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Abstract Visual attention has become a popular and widely used component for image recognition. Al-

though various attention-based methods have been proposed and achieved relatively competitive results, it

is observed that the semantic features of each class are likely to entangle with each other, and few studies

focus on explicitly extracting category-aware features so far. To address this issue, this paper presents an

attention-based image recognition method by using class-specific dictionary learning to disentangle the neu-

ral network’s outputs into class-dependent features, thus boosting their discrimination abilities. Specifically,

we develop a class attention network (CANet) via integrating a simple yet effective class-specific attention

encoding (CAE) module on the top of convolutional layers. Given the feature maps of the convolutional

neural networks (CNNs), the CAE module learns a class-specific dictionary, which is leveraged to encode

attention maps for each category. Then these attention maps are multiplied by the input features for class-

wise adaptive feature refinement. Extensive experiments on the PASCAL VOC 2007, PASCAL VOC 2012,

MS COCO, and CUB-200-2011 datasets demonstrate the fabulous performance of our method on multiple

visual recognition tasks, including multi-label image classification and fine-grained visual classification. In

addition, the visualization results testify that CNNs can explicitly learn class-wise feature representations by

introducing class-specific dictionary learning.
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1 Introduction

Image recognition, including multi-label image recognition and single-label image recognition, refers to a
fundamental and practical task of automatically assigning multiple possible labels or one possible label
to an image based on the visual content. In recent year, convolutional neural networks (CNNs) have been
successfully applied to a variety of image recognition tasks [1–12].

However, the representation power of CNNs is still somewhat limited in dealing with challenging image
recognition tasks. Take image classification and fine-grained visual categorization (FGVC) as examples,
Figures 1(a) and (b) show some example images and their corresponding labels from the PASCAL VOC
dataset [13] and the MS COCO dataset [14], respectively. As shown, the large intra-class variances
caused by appearance, scale, illumination, occlusion, viewpoint, etc., and the interaction between object
categories significantly increase the difficulties of image recognition, making image classification more
difficult. Besides, Figure 1(c) illustrates some bird images and their corresponding species from the
CUB-200-2011 dataset [15], a challenging dataset of 200 bird species. We can observe that the big intra-
class variances brought by pose, scales, location, etc., and the subtle inter-class differences still make
FGVC a particularly effortful task. It is natural to throw a question: can we design a method with the
capability of enhancing the representation power?

Over the years, continuous efforts have been made to address the aforementioned issues. Visual atten-
tion, as an effective way to enhance the representation power of CNNs, has been studied extensively in
previous studies [16–23]. However, existing attention-based methods rarely focus on explicitly modeling
class-specific feature representations. The performance improvement can be obtained by focusing only on
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Figure 1 (Color online) Some example images from different datasets. The intra-class variations and the composition and

interaction between different object categories make the task of image classification more challenging. (a) PASCAL VOC dataset;

(b) MS COCO dataset; (c) CUB-200-2011 dataset.

the regions that are semantically relevant to the considered labels [24], since the class-specific represen-
tations can capture and analyze the most crucial information related to a specific category and maintain
huge between-class separation. Based on this observation, we wonder if CNNs can acquire the learning
ability that expressly models class-specific representations. To approach our goal, there is a key issue to
be addressed, which is how to learn class-specific feature representations.

During the past few years, a number of class-specific dictionary learning methods, in which each
dictionary atom is assigned to a single class and the dictionary atoms associated with different classes
are encouraged to be as independent as possible, have been explored extensively [25, 26]. For instance,
Ramirez et al. [25] proposed a structured dictionary learning scheme by promoting the discriminative
ability between different class-specific sub-dictionaries. Yang et al. [26] proposed a dictionary learning
framework which employs Fisher discrimination criterion to learn class-specific dictionaries. These studies
manifest that learning a class-specific dictionary is feasible. Thus, we can use a class-specific dictionary
to encode class-specific information.

The core of encoding class-specific information is that the semantic features of each class can be
disentangled from the original features of a neural network’s outputs. Recently, several attempts have been
made to decompose the class-specific features. Zeiler et al. [27] demonstrated that high-layer convolutional
filters extract high-level semantic features which might relate to certain classes to some extent. Prakash
et al. [28] showed that the redundant overlap between the features extracted by different filters makes
it possible to learn specialized filters. Chu et al. [29] decomposed the features of each class into a class-
generic component and a class-specific component. Inspired by these studies and class-specific dictionary
learning methods, this paper proposes a class-specific attention encoding (CAE) module by introducing
a dictionary with a set of atom groups, where each atom group encodes a class-wise attention map with
explicit class semantic information. Then, we plug CAE into a CNN to construct an end-to-end class
attention network (CANet) for visual recognition. Using the class-specific attention maps generated via
CAE module, we can guide the network to learn more discriminative feature representations. To train
CANet, we introduce an attention loss as a regularization term to enforce the attention maps to better
correspond to different semantic classes.

To sum up, the main contributions of this paper are as follows.

• We propose CAE module to enforce the CNNs to explicitly encode class attentions. The CAE
module can be conveniently embedded into current CNNs to boost their discrimination abilities.

• With the CAE module and its corresponding attention loss, we construct an end-to-end CANet to
extract highly category-related feature representations.

• We extensively evaluate our method on multiple visual recognition tasks, including multi-label clas-
sification and fine-grained visual classification. The experiment results demonstrate the effectiveness of
our method. Moreover, the visualization results prove that convolutional neural networks can explicitly
learn class-wise feature representations by introducing class-specific dictionary learning.

The rest of this paper is organized as follows. We first review the related work in Section 2. Then,
Section 3 describes our method in detail. After that, Section 4 presents the comprehensive experiments
on four datasets. Finally, a brief conclusion of this paper is summarized in Section 5.
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2 Related work

2.1 Multi-label image classification

Recently, multi-label image classification problem has attracted a lot of attention. Several state-of-the-art
single-label image classification networks have been adopted to address this task [30–32]. Besides, Wang et
al. [33] proposed a proposal-free approach which uses stochastic scaling and cropping for better capturing
the detailed appearances and spatial layout information to improve the performance. Hypotheses-CNN-
Pooling [34] made predictions on each proposal and then aggregated all the predictions as the final output
through category-wise max-pooling. Ref. [35] proposed a multi-view and multi-instance framework by
incorporating local information to enhance features for handling the problem of multi-label classification.

To better consider the correlations between labels instead of treating each label independently, a series
of studies were introduced, such as MLGCN [36], DSDL [37], conditional graphical Lasso [38], and CNN-
RNN [39]. More recently, Refs. [40, 41] further took advantage of visual attention mechanism to search
local discriminative regions and Chen et al. [42] computed a probabilistic matrix as the relation edge
between each label in a graph to aid multi-label image classification.

2.2 Fine-grained visual classification

Some algorithms [10,43–45] guide the training of deep CNN models for fine-grained visual categorization,
relying on object annotations or even dense part annotations. For example, SPDA-CNN [45] proposed a
network consisting of detection and classification sub-networks.

The above approaches are labor-wasting, so more and more methods that only require image-level
annotations have been developed. Lin et al. proposed bilinear pooling [10] and improved bilinear pool-
ing [46], where two features are combined at each location using the outer product. Fu et al. [47] developed
RA-CNN to recursively learn discriminative region attention to obtain region-based feature representa-
tions at multiple scales in a mutually reinforced way. To generate multiple attention locations at the
same time, Zheng et al. [48] proposed multi-attention CNN, which simultaneously locates several body
parts. MAMC [49] regulated multiple object parts among different input images by using multiple atten-
tion region features of each input image. WS-DAN [50] combined weakly supervised learning with data
augmentation to promote the model to extract more discriminative features from multiple local regions.

2.3 Visual attention

Visual attention networks have been extensively proposed to automatically mine relevant and informative
regions for image recognition in recent years. SENet [18] proposed a novel unit, termed squeeze-and-
excitation (SE) block to model the channel relationship for improving visual classification. In [51], the
cascade attention method was proposed and the features of different CNN layers were concatenated to
gain discriminative representation as the input of final linear classifier. ACNet [52] focused on different
discriminative regions using the attention transformer inserted into the convolutional operations along
the edges of the tree. SRN [48] learned attention heatmaps to specify spatial relations between labels.
Refs. [40, 53–55] aimed to learn accurate attention regions to strengthen their relevance. Ref. [16] intro-
duced a new attention consistency loss which was combined with multi-label image classification loss for
network training. ADD-GCN [56] adopted a dynamic graph convolutional network to model the relation
of content-aware category representations that are generated by a semantic attention module.

However, the current attention methods for image recognition just concentrate on enhancing key re-
gions’ feature representation, without explicitly learning class-wise attentions for each of the visual classes.
Differently, this paper proposes a class-specific attention module, CAE, which not only focuses on the key
regions in the input images but also is specific for each category. NetVLAD [57] and EncNet [58] shared
a similar philosophy with our method. To be specific, NetVLAD proposed a new method to learn the
vector of locally aggregated descriptors (VLAD) in an end-to-end manner. It assigns each C-dimensional
pixel vector coming from the output features of the backbone to multiple clusters in a soft-assignment
manner. In contrast to NetVLAD, our method learns a more compact set of atom groups based on the
input features of the CAE module to encode class-specific representations. EncNet proposed a context
encoding module to capture the semantic context of scenes and selectively highlight class-dependent fea-
ture maps. Essentially, EncNet predicts the scaling factors of feature channels. Different from EncNet,
our method learns the scaling factors of spatial-wise features.
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Figure 2 (Color online) The architecture of our proposed class attention network (CANet). The CANet consists of two key parts:

a class-specific attention encoding (CAE) module and the attention loss function. The CAE module encodes class-wise attention

maps. The attention loss is used as the dictionary regularization term to enforce CANet to better learn class-wise semantic

information. In addition, dimension reduction is conducted by a set of 1×1 convolutions. Here, K denotes the number of object

categories, N denotes the number of atoms for each class in the dictionary, and C represents the dimension of each atom.

3 Methodology

As shown in Figure 2, the framework of our CANet contains two main parts. (i) A class-specific atten-
tion encoding module that learns a class-specific dictionary to encode class attention maps. Then the
attention maps are encoded into the network to acquire class-aware feature maps. (ii) An attention loss
that is a new regularization term to encourage CANet for learning class-wise semantic information. By
jointly optimizing the attention loss and visual recognition loss, we can better achieve the tasks of visual
recognition such as multi-label image classification and FGVC.

3.1 Class-specific dictionary

Image recognition is typically based on learning a synthesis dictionary which yields the representations
of each image as a sparse linear combination of the atoms of the learned dictionary [59]. Given a training
data X, the dictionary learning can be formulated as

min
D,Z

‖X −DZ‖2, (1)

where D is the dictionary to be learned and Z consists of the loading coefficients.
In this paper, we propose a class-specific dictionary learning. The intuition of the concept of class-

specific dictionary is to learn disentangled representations for each class. Let D ∈ R
C×K×N denote a

class-specific dictionary, where K denotes the number of atom groups, which is the same as the number
of object categories, N denotes the number of atoms for each class in the dictionary, and C represents
the dimension of each atom vector, which is consistent with the number of channels of the output feature
maps from the convolutional neural networks. It is worth noting that each atom group encodes a class-
wise attention map with explicit class semantic information. Furthermore, the class-specific dictionary
should be initialized before the training processing of the network.

In this way, for each pixel in the input feature maps, we use different atom groups to respectively
encode the information and get K attention maps, as displayed in Figure 2. We call this process attention
encoding, which will be described next.

3.2 Attention encoding

To preserve as much information as possible for subsequent attention encoding and image recognition,
and considering the capacity of graphics processing unit (GPU) resources, we first perform a dimension
reduction operation on the last convolution features with C 1× 1 convolutions to obtain X ∈ R

C×H×W

used for the input of CAE module, as shown in Figure 2. Here, the value of C is typically much smaller
than the channel number of the last convolution features, and H and W denote the height and width of
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the feature maps. Given each C-dimensional pixel vector xi ∈ R
C , we can calculate its similarity with

each atom vector in the class-specific dictionary.
Suppose D =

{

dl ∈ R
C | l = 1, . . . ,K ×N

}

is the collection of K × N atoms, where dl is an atom
vector in the dictionary. For each pixel vector xi and atom vector dl, the calculation of their similarity
is formulated as

Sil = σ(xi,dl), (2)

where σ(·) denotes a kernel function. We use ail to denote the response of the pixel vector xi obtained
from the l-th atom vector dl. Thus, ail can be formulated as follows:

ail =
σ (xi,dl)

∑K×N

j=1 σ (xi,dj)
. (3)

In order to avoid complex computation, we need to choose a proper kernel function. There are several
choices, such as inner dot kernel aTb, radial basis function (RBF) kernel exp

(

−‖a− b‖22/σ
2
)

, sigmoid

kernel tanh
(

βaTb+ θ
)

, and so on. Considering the computational efficiency, we adopt the inner dot
kernel in exponential form. It is formulated as

σ (xi,dl) = exp
(

−dT
l xi

)

. (4)

And now, Eq. (2) can be reformulated into a more general form:

ail =
exp

(

−dT
l xi

)

∑K×N

j=1 exp
(

−dT
j xi

)
. (5)

Thus, we use (4) to calculate the response for each atom vector on the input feature maps. Let
A ∈ R

K×N×H×W denote the obtained response matrices. We conduct intra-group average pooling
operation along the second dimension (N) to get class-wise attention maps Aatt ∈ R

K×H×W . Let
aattk,h,w ∈ Aatt, which is conducted as follows:

aattk,h,w =
1

N

N
∑

i=1

Ak,i,h,w . (6)

Notably, if we directly multiply X ∈ R
C×H×W with the attention matrix Aatt ∈ R

K×H×W to get
the attention-guided feature maps, it would result in high computational complexity and more GPU
consumption. To avoid this problem, a channel-wise average pooling operation is firstly implemented on
the feature X ∈ R

C×H×W to obtain X ′ ∈ R
1×H×W . Then, we get the attention-guided feature maps

Xatt ∈ R
K×H×W by multiplying X ′ ∈ R

1×H×W with the attention matrix Aatt ∈ R
K×H×W , as shown

in Figure 2. The procedure can be formulated as

Xatt
k = Aatt

k ⊗X ′, (7)

Xatt = cat
(

Xatt
1 ,Xatt

2 , . . . ,Xatt
K

)

, (8)

where Aatt
k ∈ R

H×W denotes the k-th (k = 1, 2, . . . ,K) attention map belonging to the k-th class,
Xatt

k ∈ R
H×W denotes the attention-guided feature map for the k-th class, ⊗ represents the hadamard

product, and cat(·) is a concatenation operation. Reviewing the whole process, we can see that the
attention-guided feature maps Xatt ∈ R

K×H×W are class specific.

3.3 Training loss

Our goal of optimization is that if a certain class emerges in an image, the attention map corresponding
to that class should have a higher activation value than other attention maps. Therefore, we introduce an
attention loss as a regularization term, which is an auxiliary loss to enforce CAE module and CANet to
better learn class-wise semantic information. To be specific, following the symbol definition in Subsection
3.2, we perform global max pooling operation on the attention maps Aatt ∈ R

K×H×W as follows:






vk = maxi,j

(

Aatt
i,j,k

)

,

v = (vk)1×K ,
(9)
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where v ∈ R
K is a feature vector used to compute attention loss. In brief, given a training dataset

{Ii,yi}
Z

i=1, where Ii is the i-th image, yi =
{

y1i , y
2
i , . . . , y

K
i

}

is its corresponding ground-truth label
vector. The attention loss for multi-label classification can be formulated as

Jatt =

Z
∑

i=1

K
∑

j=1

yji log
(

vji

)

+
(

1− yji

)

log
(

1− vji

)

, (10)

where vji represents the predicted probability of the i-th image belonging to the j-th category. As for
single-label classification, the attention loss is formulated as

Jatt =

Z
∑

i=1

K
∑

j=1

yji log

(

vji
∑K

j=1 v
j
i

)

. (11)

For the visual recognition loss, denoted by Jcls, it changes with different tasks. Taking the tasks of
multi-label classification and fine-grained visual classification as examples, which are also the tasks we
perform in this paper, they share the same formulation as attention loss. However, they use different
features for loss computation. The attention loss utilizes the features pooled from class-specific attention
maps Aatt ∈ R

K×H×W , while the features for visual classification loss are pooled from class-wise feature
maps Xatt ∈ R

K×H×W . Taking into account the visual recognition loss and the attention loss, the overall
loss can be defined as follows:

J = Jcls + λJatt, (12)

where λ is a trade-off coefficient for balancing the overall loss. By jointly optimizing these two loss terms,
we can better perform the tasks of visual recognition.

4 Experiments

4.1 Datasets

We evaluate our proposed CANet on two different image classification tasks including multi-label classifi-
cation and fine-grained visual classification. The experiments are conducted on four widely-used datasets.
They are the PASCAL VOC 2007 and 2012 datasets [13], the MS COCO dataset [14], and the CUB-200-
2011 dataset [15]. The former three datasets are for multi-label classification and the fourth dataset is
for fine-grained visual classification.

For the PASCAL VOC 2007 dataset, 5011 images are used for training and validation, and 4952 images
are used for testing. The PASCAL VOC 2012 dataset contains 22531 images in total, of which 11540
images for training and validation, and 10991 images for testing.

The MS COCO dataset is another widely-used dataset for multi-label image classification. It contains
80 object classes, where 82081 images as the training set and 40504 images as the validation set.

The CUB-200-2011 dataset, containing a total of 11788 pictures, is used for fine-grained visual classi-
fication task. It is divided into two parts: a training set and a test set. The training set has 5994 images
and the test set contains 5794 images.

4.2 Implementation details

We adopt ResNet-101 [2] as our base architecture to implement the CANet because of its excellent
performance for visual recognition tasks. We employ SGD as an optimizer to train our network, with
the momentum of 0.9 and the weight decay of 0.0001. The initial learning rate is set to 0.05 for the
class-specific attention encoding module and 0.005 for the backbone. The number of epochs is set to 50.
The learning rate is multiplied by a factor of 0.1 at the 12th, 25th, and 40th epochs, respectively. The
batch size of each GPU is 16 with a total of 2 GPUs. During training, we randomly crop and resize the
input images into 448×448. Also, we use random horizontal flips as data augmentation. Following other
methods, when testing, the input images are resized into 576×576. And also, we use the model trained
on MS COCO as the pre-train model for the PASCAL VOC dataset, so that our model can converge
quickly.
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4.3 Evaluation metrics

Following conventional settings [42], the average per-class precision (CP), average per-class recall (CR),
average per-class F1 (CF1), the average overall precision (OP), average overall recall (OR), and the
average overall F1 (OF1) are adopted as the performance evaluation metrics for the MS COCO dataset.
Their formulations are as follows:















OP =
∑

K

i=1
Ni∑

K

i=1
N

p

i

, CP = 1
K

∑K

i=1
Ni

N
p

i

,

OR =
∑

K

i=1 Ni
∑

K

i=1 N
gt

i

, CR = 1
K

∑K

i=1
Ni

N
gt

i

,

OF1 = 2×OP×OR
OP+OR , CF1 = 2×CP×CR

CP+CR ,

(13)

whereK denotes the number of object categories,Ni is the number of images which are correctly predicted
for the i-th label, Np

i is the number of predicted images for the i-th label, and Ngt
i is the number of

ground truth images for the i-th label.
For each image, its labels are predicted as positive if the confidences are greater than 0.5. The above

metrics of the Top-3 labels are also reported for fair comparisons. In addition, we also compute and
report the mean average precision (mAP). For the PASCAL VOC dataset, we report average precision
(AP) for per-class and mAP for all classes. Notably, we use Top-1 accuracy as a performance evaluation
metric for the fine-grained visual classification task.

4.4 Ablation studies

In this subsection, we investigate the influence of the parameter N which is the number of atoms per
class and the influence of the weight coefficient λ used to balance loss.

Influence of parameter N . In order to explore the effects of different values ofN on the experimental
results, we change its value in the set of {1, 2, 4, 6, 8, 10, 20}. The results of the ablation study on the
PASCAL VOC 2007, PASCAL VOC 2012, MS COCO, and CUB-200-2011 datasets are reported in
Figures 3(a) and (b). Note that, we set the weight coefficient λ to 1 for this ablation study.

As shown in Figure 3(a), (i) on the PASCAL VOC 2007 dataset, with the increase of N from 1 to 6, the
accuracy measured in terms of mAP improves significantly from 87.1% to 94.3%. And then, we change N
from 8 to 20, and the accuracy tends to be stable, just with very slight mAP gains from 94.5% to 94.8%.
(ii) On the PASCAL VOC 2012 dataset, the mAP shows an upward trend with the number of N gradually
increasing, which is similar to the trend on the PASCAL VOC 2007 dataset. (iii) On the MS COCO
dataset, the mAP also shows a rising trend with the number of N gradually increasing. Specifically,
with the increase of N from 1 to 10, the mAP improves significantly from 77.2% to 82.2%. As shown in
Figure 3(b), on the CUB-200-2011 dataset, with N in the range of [1, 4], our method markedly boosts
the Top-1 accuracy from 85.9% to 87.2%, but with the increase of N from 8 to 20, the accuracy just
fluctuates merely from 87.9% to 88.1%. It can be seen that the performance varies with the number of
atoms per class, and when the number of atoms reaches a certain value, the improvement will get stuck.
One possible explanation for this phenomenon might be that a certain number of atoms are enough to
encode category-specific semantic information. The performance tends to saturate when the number of
atoms is larger than a certain value as over-complete representations will not bring remarkable gain to
the performance. Consequently, considering the computation complexity, we set N = 10 in this work to
balance the accuracy and the efficiency for all four datasets.

Influence of the weight coefficient λ. The weight coefficient λ is used to balance our proposed
attention loss. We conduct ablation study on the PASCAL VOC 2007, PASCAL VOC 2012, MS COCO
and CUB-200-2011 datasets by changing the values of λ in the set of {0, 0.1, 0.5, 1, 2, 10}. Here, the
ablation study of λ was conducted with the parameter N set to 10.

The results of this ablation study are illustrated in Figures 3(c) and (d). It is worth noting that setting λ
to 0 denotes that our CANet model is trained without using the attention loss (just with the conventional
visual recognition loss). As shown in Figure 3(c), (i) on the PASCAL VOC 2007 dataset, with the increase
of λ from 0 to 1, our proposed attention loss contributes substantially to the accuracy, from 92.7% to
94.7%. That is, our attention loss could boost the accuracy with 2.0% mAP. When we further increase
the weight coefficient from 1 to 10, the mAP values drop marginally. (ii) On the PASCAL VOC 2012
dataset and the MS COCO dataset, the mAP shows an upward trend with λ gradually increasing in the
range of [0, 1], while the mAP shows a down trend which is similar to the trend on the PASCAL VOC
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Figure 3 (Color online) The ablation studies with different values of N on the multi-label image classification datasets (a)

and CUB-200-2011 dataset (b), and different values of λ on the multi-label image classification datasets (c) and CUB-200-2011

dataset (d).

2007 dataset. As shown in Figure 3(d), with the increase of λ from 0 to 1, the Top-1 accuracy improves
from 86.3% to 88.1%. And then, we change λ from 1 to 10, the Top-1 accuracy value begins to fall. The
best results are obtained with λ = 1 for all four datasets. We follow these parameter settings of λ = 1
and N = 10 on all datasets for subsequent experiments.

4.5 Comparisons with other current methods

Experimental results on the PASCAL VOC 2007 dataset. We compare our CANet with 12
multi-label image classification methods including CNN-RNN [39], RLSD [60], CoP [32], VeryDeep [30],
ResNet-101 [2], FeV+LV [35], DSDL [37], RNN-Attention [41], ML-GCN [36], RARL [40], HCP [31], and
RCP [33]. The comparison results are reported in Table 1. The AP values for each class and the mAP
for all classes are represented. The previous attention-based method, RNN-Attention [41], introduced a
spatial transformer layer to locate attentional regions on the convolutional maps, achieving an mAP of
91.9%. In contrast, we use the CAE module to obtain class-specific convolutional maps. Our proposed
CANet achieves an mAP of 94.8%, which outperforms the RNN-Attention [41] method by 2.9%. We can
also see that, compared with the baseline ResNet-101 model [2], our method obtains a big mAP gain of
4.0%. Also, our method outperforms the DSDL [37], a new method for multi-label image classification,
by 0.4% in terms of mAP. Last but not least, our method shows good performance for most of the object
categories including those challenging classes such as “bottle”, “table”, and “sofa”.

Experimental results on the PASCAL VOC 2012 dataset. On the PASCAL VOC 2012 dataset,
we also report the AP for each category and the mAP for all categories. The experimental results are
represented in Table 2. Six representative methods are selected for comparison. They are RMIC [61],
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Table 1 Comparisons of our CANet with other methods on the PASCAL VOC 2007 dataset. The best results are marked in bold.

Method aero bike bird boatbottle bus car cat chair cow table dog horsembikepersonplantsheep sofa train tv mAP

CNN-RNN [39] 96.7 83.1 94.2 92.8 61.2 82.1 89.1 94.2 64.2 83.6 70.0 92.4 91.7 84.2 93.7 59.8 93.2 75.3 99.7 78.6 84.0

RLSD [60] 96.4 92.7 93.8 94.1 71.2 92.5 94.2 95.7 74.3 90.0 74.2 95.4 96.2 92.1 97.9 66.9 93.5 73.7 97.5 87.6 88.5

VeryDeep [30] 98.9 95.0 96.8 95.4 69.7 90.4 93.5 96.0 74.2 86.6 87.8 96 96.3 93.1 97.2 70.0 92.1 80.3 98.1 87.0 89.7

ResNet-101 [2] 99.1 97.3 96.2 94.7 68.3 92.9 95.9 94.6 77.9 89.9 85.1 94.7 96.8 94.3 98.1 80.8 93.1 79.1 98.2 91.1 90.8

HCP [31] 98.6 97.1 98.0 95.6 75.3 94.7 95.8 97.3 73.1 90.2 80.0 97.3 96.1 94.9 96.3 78.3 94.7 76.2 97.9 91.5 90.9

RNN-Attention [41] 98.6 97.4 96.3 96.2 75.2 92.4 96.5 97.1 76.5 92.0 87.7 96.8 97.5 93.8 98.5 81.6 93.7 82.8 98.6 89.3 91.9

FeV+LV [35] 98.2 96.9 97.1 95.8 74.3 94.2 96.7 96.7 76.7 90.5 88.0 96.9 97.7 95.9 98.6 78.5 93.6 82.4 98.4 90.4 92.0

RARL [40] 98.6 97.1 97.1 95.5 75.6 92.8 96.8 97.3 78.3 92.2 87.6 96.9 96.5 93.6 98.5 81.6 93.1 83.2 98.5 89.3 92.0

RCP [33] 99.3 97.6 98.0 96.4 79.3 93.8 96.6 97.1 78.0 88.7 87.1 97.1 96.3 95.4 99.1 82.1 93.6 82.2 98.4 92.8 92.5

ML-GCN [36] 99.5 98.5 98.6 98.1 80.8 94.6 97.2 98.2 82.3 95.7 86.4 98.2 98.4 96.7 99.0 84.7 96.7 84.3 98.9 93.7 94.0

CoP [32] 99.9 98.4 97.8 98.8 81.2 93.7 97.1 98.4 82.7 94.6 87.1 98.1 97.6 96.2 98.8 83.2 96.2 84.7 99.1 93.5 93.8

DSDL [37] 99.8 98.7 98.4 97.9 81.9 95.4 97.6 98.3 83.3 95.0 88.6 98.0 97.9 95.8 99.0 86.6 95.9 86.4 98.6 94.4 94.4

CANet (ours) 99.6 98.8 97.7 97.9 83.7 96.497.8 98.0 82.4 97.3 89.7 98.5 98.6 97.3 99.0 84.6 98.4 86.799.4 94.1 94.8

Table 2 Comparisons of our CANet with other methods on the PASCAL VOC 2012 dataset. The best results are marked in bold.

Method aero bike bird boat bottle bus car cat chair cow table dog horsembike person plant sheep sofa train tv mAP

RMIC [61] 98.0 85.5 92.6 88.7 64 86.8 82.0 94.9 72.7 83.1 73.4 95.2 91.7 90.8 95.5 58.3 87.6 70.6 93.8 83.0 84.4

VeryDeep [30] 99.1 88.7 95.7 93.9 73.1 92.1 84.8 97.7 79.1 90.7 83.2 97.3 96.2 94.3 96.9 63.4 93.2 74.6 97.3 87.9 89.0

FeV+LV [35] 98.4 92.8 93.4 90.7 74.9 93.2 90.2 96.1 78.2 89.8 80.6 95.7 96.1 95.3 97.5 73.1 91.2 75.4 97 88.2 89.4

HCP [31] 99.1 92.8 97.4 94.4 79.9 93.6 89.8 98.2 78.2 94.9 79.8 97.8 97.0 93.8 96.4 74.3 94.7 71.9 96.7 88.6 90.5

RCP [33] 99.3 92.2 97.5 94.9 82.3 94.1 92.4 98.5 83.8 93.5 83.1 98.1 97.3 96.0 98.8 77.7 95.1 79.4 97.7 92.4 92.2

DSDL [37] 99.4 95.3 97.6 95.7 83.5 94.8 93.9 98.5 85.7 94.5 83.8 98.4 97.7 95.9 98.5 80.6 95.7 82.3 98.2 93.2 93.2

CANet (ours) 99.7 95.498.196.2 85.0 95.4 94.798.8 85.7 97.4 85.7 98.8 99.0 96.4 98.6 83.3 98.2 85.0 98.4 93.5 94.2

Table 3 Comparisons of our CANet with other methods on the MS COCO dataset. The best results are marked in bold.

Method
All Top-3

mAP CP CR CF1 OP OR OF1 CP CR CF1 OP OR OF1

CNN-RNN [39] 61.2 – – – – – – 66.0 55.6 60.4 69.2 66.4 67.8

RNN-Attention [41] – – – – – – – 79.1 58.7 67.4 84.0 63.0 72.0

Order-Free RNN [62] – – – – – – – 71.6 54.8 62.1 74.2 62.2 67.7

ML-ZSL [63] – – – – – – – 74.1 64.5 69.0 – – –

SRN [64] 77.1 81.6 65.4 71.2 82.7 69.9 75.8 85.2 58.8 67.4 87.4 62.5 72.9

ResNet-101 [2] 77.3 80.2 66.7 72.8 83.9 70.8 76.8 84.1 59.4 69.7 89.1 62.8 73.6

ML-GCN [36] 80.3 81.1 70.1 75.2 83.8 74.2 78.7 84.9 61.3 71.2 88.8 65.2 75.2

CoP [32] 81.1 81.2 70.8 75.8 83.6 73.3 78.1 86.4 62.9 72.7 88.7 65.1 75.1

DSDL [37] 81.7 84.1 70.4 76.7 85.1 73.9 79.1 88.1 62.9 73.4 89.6 65.3 75.6

CBAM [23] 80.3 86.5 63.5 73.2 90.3 67.4 77.2 89.2 57.9 70.2 93.3 62.5 74.9

SE-Net [18] 79.9 87.4 61.7 72.3 90.1 66.8 77.0 89.1 57.0 69.5 93.0 61.6 74.1

ECA-Net [65] 80.8 85.3 66.0 74.4 89.7 69.6 78.4 87.2 60.5 71.4 92.1 63.6 75.3

CANet (ours) 82.2 87.3 66.2 75.3 90.2 70.4 79.1 89.5 60.1 71.9 92.9 63.6 75.5

DSDL [37], VeryDeep [30], FeV+LV [35], HCP [31], and RCP [33]. It can be found from Table 2 that
our method achieves an mAP of 94.2%, outperforming the competitive DSDL method [37] by 1%.

Experimental results on the MS COCO dataset. We also evaluate the performance of our
method on the MS COCO dataset with different metrics, as depicted in Table 3 [62, 63]. Our method
achieves the mAP of 82.2%, improving those of the previous best methods by 0.5%. Particularly, we
pay attention to the comparison among attention-based methods. RNN-Attention [41] and SRN [64] are
two popular attention-based methods for image classification: RNN-Attention takes advantage of visual
attention mechanism to search local discriminative regions while SRN explores label relations based on
the learned attention maps. Compared with these two attention-based methods, our method is simpler
and overpasses them with all evaluation metrics. Moreover, our method also outperforms SE-Net [18],
CBAM [23], and ECA-Net [65] in terms of mAP metric by 2.3%, 1.9%, and 1.4%, respectively. These
results imply that our proposed approach is effective.



Cheng G, et al. Sci China Inf Sci March 2023 Vol. 66 132105:10

Table 4 Comparisons of our CANet with other methods on the CUB-200-2011 dataset. The baseline and baseline* follow the

setting in SnapMix [67]. Here, baseline* indicates incorporating mid-level features in performance evaluation. The best results are

marked in bold.

Method Annotations Top-1 accuracy (%)

PS-CNN [9] X 76.6

Part-RCNN [66] X 76.4

Mask-CNN [8] X 85.7

SPDA-CNN [45] X 85.1

STN [19] # 84.1

Improved B-CNN [46] # 85.8

MAMC [49] # 86.2

OPAM [44] # 85.8

Bilinear CNN [10] # 84.1

PDFR [67] # 84.5

AutoBD [68] # 81.6

RACNN [47] # 85.3

MACNN [48] # 86.5

iSQRT-COV-Net with ResNet-101 [70] # 88.7

ResNet-101 (baseline) [69] # 85.7

ResNet-101 (baseline*) [69] # 87.8

CANet (baseline+CAE) # 88.1

CANet (baseline*+CAE) # 88.9

Experimental results on the CUB-200-2011 dataset. The comparison results of our CANet
with 14 FGVC approaches on the CUB-200-2011 dataset are presented in Table 4 [19,66–69] . As shown,
our CANet obtains the Top-1 accuracy of 88.1%, which dramatically surpasses the baseline method with
ResNet-101 [2] by 2.4%. In contract, the supervised method Mask-CNN [8] that uses both the object and
the part-level annotations produces 85.7% Top-1 accuracy. Particularly, compared with several attention-
based methods specifically designed for FGVC, including MAMC [49], MACNN [48], and RACNN [47],
our proposed CANet outperforms them by 1.6%, 1.9%, and 2.8%, respectively. More notably, CANet
is slightly lower than iSQRT-COV-Net with ResNet-101 [70] by 0.6%. A possible explanation for this
result may be that global covariance pooling designed in iSQRT-COV-Net generates a richer representa-
tion. When CANet incorporates mid-level features, CANet obtains the Top-1 accuracy of 88.9%, which
surpasses iSQRT-COV-Net with ResNet-101 by 0.2%.

4.6 Visualization

We visualize some class-specific attention maps in order to intuitively and qualitatively illustrate the
effectiveness of our method. These example images are from the PASCAL VOC 2007 dataset. The
original images and their corresponding class-specific attention maps are shown in Figure 4. The color
of the bar in the most-right side denotes the intensity of the attention maps generated through our
class-specific attention encoding module: dark red has the strongest activation while dark blue denotes
the weakest intensity. We visualize the attention maps according to the object classes appearing in each
image in Figure 4. As can be seen, each class-wise attention map can well locate the object instances
belonging to the same class, no matter how many objects are included in the images, such as the cars
and sheep in the second row, the persons in the fourth row and the bikes in the fifth row. Taking the
last image in the first row as an example, our method can well capture the location of the “pottedplant”
even if the image has a complex background.

Particularly, for each image in the third row containing multiple object classes, each attention map
only activates its class-specific objects (with dark red color) and meanwhile suppresses the expression of
other classes (with dark blue color). These results suggest that our CANet can indeed generate highly
category-related attention maps with better interpretability, thus guiding the network to learn better
feature representations, which are very consistent with our motivations.
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0
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Figure 4 (Color online) Example of class-specific attention maps. Here, dark red regions have the strongest activations while

dark blue regions have the weakest intensity. The first row and the third row are the input images. Each image in the first row

contains one object class, and each image in the third row includes multiple object classes. The second row shows the results of the

images of the first row. The fourth and fifth rows present the results of the images of the third row. As can be seen, each class-wise

attention map can well locate the object instances belonging to the same class, no matter how many objects are included in the

images. Also, for the images containing multiple object classes, each attention map only activates its class-specific objects (with

dark red color) and suppresses the expression of other classes (with dark blue color).

5 Conclusion

In this paper, we presented an attention method, termed CANet for image recognition. This is achieved
by designing a CAE module, which introduces a class-specific dictionary to encode class-aware attention
maps, to explicitly learn class-wise feature representations. For CANet training, we also presented the
attention loss, an auxiliary loss to encourage CAE module and CANet to better learn class-wise semantic
information. Extensive experiments conducted on several challenging datasets, including MS COCO,
PASCAL VOC 2007, PASCAL VOC 2012, and CUB-200-2011 datasets, show the effectiveness of CANet.
More notably, the proposed CAE module is easy to adopt and can be plugged into existing convolutional
neural networks conveniently. Inspired by the feasibility of the CAE module on the classification task,
we will explore the CAE’s potential for other visual recognition tasks in the future like weakly supervised
object localization and semantic segmentation.
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