists a positive number T , such that

∑

v∈Idx(I([I(M)]c))

[

eQT
]

v,j
= εj > 0. (21)

By using Proposition 2 in [23], we obtain that

∑

v∈Idx(I([I(M)]c))

[

eQt
]

v,j
> εj > 0, ∀t > T, (22)

lim
t→+∞

∑

v∈Idx(I([I(M)]c))

[

eQt
]

v,j
> εj , (23)

and limt→+∞

∑

v∈Idx(I(M))[e
Qt]v,j exists. This yields

lim
t→+∞

∑

v∈Idx(I(M))

[

eQt
]

v,j
6 1− lim

t→+∞

∑

v∈Idx(I([I(M)]c))

[

eQt
]

v,j
6 1− εj < 1. (24)

Namely, δjN /∈ A(M). Moreover, note that δjN /∈ A(M) is obviously valid for any δjN ∈ I([I(M)]c).
Thus, Θc ⊆ [A(M)]c.

4 Examples

Example 1. We consider the four-node network shown in Figure 1, which describes the mutual reg-
ulatory relationship between protein p53, cytoplasmic Mdm2 (Mdm2C), nuclear Mdm2 (Mdm2N), and
DNA damage (Dam) in the process of p53 response DNA damage [27]. Specifically, Dam induced by
external stress down-regulates the level of Mdm2N, Mdm2N down-regulates the level of protein p53,
Mdm2C up-regulates Mdm2N, and protein p53 up-regulates the level of Mdm2C and down-regulates the
levels of Mdm2N and Dam. Normally, p53 remains at a low level, since persistently high levels of p53
may cause cell death. DNA damage leads to an increase of the level of active p53, which can activate the
damage repair process [27].

This network is modeled as a CT-PLN Q[r], where r = (r1, r2, r3, r4) = (3, 2, 2, 2); r1, r2, r3, and r4
represent the quantification levels of p53, Mdm2C, Mdm2N, and Dam, respectively. We use X1(t), X2(t),
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Figure 2 (Color online) The STRG of the p53-Mdm2 model. The state colored in green represents the equilibrium point.

X3(t), and X4(t) to represent the quantized values of p53, Mdm2C, Mdm2N, and Dam at time t, re-
spectively, and use x1(t), x2(t), x3(t), and x4(t) to represent their corresponding vector forms. Then
x1(t) ∈ ∆3 and xi(t) ∈ ∆2, i ∈ [2 : 4]. Let X(t) := (X1(t), X2(t), X3(t), X4(t)) ∈ D3 × D2 × D2 × D2

denote the state of the entire network and x(t) := x1(t)⋉ x2(t)⋉ x3(t)⋉ x4(t) ∈ ∆24 denote the vector
form of X(t). The STRG of the network is plotted in Figure 2, where the transition rates labelled on the
directed edges are obtained from [6]. Then, the TRM Q can be easily obtained from the STRG, which is
omitted here. The STRG shows that xe = δ2224 is the only equilibrium point; thus, every state has a path
to xe. By Theorem 2, this information suffices to assert the asymptotical stability with respect to δ2224 .
This demonstrates the advantage of the TRM-based stability criteria over the TPM-based ones obtained
in [23].

Example 2. We consider a three-node CT-PLN Q[r] with r = (r1, r2, r3) = (2, 2, 2). Let x(t) :=
x1(t)⋉ x2(t)⋉ x3(t) ∈ ∆8 denote the state vector in the vector form, and assume that the TRM of this
CT-PLN is as follows:

Q =

































−1 0 2 0 0 0 0 0

0 −1 0 0 2 0 0 0

1 0 −2 0 0 0 0 0.8

0 0 0 −1.5 0 0 0 0

0 1 0 0.5 −2 0 0 0

0 0 0 0 0 −1 0.7 0

0 0 0 0 0 1 −1.7 2.2

0 0 0 1.0 0 0 1.0 −3.0

































. (25)

We consider the asymptotical stability with respect to M = {δ18 , δ
2
8 , δ

3
8 , δ

4
8 , δ

5
8}. Using the LIS algorithm
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Figure 3 (Color online) The transition probability curves

from different initial states to I(M̃).

Figure 4 (Color online) A sampling state trajectory of the

network with initial state δ68 .

proposed in [23], we obtain I(M) = {δ18 , δ
2
8 , δ

3
8 , δ

5
8} and I([I(M)]c) = ∅. According to Theorem 1, this

CT-PLN is asymptotically stable with respect to M. We can also verify the reachability condition and
the rank condition. First, the reachability matrix R is calculated by using (3), thereby showing that
Row1(R) + Row2(R) + Row3(R) + Row5(R) ≻ 0. This verifies the reachability condition. Second, the
complementary sub-matrix of Q with respect to I(M) is

Q[I(M)]c =













−1.5 0 0 0

0 −1 0.7 0

0 1 −1.7 2.2

1.0 0 1.0 −3.0













. (26)

Q[I(M)]c is easily determined as nonsingular. Thus, the rank condition is also verified.

Next, we consider the asymptotical stability with respect to M̃ = {δ18, δ
2
8 , δ

3
8}. Using the LIS algorithm

proposed in [23], we obtain I(M̃) = {δ18 , δ
3
8} and I([I(M̃)]c) = {δ28 , δ

5
8}. According to Theorem 1, this

CT-PLN is not asymptotically stable with respect to M̃. Moreover, it is easily verified that [Row1(R) +
Row3(R)]v = 0, ∀v ∈ {2, 5}, and the complementary sub-matrix of Q with respect to I(M̃) is

Q[I(M̃)]c =























−1 0 2 0 0 0

0 −1.5 0 0 0 0

1 0.5 −2 0 0 0

0 0 0 −1 0.7 0

0 0 0 1 −1.7 2.2

0 1.0 0 0 1.0 −3.0























. (27)

Q[I(M̃)]c is easily determined as singular. Thus, both the reachability condition and the rank condi-

tion are verified. In addition, according to Theorem 4, the domain of attraction of M̃ is A(M̃) =
{δ18 , δ

3
8 , δ

6
8 , δ

7
8 , δ

8
8}. The transition probability curves from every initial state to I(M̃) are plotted in

Figure 3, where for every initial state x0 = δj8, the transition probability

p(t;x0) := Pr
{

x(t;x0) ∈ I(M̃)
}

=
[

eQt
]

1,j
+
[

eQt
]

3,j
. (28)

Figure 3 shows that as time increases, the transition probability from every initial state in A(M̃) to
I(M̃) will tend to one, and the transition probability from every initial state outside of A(M̃) to I(M̃)
will not tend to one. We set the initial state as δ68 in the following time-domain simulation. By using the
Monte-Carlo simulation method proposed in [23], a sampled trajectory of x(t; δ68) is plotted in Figure 4.
The simulation result intuitively shows that starting from δ68 , the trajectory of x(t; δ68) will eventually
converge to I(M̃).
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5 Conclusion

Several asymptotical stability criteria for CT-PLNs expressed in terms of the TRM were obtained. Specif-
ically, we proved that the asymptotical stability of a CT-PLN can be verified by applying the TRM-based
LIS algorithm twice. Moreover, we proved that the second calling of the LIS algorithm can be replaced by
the reachability condition or the rank condition. For a non-asymptotically stable CT-PLN, a method to
determine the domain of attraction was proposed. Two examples were given to illustrate the advantages
of the proposed method.

The main limitation of these results is that the stability criteria are still inapplicable to large-scale
CT-PLNs. The asymptotical stability of large-scale CT-PLNs warrants further research. Our future work
intends to investigate the control-related problems for CT-PLNs with input nodes, such as stabilization,
controllability, and optimal control.
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