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Abstract Transfer learning is an important technology in addressing the problem that labeled data in

a target domain are difficult to collect using extensive labeled data from the source domain. Recently,

an algorithm named graph co-regularized transfer learning (GTL) has shown a competitive performance

in transfer learning. However, its convergence is affected by the used approximate scheme, degenerating

learned results. In this paper, after analyzing convergence conditions, we propose a novel update rule using

the multiplicative update rule and develop a new algorithm named improved GTL (IGTL) with a strict

convergence guarantee. Moreover, to prove the convergence of our method, we design a special auxiliary

function whose value is intimately related to that of the objective function. Finally, the experimental results

on the synthetic dataset and two real-world datasets confirm that the proposed IGTL is convergent and

performs better than the compared methods.
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1 Introduction

In some emerging real-world applications, labeled data cannot be easily collected from a target task, af-
fecting the performance of standard machine learning methods. One promising way is to leverage available
labeled source data from some related but different domains. For such a cross-domain knowledge transfer
purpose, transfer learning has attracted increasing research interest in recent years [1, 2]. Moreover, it
has been applied to a wide range of research fields, such as computer vision [3], emotion recognition [4],
5G technology [5], and aerodynamic missile design [6].

Generally, the distribution of data in different domains is quite complex. These complexities pose a
great challenge in leveraging knowledge from the source domain. To solve this problem, many efforts
have been made to develop transfer learning methods. For instance, a kernel learning-based framework
was introduced in [7] to minimize the distribution mean discrepancy and distribution scatter discrepancy
between the source and target domains. An attractive deep neural network framework is proposed to
extract deep features for the domain adaptation task [8]. Moreover, a useful method introduced in [9]
focuses on addressing the heterogeneous domain adaptation problem. With the growth of data, transfer
learning approaches employing dimension reduction have become popular [10, 11]. Among them, the
methods based on non-negative matrix factorization (NMF) play important parts [12, 13]. For example,
the work in [14] proposed a general transfer learning framework to simultaneously explore shared and
distinct concepts among all the domains. In [15], an attractive method called graph co-regularized transfer
learning (GTL) was introduced to preserve the geometric structure in each domain and simultaneously
alleviate the effect of the negative transfer. Although GTL has achieved competitive performance in

*Corresponding author (email: naiyaogdut@aliyun.com)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-020-3526-4&domain=pdf&date_stamp=2023-2-3
https://doi.org/10.1007/s11432-020-3526-4
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-020-3526-4
https://doi.org/10.1007/s11432-020-3526-4


Yang Z Y, et al. Sci China Inf Sci March 2023 Vol. 66 132104:2

transfer learning, its convergence is affected by the approximate scheme used, restricting the application
of this method.

To be specific, the convergence of GTL is largely affected by one variable that needs to be always
updated in a certain circumstance. However, this condition may not be satisfied due to the used approxi-
mation scheme in the optimization. In reality, the convergence of machine learning algorithms determines
not only their good performance but also their successful applications [16–19]. In this paper, we system-
ically analyze convergence conditions and propose a new algorithm, named improved GTL (IGTL), by
employing the multiplicative update rule. Lastly, experimental results on the synthetic dataset and real-
world datasets verify that IGTL is convergent and obtains much better performance than GTL. This
paper has the following main contributions.
• A novel method with a convergence guarantee is proposed for transfer learning, which addresses the

convergence problem of the popular method GTL.
• To prove the convergence of the proposed method with multiple variables, we employ an upper

bound-based scheme. To implement the upper bound, we design an auxiliary function whose value is no
less than the original objective function and equals the latter on the optimal point.

2 GTL

NMF is a popular technology in data analysis due to its potential to obtain meaningful features of non-
negative data [20–22]. For a non-negative data matrix X ∈ R

m×n
+ , NMF factorizes the data matrix

into two non-negative matrices U ∈ R
m×c
+ and V ∈ R

n×c
+ , where the rank of U and V is generally less

than the rank of X (i.e., c < min{m,n}). Mathematically, the standard NMF with Frobenius norm is
represented by

min
U ,V

‖X −UV
T‖2F s.t. U � 0, V � 0, (1)

where � denotes the component-wise >.
Due to the effectiveness of the model (1), it is further extended to the domain adaptation. In domain

adaptation scenarios, a typical assumption is that different domains share common latent factors [10,
12, 14]. Let the data matrix Xs ∈ R

m×ns

+ denote the source domain and the data matrix Xt ∈ R
m×nt

+

denote the target domain, which can also be represented by {Xπ}π∈Π and Π = {s, t}. Following the idea
of sharing the common latent factors, one of the representation formulations in the NMF setting is to
share the basis matrix U ∈ R

m×c
+ across domains [15]:

min
U ,Vπ

∑

π∈Π

‖Xπ −UV
T
π ‖

2
F s.t. U � 0, Vπ � 0, ∀π ∈ Π, (2)

where Vπ ∈ R
nπ×c is the coefficient matrix of the π domain.

Considering the effect of the negative transfer, recent studies showed that GTL [15] alleviates the
negative transfer by preserving the geometric structure of the data space and feature space simultaneously,
i.e., tr(UL

u
πU

T) and tr(V T
π L

v
πVπ), where L

v
π ∈ R

nπ×nπ and L
u
π ∈ R

m×m are the example and feature
graph Laplacian matrices of the π domain, respectively. Moreover, it uses an orthogonal constraint to
handle the trivial solution problem, i.e., ‖V T

π Vπ−I‖2F , where I ∈ R
c×c is an identity matrix. The overall

objective function of GTL is as follows [15]:

min
U ,Vπ

∑

π∈Π

‖Xπ −UV
T
π ‖

2
F +

σ

2

∑

π∈Π

‖V T
π Vπ − I‖2F + λ

∑

π∈Π

tr(UT
L

u
πU) + γ

∑

π∈Π

tr(V T
π L

v
πVπ)

s.t. U � 0, Vπ � 0, ∀π ∈ Π.

(3)

The corresponding update rules for U and Vπ are shown as

U ← U ⊙

∑

π∈Π(XπV
T
π + λW u

π U)
∑

π∈Π(UV T
π Vπ + λDu

πU)
, (4)

Vπ ← Vπ ⊙
X

T
π U + γW v

πVπ + σVπ

VπU
TU + γDv

πVπ + σVπV
T
π Vπ

, (5)
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Algorithm 1 Proposed IGTL algorithm

1: Input: data matrices {Xπ}π∈Π, label matrix of the source domain Ys, number of the nearest neighbors α, and trade-off

parameters λ, γ, and σ;

2: Calculate graph Laplacian matrices L
v
π and L

u
π, ∀π ∈ Π;

3: Initialize U and Vπ , ∀π ∈ Π;

4: Set the iteration number T ;

5: for i = 1, 2, . . . , T do

6: Update U by (4);

7: for each π ∈ Π do

8: update Vπ by (7);

9: end for

10: end for

11: Output: label matrix of the target domain Yt.

where ⊙ denotes the component-wise product; W v
π ∈ R

nπ×nπ and W
u
π ∈ R

m×m are the example and
feature similarity matrices in the π domain, respectively; Dv

π ∈ R
nπ×nπ and D

u
π ∈ R

m×m are the diagonal
matrices calculated by W

v
π and W

u
π , respectively; L

v
π = W

v
π −D

v
π and L

u
π = W

u
π −D

u
π .

The convergence of the method above is largely affected by the update rule for Vπ in (5), and it requires
(VπV

T
π Vπ)ij > vij((V

T
π Vπ)jj + v2jj − 1), where vij represents the (i, j)-entry of Vπ for simplicity. Based

on the used approximate condition, it holds that (VπV
T
π Vπ)ij > vij(V

T
π Vπ)jj > vij((V

T
π Vπ)jj + v2jj − 1).

Furthermore, the convergence requirement meets under the condition v2jj 6 1. However, this condition
cannot be easily satisfied using the update rule (5) in each iteration, as the strict orthogonality constraint
is replaced by an approximate method for the convenience of optimization. Actually, the approximation
scheme only makes

∑

i v
2
ij = (V T

π Vπ)jj equal 1 approximatively, which means that v2jj is less than 1

approximatively. In some cases, it may hold that v2jj > 1, especially when v2jj is dominant in
∑

i v
2
ij . This

condition brings the convergence risk, restricting the performance of the method introduced above [16–19].

3 IGTL

In this section, we propose an IGTL algorithm with a strict convergence guarantee. First, we define a
matrix Kπ and its element is given by

kij = σv2ij +
vij

1− vij
(XT

π U)ij . (6)

In NMF-based methods, the multiplicative update rules can balance the speed and ease of implemen-
tation for solving the optimization problem [23]. To conveniently solve the model, we solve Vπ using the
multiplicative update rule. The new update rule of Vπ can be constructed by adding Kπ to the original
update rule (5):

Vπ ← Vπ ⊙
X

T
π U + γW v

πVπ + σVπ +Kπ

VπU
TU + γDv

πVπ + σVπV
T
π Vπ +Kπ

, (7)

where the initialization condition of Vπ is 0 < vij < 1. The update rule (7) and the above initialization
condition ensure that each element in Vπ satisfies vij < 1 in each iteration (see (17) and the corresponding
proofs).

Then, the new algorithm is developed by substituting (5) with the new update rule (7). The complete
algorithm of our IGTL is presented in Algorithm 1.

For the proposed algorithm, the convergence cannot be easily analyzed directly, as each updated matrix
has multiple elements, which are viewed as multiple variables. Here, we employ an upper bound-based
scheme. Regarding the upper bound, we design an auxiliary function whose value is no less than the
original objective function and equals the latter on the optimal point. We have the following theorem
about convergence.

Theorem 1. The objective function (3) is non-increasing under the updating rules of U and Vπ in (4)
and (7).
Proof. To prove Theorem 1, we first analyze the non-increasing property of the objective function on
Vπ. According to the model (3), the optimization problem with respect to Vπ is

JV = ‖Xπ −UV
T
π ‖

2
F +

σ

2
‖V T

π Vπ − I‖2F + γtr(V T
π L

v
πVπ). (8)
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For any element vij in Vπ , we use Gij as the part of JV related to vij . As analyzed in [23], optimizing
Gij can be changed to the minimization of an auxiliary function of Gij . Then, we define the following
function for Gij :

A(v, vij) = Gij(vij) +G′
ij(vij)(v − vij) +

(VπU
T
U + γDv

πVπ + σVπV
T
π Vπ +Kπ)ij

vij
(v − vij)

2. (9)

To prove that Eq. (9) is an auxiliary function of Gij , two conditions, i.e., A(v, v) = Gij(v) and
A(v, vij) > Gij(v) [23], need to be proven. Clearly, A(v, v) = Gij(v) holds. As for proving A(v, vij) >
Gij(v), we first give the following first-order and second-order derivatives of Gij with respect to vij :

G′
ij = 2(VπU

T
U + γDv

πVπ + σVπV
T
π Vπ)ij − 2(XT

π U + γW v
πVπ + σVπ)ij

= 2(VπU
T
U + γDv

πVπ + σVπV
T
π Vπ)ij − 2(XT

π U + γW v
πVπ + σVπ)ij + kij − kij , (10)

G′′
ij =2((UT

U)jj + γ(Dv
π −W

v
π )ii) + 2σ((VπV

T
π )ii + (V T

π Vπ)jj + v2ij − 1). (11)

We substitute (10) and (11) into the Taylor series expansion of Gij , i.e., Gij(v) = Gij(vij)+G′
ij(vij)(v−

vij)+
1
2G

′′
ij(vij)(v−vij)

2, and compare it to (9). The results show that proving A(v, vij) > Gij(v) amounts
to proving the following inequality:

(VπU
T
U + γDv

πVπ + σVπV
T
π Vπ +Kπ)ij

vij

> (UT
U)jj + γ(Dv

π −W
v
π )ii + σ((VπV

T
π )ii + (V T

π Vπ)jj + v2ij − 1). (12)

For ease of comparison, the inequality (12) is rewritten as

L1 + γL2 + σL3 + kij > R1 + γR2 + σR3, (13)

where L1 = (VπU
T
U)ij , L2 = (Dv

πVπ)ij , L3 = (VπV
T
π Vπ)ij , R1 = vij(U

T
U)jj , R2 = vij(D

v
π −W

v
π )ii,

and R3 = vij((VπV
T
π )ii + (V T

π Vπ)jj + v2ij − 1). To prove the inequality (13), we will prove L1 > R1,
L2 > R2, and σL3 + kij > σR3. Using the algebra manipulations, it holds

L1 = (VπU
T
U)ij =

∑

l

vil(U
T
U)lj > vij(U

T
U)jj = R1, (14)

L2 = (Dv
πVπ)ij =

∑

l

(Dv
π)ilvlj > (Dv

π)iivij > vij(D
v
π −W

v
π )ii = R2. (15)

Regarding L3 and R3, we have the following inequality under the condition 0 6 vij 6 1:

σL3 + kij − σR3

= σ
∑

l 6=i,h 6=j

vihvlhvlj + σvij(V
T
π Vπ)jj + σ(VπV

T
π )iivij − σv3ij + kij − σR3

= σ
∑

l 6=i,h 6=j

vihvlhvlj + σvij(V
T
π Vπ)jj + σ(VπV

T
π )iivij − σv3ij + σv2ij +

vij

1− vij
(XT

π U)ij − σR3

> σ
∑

l 6=i,h 6=j

vihvlhvlj + σvij(V
T
π Vπ)jj + σ(VπV

T
π )iivij +

vij

1− vij
(XT

π U)ij − σR3

> σ
∑

l 6=i,h 6=j

vihvlhvlj + σvij(V
T
π Vπ)jj + σ(VπV

T
π )iivij − σR3

= σ
∑

l 6=i,h 6=j

vihvlhvlj + σvij(1 − v2ij) > 0. (16)

From the above inequalities, we find that the inequality (12) holds under the condition 0 6 vij 6 1. For
ensuring 0 6 vij 6 1 in each iteration, given that the initialization of Vπ is 0 < vij < 1, we will guarantee
that the numerator is less than the denominator in the update rule for Vπ:

Vπ ⊙ (XT
π U + σVπ +Kπ + γW v

πVπ) 6 VπU
T
U + σVπV

T
π Vπ +Kπ + γDv

πVπ. (17)
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It amounts to

vij(X
T
π U)ij + vij

vij

1− vij
(XπU)ij + σv3ij + γvij(W

v
πVπ)ij

6
vij

1− vij
(XπU)ij + σ(VπV

T
π Vπ)ij + (VπU

T
U)ij + γ(Dv

πVπ)ij . (18)

For the convenience of comparison, the inequality (18) is rewritten as

B1 +B2 + γB3 6 C1 + C2 + γC3, (19)

where B1 = vij(X
T
π U)ij + vij

vij
1−vij

(XπU)ij , B2 = σv3ij , B3 = vij(W
v
πVπ)ij , C1 =

vij
1−vij

(XπU)ij ,

C2 = σ(VπV
T
π Vπ)ij + (VπU

T
U)ij , and C3 = (Dv

πVπ)ij . Under the initialization 0 < vij < 1 and based
on algebra manipulations, we have

B1 = vij(X
T
π U)ij + vij

vij

1− vij
(XT

π U)ij =
vij

1− vij
(XT

π U)ij = C1, (20)

C2 = σ(VπV
T
π Vπ)ij + (VπU

T
U)ij > σ(VπV

T
π Vπ)ij = σ

∑

l

vil(V
T
π Vπ)lj

> σvij(V
T
π Vπ)jj = σvij

∑

l

v2lj > σvijv
2
ij = σv3ij = B2, (21)

C3 = (Dv
πVπ)ij =

∑

l

dvilvlj > dviivij =
∑

l

wv
ilvij

= vij
∑

l

wv
il > vij

∑

l

wv
ilvlj = vij(W

v
πVπ)ij = B3. (22)

Therefore, the inequality (17) and the condition 0 6 vij 6 1 hold. Based on the condition 0 6 vij 6 1
and (16), the inequality σL3 + kij > σR3 holds. Because L1 > R1, L2 > R2, and σL3 + kij > σR3 hold,
the inequality (12) holds. That is, A(v, vij) > Gij(v) holds. As A(v, v) = Gij(v) and A(v, vij) > Gij(v)
hold, A(v, vij) is an auxiliary function of Gij .

Then, by setting
∂A(v,vij)

∂v
= 0, we have

v = vij −
vijG

′

ij

2(VπU
TU + γDv

πVπ + σVπV
T
π Vπ +Kπ)ij

. (23)

Let v be the updated vij ; then substituting (10) into (23) results in the following update rule for vij :

vij ← vij
(XT

π U + γW v
πVπ + σVπ +Kπ)ij

(VπU
TU + γDv

πVπ + σVπV
T
π Vπ +Kπ)ij

. (24)

The above update rule is the same as (7). That is, as Eq. (9) is an auxiliary function, Gij (i.e., the
objective function (3)) is non-increasing under the update rule (7).

For U , for any entry uij in U , let Fij denote the part of the objective function related to uij . Similarly,
we define the following function for Fij :

Â(u, uij) = Fij(uij) + F ′
ij(uij)(u − uij) +

∑

π∈Π(UV
T
π Vπ + λDu

πU)ij

uij

(u− uij)
2. (25)

The Taylor series expansion of Fij is Fij(u) = Fij(uij) + F ′
ij(uij)(u − uij) +

1
2F

′′
ij(uij)(u − uij)

2, and

F ′′
ij = 2

∑

π∈Π((V
T
π Vπ)jj + λ(Du

π −W
u
π )ii). We find that proving Â(u, uij) > Fij(u) amounts to proving

the following inequalities:

∑

π∈Π

(UV
T
π Vπ)ij =

∑

π∈Π

∑

l

uil(V
T
π Vπ)lj > uij

∑

π∈Π

(V T
π Vπ)jj , (26)
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Figure 1 Iterative update curves of v2

33
on the synthetic dataset. (a) GTL; (b) IGTL.

∑

π∈Π

(Du
πU)ij =

∑

π∈Π

∑

l

(Du
π)ilulj > uij

∑

π∈Π

(Du
π)ii > uij

∑

π∈Π

(Du
π −W

u
π )ii. (27)

Evidently, Â(u, u) = Fij(u) holds. Because Â(u, u) = Fij(u) and Â(u, uij) > Fij(u) hold, Â(u, uij) is an

auxiliary function of Fij(u). By setting
∂Â(u,uij)

∂u
= 0, one can obtain the update rule of uij , which is

identical with (4). Therefore, the objective function (3) is also non-increasing under the update rule (4).
This finding completes the proof of Theorem 1.

The computational complexity of IGTL is related to GTL. GTL requires the computational complexity
O(

∑

π∈Π Tc(mnπ+m2+n2
π)+

∑

π∈Π(m
2nπ+mn2

π)), where m is the sample dimension, nπ is the sample
number of the π domain, c is the subspace dimension, and T is the iteration number. Moreover, the IGTL
requires the extra computational complexity O(

∑

π∈Π Tcmnπ) to compute Kπ. Therefore, the overall
computational complexity of the proposed approach is O(

∑

π∈Π Tc(2mnπ +m2 + n2
π) +

∑

π∈Π(m
2nπ +

mn2
π)).

4 Experiment

4.1 Experiments on the synthetic dataset

We test GTL and IGTL empirically on the synthetic dataset, where the generated data must be the same
in the sample dimension to satisfy the domain adaptation setting. For generating the synthetic data, we
randomly generate Xs ∈ R

4×5
+ and Xt ∈ R

4×5
+ and assume the number of classes c = 3 for performing

the numerical verification experiments. Regarding the parameter setting, the settings for GTL and IGTL
are the same, i.e., α = 1, γ = 0.01, σ = 100, and λ = 0.1.

In the beginning, we empirically test the probability of v2jj > 1. To be specific, we run GTL on 1000

randomly generated synthetic datasets, and the case of v2jj > 1 happens 505 times; i.e., the probability

of v2jj > 1 is 50.5%. Then, we test the iterative process of GTL and IGTL and randomly generate all the
matrices required for the corresponding algorithm, where the data matrices Xs and Xt are displayed as

Xs =













0.3133 0.3213 0.2629 0.1301 0.1002

0.0105 0.6818 0.1186 0.2236 0.0249

0.0749 0.3060 0.1055 0.6880 0.2695

0.9879 0.9193 0.6957 0.2078 0.0913













, (28)

Xt =













0.7318 0.7802 0.8326 0.5217 0.8747

0.1981 0.6758 0.2882 0.9653 0.4083

0.9158 0.6981 0.5147 0.3305 0.4442

0.4255 0.6861 0.8759 0.9694 0.6129













. (29)

To verify that Vt given by GTL meets v2jj > 1, Figure 1 shows the change curves of v2jj with the

iteration increasing, where the values of v233 in Vt are shown. As shown in Figure 1(a), the values of v233
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Figure 2 Recovery error curves of Xt on the synthetic dataset. (a) GTL; (b) IGTL.
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Figure 3 Objective values on the synthetic dataset. (a) GTL while only updating Vt; (b) IGTL while only updating Vt; (c) GTL

while updating all the matrices; (d) IGTL while updating all the matrices.

in GTL are sometimes greater than 1. This result verifies that GTL does not satisfy the required work
condition of the utilized balance method. Meanwhile, in Figure 1(b), the values of v233 in IGTL are always
less than 1, satisfying the required work condition of the utilized balance method. In Figure 2, we show
the recovery error curves of Xt under GTL and IGTL. In Figure 2(a), the curve of GTL oscillates with
the iteration increasing, while in Figure 2(b), the curve of IGTL is stable with the iteration increasing.

To investigate the change in objective values caused by Vt under different algorithms, we discuss two
different cases. The first case is only updating Vt, and the second case is updating all the matrices.
Regarding the first case, Figures 3(a) and (b) show the objective values with respect to GTL and IGTL,
respectively. For the second case, Figures 3(c) and (d) indicate the objective values of GTL and IGTL,
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Table 1 Statistics of datasets

Dataset Domain Instance Class Dimension

COIL20 COIL1 720 20 1024

COIL2 720 20 1024

Office+Caltech Webcam 295 10 800

DSLR 157 10 800

Caltech 1123 10 800
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Figure 4 (Color online) Objective values of GTL and IGTL. (a) COIL1→COIL2; (b) COIL2→COIL1.

respectively. The curves of GTL are oscillating, i.e., Figures 3(a) and (c). This is because the approximate
convergence of GTL cannot monotonically decrease the objective values. By contrast, the objective values
of IGTL vary properly (see Figures 3(b) and (d)). This is reasonable since IGTL can achieve strict
convergence.

4.2 Experiments on real-world datasets

4.2.1 Description of datasets

We use two real-world domain adaptation datasets to evaluate GTL and IGTL, i.e., the COIL20 dataset
and the Office+Caltech dataset. For convenience, the datasets are summarized in Table 1.

COIL20. The dataset contains 20 object categories, and each category has 72 images, totaling 1440
images. Each sample is a grayscale image with the size of 32 × 32 pixels. Following [24], the dataset is fur-
ther divided into two domains, COIL1 and COIL2, where COIL1 and COIL2 use different shooting angles.
By randomly selecting one dataset as the source domain and the other as the target domain, we construct
two cross-domain datasets (source domain→target domain), i.e., COIL1→COIL2 and COIL2→COIL1.

Office+Caltech. This is a popular dataset for domain adaptation [24]. We choose two real-world
object domains from the Office database, i.e., Webcam and DSLR. Moreover, adding the Caltech dataset,
there are three domains. By randomly selecting two different domains as the source domain and target
domain, respectively, six cross-domain datasets are constructed, including Caltech→DSLR, Caltech→
Webcam, DSLR→Caltech, DSLR→Webcam, Webcam→Caltech, and Webcam→DSLR.

4.2.2 Experimental results

First, we check the convergence of the iterative algorithms on COIL20 while randomly initializing Vt.
Figures 4(a) and (b) show the results on COIL1→COIL2 and COIL2→COIL1, respectively. As shown
in the results, the curves of IGTL monotonically decline while the curves of GTL are oscillating.

Then, we provide the classification performance comparison on two real-world datasets to validate
the effectiveness of IGTL. We compare our IGTL with GTL [15] and TCA [25]. In the experiments,
the parameter settings of the compared methods are set following the original papers. For IGTL, the
parameter setting is α = 10, γ = 10, σ = 100, and λ = 0.1, which is the same as those of GTL. The
number of the iterations is set to 200. For all the results, we run each algorithm 20 times and report the
average classification accuracy and standard deviation.
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Table 2 Accuracy (standard deviation) on COIL20 (%) while randomly initializing Vt. The values in bold mean the best

performance

Method COIL1→COIL2 COIL2→COIL1 Average

GTL 40.76 (8.09) 40.77 (7.60) 40.77

IGTL 57.26 (5.07) 58.13 (3.85) 57.70

Table 3 Accuracy (standard deviation) on COIL20 (%). Vt in GTL and IGTL are initialized by logistic regression. The values

in bold mean the best performance

Method COIL1→COIL2 COIL2→COIL1 Average

TCA 74.58 (0.00) 77.78 (0.00) 76.18

GTL 77.78 (0.00) 79.72 (0.00) 78.75

IGTL 78.52 (0.00) 80.42 (0.00) 79.47

Table 4 Accuracy (standard deviation) on Office+Caltech (%) while randomly initializing Vt. The values in bold mean the best

performance

Method Caltech→DSLR Caltech→Webcam DSLR→Caltech DSLR→Webcam Webcam→Caltech Webcam→DSLR Average

GTL 41.56 (3.85) 42.25 (7.70) 29.96 (1.07) 73.39 (3.24) 30.80 (2.08) 65.57 (4.19) 47.26

IGTL 42.68 (3.68) 46.78 (5.83) 31.24 (1.00) 78.17 (3.04) 31.06 (1.75) 70.16 (2.19) 50.02

Table 5 Accuracy (standard deviation) on Office+Caltech (%). Vt in GTL and IGTL are initialized by logistic regression. The

values in bold mean the best performance

Method Caltech→DSLR Caltech→Webcam DSLR→Caltech DSLR→Webcam Webcam→Caltech Webcam→DSLR Average

TCA 44.59 (0.00) 51.19 (0.00) 32.50 (0.00) 73.56 (0.00) 35.71 (0.00) 70.06(0.00) 51.27

GTL 45.00 (0.37) 52.25 (0.17) 30.93 (0.00) 74.58 (0.00) 34.53 (0.06) 68.79 (0.00) 51.01

IGTL 48.41 (0.00) 59.00 (0.08) 32.41 (0.00) 79.68 (0.00) 34.93 (0.05) 75.76 (0.00) 55.03

Tables 2 and 3 list the classification results on COIL1→COIL2 and COIL2→COIL1. Accordingly, when
Vt is randomly initialized, the average accuracy of IGTL is much better than GTL, while the standard
deviation of IGTL is much smaller than GTL. Specifically, IGTL obtains at least 16% improvements
over GTL. The major reason is that GTL only achieves the approximate convergence, which restricts its
performance. By contrast, IGTL can achieve strict convergence and obtain significant improvements over
GTL. Consistently, for the case of initializing Vt with logistic regression (LR), the average accuracy of
IGTL is superior to that of GTL, where the LR classifier is trained on the labeled source data to initialize
Vt following [15].

Tables 4 and 5 show the classification results on Office+Caltech. In the tables, IGTL outperforms
GTL in all six cross-domain datasets. Moreover, from the value of the standard deviation, the standard
deviation of IGTL is smaller than that of GTL. These results demonstrate that IGTL can achieve more
stable and better performance than GTL, which implies the effectiveness of IGTL.

5 Conclusion

In this paper, we focus on an optimization problem of GTL, which obtains promising results in transfer
learning but can only achieve approximate convergence. Based on the analysis of the convergence con-
ditions, we propose a new update rule and develop an algorithm called IGTL with strict convergence.
The comparison experiments on the synthetic dataset and two real-world datasets confirm the validity of
our IGTL algorithm, which can obtain better classification performance than the compared algorithms.
In addition, GTL and IGTL use a fixed graph in the objective function, and the recent work [26] intro-
duced the dynamic graph method. Learning a dynamic graph has the potential to improve performance.
However, it will bring extra constraints to the objective function, affecting the subsequent optimization.
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