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Abstract Time delays occur in various engineering applications because they may be inherent in the

plants or caused by networks. In this paper, we investigate the safety verification problem of time-delay

systems modeled by nonlinear delay differential equations subject to control inputs and disturbances in their

dynamics. Building upon classical control barrier functionals, we develop the notions of input-to-state safety

and input-to-state safe control barrier functionals, in which input-to-state safe control barrier functionals are

used to guarantee the safety of time-delay systems with control inputs and disturbances. Three examples

are provided to demonstrate the proposed approach.
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1 Introduction

Cyber-physical systems (CPSs), such as smart grids [1], intelligent traffic systems [2], and smart facto-
ries [3], have emerged and are applied in our daily lives. Many of these systems are safety-critical, i.e.,
any fault in them may result in severe property damage, injuries, and even loss of life. Consequently, it
is essential to ensure the safety of these systems before deploying them.

Time delays are intrinsic in many real systems. For instance, due to the limitation of reproductive
age and food regeneration, the growth rate of biological species depends on the number of present and
past species [4]. The latent period of some infectious diseases introduces a delay in their transmission
process [5]. Over the past decades, increasing attention has been paid to time-delay systems because
of their broad applications in engineering, such as chemical process control [6], human balancing [7],
communications [8], and neural network systems [9]. Delay differential equations (DDEs), as a new
model with an explicit dependence of the dynamics on past states in the differential equation framework,
have been developed, e.g., by Myschkis [10] and Bellman and Cooke [11], to study the dynamics of
time-delay systems.

Over the past decades, methodologies for studying stability analysis of time-delay systems have been
extensively studied such as H∞- and L2-stability theories [12], absolute stability [13] and input-to-state
stability. In contrast, methodologies for safety analysis ensuring the safety of time-delay systems are few.
One is the barrier certificate (BC) based method. A BC can separate all reachable states of a considered
system from a given unsafe set, thus ensuring that the system is safe. It was originally developed for the
safety verification of systems free of time delays modeled by ordinary differential equations (ODEs) in [14],
and afterward extended to systems with control inputs in [15,16] and time-delay (hybrid) systems [17,18].
However, time-delay systems considered in [17, 18] are free of disturbances in their dynamics. Due to
unknown and changing external and/or internal factors, disturbances are ubiquitous in many engineering
systems such as wind forces [19], pedestrian systems [20], option systems [21], and biological systems [22].
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The presence of disturbances further complicates the safety verification of time-delay systems. Existing
BC-based approaches cannot be applied to systems subject to both time delays and disturbances.

In this paper, the safety verification problem of time-delay systems modeled by DDEs subject to control
inputs and disturbances is investigated. We first propose input-to-state safe control barrier functionals
(ISSf-CBFs), whose existence can guarantee the safety of time-delay systems subject to control inputs
and disturbances, and then present an algorithm for synthesizing ISSf-CBFs. Finally, we demonstrate
our method with three examples.

The main contributions are summarized as follows.

• We lift the BC-method for ODEs to safety verification of DDEs subject to control inputs and
disturbances.

• ISSf-CBFs are developed to guarantee the safety of time-delay systems with control inputs and
disturbances.

• We demonstrate the theoretical developments of the proposed method with three examples.

The remainder of this paper is organized as follows. Section 2 gives an introduction to related studies.
Section 3 introduces basic notions used throughout this paper, including time-delay systems and the safety
problem of interest. Section 4 develops the notion of CBFs to verify the safety of time-delay systems
with control inputs but without disturbances. Section 5 presents the safety guarantee for time-delay
systems with control inputs and disturbances. Three examples are given in Section 6 to demonstrate the
theoretical developments of our method. Finally, we conclude this paper and discuss future studies in
Section 7.

2 Related work

As surveyed in [23], various approaches have been proposed to verify the safety properties of CPSs
during the past decades, driven by the demand for safety-critical CPS design. Among these, BC-based
approaches [14] are very promising and are closely related to this work. A BC can divide the state space of
a considered system into safe and unsafe parts, according to the safety properties to be verified, and ensure
that all reachable states are safe. Automatic generation of BCs is the cornerstone of BC-based approaches,
which can be reduced to constraint solving problems and further solved by convex optimization-based
approaches when the considered system is polynomial. Since [14], increasing attention has been paid to
the synthesis of more expressive BCs via constructing less conservative convex conditions, e.g., exponential
conditions [24], Darboux conditions [25], general relaxed-barrier certificate conditions [26], and vector-
barrier certificate conditions [27]. However, it is still open whether the necessary and sufficient condition
of a formula being an inductive invariant given in [28] can be used as the weakest BC condition, according
to which synthesizing BCs can be done with convex optimization.

To handle safety verification of dynamic systems with control inputs, Refs. [15, 16] extended BCs to
control barrier certificates (CBCs) and presented convex optimization-based approaches to synthesizing
CBCs. Also, BC-based approaches were extended to time-delay systems [17, 18, 29], which are free of
control inputs and disturbances.

Recently, automatic verification of CPSs with time delays has drawn growing attention. A few other
approaches have also been proposed. Refs. [30, 31] investigated how to construct symbolic abstraction
of time-delay systems with control inputs by exploiting input-to-state stability so that the verification
of time-delay systems can be reduced to the reachability problem of finite state machines. In [32], the
authors considered the verification of networked-dynamical systems with time delays associated with
discrete jumps between different modes by computing reachable sets of ODEs with uncertain inputs.
This computation is achieved by simulation together with sensitivity analysis over bounded time horizons.
Refs. [33,34] attempted exploiting local-homeomorphism properties of DDEs to compute inner- and outer-
approximations of their reachable sets in bounded time horizons, similar to the set boundary analysis
method for ODEs in [35]. Recently, a Taylor model-based approach was proposed to over- and under-
approximate reachable sets of DDEs with uncertain parameters and initial states in [36]. To conduct
unbounded verification of DDEs, Refs. [37] proposed an approach based on interval Taylor models and
stability analysis for a class of simple DDEs, and Refs. [38] proposed a Lyapunov function-based approach.
Recently, a method was proposed for analyzing the safety of exponentially stable time-delay systems using
linearization and spectral analysis [29].

All the aforementioned approaches cannot handle safety verification of time-delay systems with control
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inputs and disturbances over the unbounded time horizon. In contrast, ISSf-CBFs proposed in this paper
can be used to guarantee the safety of time-delay systems subject to control inputs and disturbances.

3 Preliminaries

Let R denotes the set of real numbers, and R>0 denotes the set of non-negative real numbers. Given
a vector x ∈ R

n, |x| denotes its Euclidean norm. For d(·) : R>0 → R
m, its L

m
∞ norm is given by

‖d‖∞ := ess supt |d(t)|, where ess sup denotes the essential supremum (see Definition 1). Given a set
I ⊆ R

n, let ∂I, Int(I), and I denote the boundary, interior, and closure of I, respectively. For given
constants a, b ∈ R with a 6 b, let B([a, b],Rn) denote the space of functions mapping from the interval
[a, b] to R

n.

Definition 1 (Essential supremum). Given a measurable function d(·) : T → R, where T is a measure
space with measure µ. The essential supremum “ess sup” of d is the smallest number c such that the set
{t ∈ T | d(t) > c} has measure zero.

Definition 2 (Dirac delta function [39]). Dirac delta function is a linear functional from a space of test
function f . The action of δ on f , commonly denoted δ[f ] or 〈δ, f〉, then gives the value at 0 of f for any
function f , and has the following property:

∫ +∞

−∞

f(x)δ(x− a)dx = f(a).

Definition 3 (Class K function). Given a constant a > 0 and a function α : [0, a) → [0,+∞), if α is
continuous, strictly increasing with α(0) = 0, then we say α is a class K function, i.e., α ∈ K.

The following notions will be used throughout this paper.
• Given a function α : (−b, c) → (−∞,+∞), if α is continuous, strictly increasing with α(0) = 0 for

some b > 0 and c > 0, then we say α is an extended class K function. Here b, c can be +∞.
• Given a function α : [0,+∞) → [0,+∞), if α is continuous, strictly increasing with α(0) = 0, and

α(r) → +∞ as r → +∞, then we say α is a class K∞ function.
• Given a continuous function γ : R>0 × R>0 → R>0, if given a fixed n, γ(m,n) belongs to class K

with respect to m, and given a fixed m, γ(m,n) is decreasing with respect to n and limn→∞ γ(m,n) = 0,
then we say γ is a class KL function.

In this paper we consider time-delay systems described by DDEs of the following form:

ẋ(t) = f(x(t), x(t − τ)) + g(x(t), x(t − τ))(u(t) + d(t)), (1)

where x ∈ R
n is the system state, d(·) : R>0 → R

m is the input disturbance, u(·) : R>0 → U ⊂ R
m is the

control input, f : Rn ×R
n → R

n is continuous and satisfies the local Lipschitz condition, g : Rn ×R
n →

R
n×m is continuous and satisfies the local Lipschitz condition, and τ is the time delay term. We define

a function xt(ω) = x(t + ω), ω ∈ [−τ, 0], in the Banach space Bτ = B([−τ, 0],Rn), which maps the time
interval [−τ, 0] to R

n. The initial condition of system (1) is a function x0(ω) = x(ω), ω ∈ [−τ, 0], rather
than a single state x(0) as in ODEs.

Note that system (1) is similar to the ones considered in [16], both of them considered the issues of
control inputs and disturbances, but Ref. [16] did not consider the existence of time delays.

System (1) can be transformed into the following functional differential equation:

ẋ(t) = F(xt) + G(xt)(u(t) + d(t)), (2)

where the functionals F : Bτ → R
n and G : Bτ → R

n×m are defined as follows:

F(ψ) = f(R0(ψ),R−τ (ψ)), G(ψ) = g(R0(ψ),R−τ (ψ)), (3)

where

Rσ(ψ) =

∫ 0

−τ

ψ(ω)δ(ω − σ)dω = ψ(σ),

and δ stands for the Dirac delta function.
Given an initial condition x0 = x0(ω) ∈ Bτ , ω ∈ [−τ, 0], due to the assumption of local Lipschitz

condition, system (1) or (2) has a unique solution xt(ω) : [0, tmax) → R
n, where ω ∈ [−τ, 0] and tmax is
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the maximal execution time of (1). In the case that (2) is forward complete, then tmax = +∞. If for all
x0(0) ∈ S, xt(0) ∈ S for t < tmax, then we call that S ⊂ R

n is forward invariant. In this study, a set S is
called a safe set if S is forward invariant.

4 Control barrier functionals

The notions of BCs and CBCs are extensively applied in the verification of dynamical and hybrid systems
whose continuous dynamics are described by ODEs [14, 15]. In recent years, a similar idea to BC based
approaches was adapted to verifying the safety of DDEs, i.e., barrier functional (BF) based approach [17,
18]. In [30,31], the notion of CBC was also extended to DDEs, called control barrier functionals (CBFs),
for stability analysis. In this section, we generalize CBFs for DDEs stability analysis to the verification
of DDEs, and generate safe controllers based on CBFs.

4.1 Barrier functionals

In this subsection, we mainly recall the notion of BFs. BFs, which are used to ensure the safety of nature
time-delay systems, were first proposed in [14] and were further investigated later in [18]. The idea of
barrier functionals is similar to Lyapunov-Krasovskii functionals used in the stability analysis of DDEs.

Considering the time-delay system (1) without the term g(x(t), x(t− τ))(u(t) + d(t))1), i.e.,

ẋ(t) = f(x(t), x(t − τ)).

As discussed in Section 3, it can be transformed into a functional differential equation of the following
form:

ẋ(t) = F(xt). (4)

For ease of exposition, let’s fix a set C and its boundary and interior, given by

C = {ψ ∈ Bτ : H(ψ) > 0}, (5)

∂C = {ψ ∈ Bτ : H(ψ) = 0}, (6)

Int(C) = {ψ ∈ Bτ : H(ψ) > 0}, (7)

where H : Bτ → R is a continuously differentiable functional. Clearly, C = C. We assume that Int(C) is
non-empty in what follows.

If the set C is forward invariant, then the system (4) is safe with respect to C. Lemma 1 in [18] presents
conditions making C be forward invariant.

Lemma 1 ( [18]). For a time-delay system (4) and a set C ⊂ Bτ defined as (5)–(7), if there exists
α ∈ K(−b,c) for some b, c ∈ R>0 satisfying

Ḣ(xt) > −α(H(xt)), (8)

where Ḣ(xt) is the derivative of functional H with respect to t, i.e., Ḣ(xt) = dH(xt)/dt, then we say the
set C is forward invariant.

Lemma 1 gives a condition, which implies that any trajectory originating from C cannot punch through
its boundary, to ensure the safety of the time-delay system (4) with respect to the set C. A functional H
satisfying condition (8) is called barrier functional, which can guarantee the safety of time-delay system
(4) with respect to the set C.

Additionally, as α ∈ K(−b,c), the choice of b and c should guarantee H(xt) ∈ (−b, c). So, in practice,
they can be defined as

b := − inf
xt∈Bτ

H(xt), c := sup
xt∈Bτ

H(xt). (9)

1) Note that we use a DDE with a single constant time delay as an instance for illustration. However, it can be easily generalized

to DDEs with multiple delays.
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4.2 Control barrier functionals

By taking control inputs into account, the controlled time-delay system of interest is given below:

ẋ(t) = f(x(t), x(t − τ)) + g(x(t), x(t − τ))u(t),

where f : Rn × R
n → R

n and g : Rn × R
n → R

n×m are locally Lipschitz, x ∈ R
n denotes the system

state, u : R>0 → U ⊂ R
m denotes the control input, and the constant τ ∈ R>0 denotes the time delay.

Similarly, the system can be rewritten as a functional differential equation of the following form:

ẋ(t) = F(xt) + G(xt)u(t), (10)

where F : Bτ → R
n and G : Bτ → R

n×m are functionals defined in (3).

In order to verify a time-delay system with control inputs of the form (10), we extend the notion of
barrier functionals to the one of control barrier functionals.

Definition 4 (CBFs). Consider a time-delay system of (10), let C ⊂ Bτ be a set defined as (5)–(7), if
there exists an α ∈ K(−b,c) for some b, c ∈ R>0 such that ∀xt ∈ C,

sup
u(t)∈U

[Ḣ(xt)] > −α(H(xt)), (11)

then H is called control barrier functional.

Note that the above definition is similar to the notion of δ-ISS Lyapunov-Krasovskii functional defined
in [30, 31], which is used for stability analysis of DDEs. We will prove in the following theorem (i.e.,
Theorem 1) that the control values satisfying constraint (11) can guarantee the safety of time-delay
systems with relative degree one (i.e., HG(xt) 6= 0). Before presenting Theorem 1 we need the following
auxiliary lemma.

Lemma 2 (Comparison theory [40]). For a scalar differential equation as follows:

ẏ = f(t, y), y(t0) = y0,

where for all t > 0 and all y ∈ J ⊂ R, f(t, y) is locally Lipschitz in y and continuous in t. Let [t0, tmax)
(tmax could be ∞) be the time interval over which the solution y(t) exists; moreover assume y(t) ∈ J .
Let n(t) be a continuous function and for all t ∈ [t0, tmax), the following inequality holds:

D+n(t) > f(t, n(t)), n(t0) > y0

with n(t) ∈ J , where D+n(·) is the upper right-hand derivative of n(t). Then, n(t) > y(t) holds for all
t ∈ [t0, tmax).

Theorem 1. For the time-delay system (10), a set C ⊂ Bτ is defined as (5)–(7), if H is a control barrier
functional, then C is forward invariant.

Proof. Let

ż(t) = −α(z(t)), z(0) = H(x0). (12)

According to the existence and uniqueness theorem for ODEs, there is a unique solution to (12), say

z(t) = γ(z(0), t) = γ(H(x0), t)

for all t > 0. Since α is a class K function, we can get that γ is decreasing with respect to t for a
fixed H(x0) and γ is a class K function for a fixed t. Therefore, γ satisfies the properties of class KL
function [41]. Applying Lemma 2 for (11) and (12), we get

H(xt) > γ(H(x0), t)

for 0 6 t < tmax. According to the property of class KL function, we have for 0 6 t < tmax, H(xt) > 0.
Hence, C is forward invariant.
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Figure 1 (Color online) An example of the safe set C and the corresponding input-to-state safe set Cd. The green region is the

set C, green + grey region is set Cd.

5 Safety guarantee under disturbances

In this section, we study the input-to-state safety for DDEs with disturbances. Suppose that we already
have a safekeeping controller k(x(t)) for system (10), which could be contaminated by some disturbances
d(t), i.e., k(x(t)) + d(t). As a result, we need to consider a system of the following form:

ẋ(t) = F(xt) + G(xt)(k(x(t)) + d(t)), (13)

where xt(ω) = x(t+ ω) for ω ∈ [−τ, 0] and d(·) : R>0 → R
m.

5.1 Input-to-state safety

The concept of input-to-state safety is utilized for analyzing the safety properties of systems. It was first
proposed in [42], and then in [43]. They aim to keep the underlying system away from the unsafe state
set Su ⊂ R

n. While Ref. [16] redefined the concept of input-to-state safety, requiring the system to evolve
in the safe set S. We try to construct a controller to ensure that the system is input-to-state safe, which
is similar to the approach of constructing input-to-state stabilizing controllers in [44]. To guarantee the
safety property, the goal is to ensure that the system always evolves in the set C, or at least close to the
set C. The closeness to set C is related to the size of disturbances.

If a set C is forward invariant, the set C is called safe. Similarly, if there exists a set Cd ⊇ C such that
the set Cd is forward invariant, the set C is input-to-state safe. The set Cd is defined as

Cd = {ψ ∈ Bτ : H(ψ) + β(‖d‖∞) > 0}, (14)

∂Cd = {ψ ∈ Bτ : H(ψ) + β(‖d‖∞) = 0}, (15)

Int(Cd) = {ψ ∈ Bτ : H(ψ) + β(‖d‖∞) > 0}, (16)

where β ∈ K[0,a) with a satisfying limr→a β(r) = b and ‖d‖∞ 6 d̄ ∈ [0, a). Clearly, Cd = Cd. We also
assume Int(Cd) is non-empty. The relationship between the safe set C and the input-to-state safe set Cd
is shown in Figure 1.

In [16], input-to-state safety is defined with respect to the space R
n. In this study, we extend it to

Banach space Bτ and the corresponding definition of input-to-state safety is given as follows.

Definition 5 (Input-to-state safety). Let C ⊂ Bτ be a set characterized by (5)–(7) for a continuous
and differentiable functional H : Bτ → R, if there exist β ∈ K[0,a) with limr→a β(r) = b and a constant
d̄ ∈ [0, a), such that Cd characterized by (14)–(16) is forward invariant for all d with ‖d‖∞ 6 d̄, then the
set C is an ISSf set.

According to Definition 5, we can find that the set C is input-to-state safe if and only if Cd is forward
invariant. Therefore, let Cd be the safe set, we can get the corresponding set C according to the maximum
disturbance value. We use the following example to enhance the understanding of input-to-state safety.

Example 1. Consider the following time-delay system with nonlinear dynamics:

ẋ(t) = −
1

2
x3(t)−

1

4
x3(t− τ) + x(t)u(t), (17)
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Figure 2 (Color online) (a) State evolution of the system for different initial conditions x(ω). The dashed lines correspond to

x = −1 and x = 1, the boundaries of the safe set. (b) State evolution of the system for different disturbances d. The dashed lines

correspond to x = −1 and x = 1, the boundaries of the safe set.

where x ∈ R and u(·) : R>0 → U ⊂ R.
First, our goal here is to find a barrier functional by the controller u(t) = k(x(t)) ≡ 0 and show that

a safe set can be constructed when the time delay τ is small enough. According to [45], the system is
asymptotically delay-independently stable and has one equilibrium xt(ω) = x(t + ω) = x∗, ω ∈ [−τ, 0],
t > 0. Consequently, there exists an attraction region [40], which is a safe subset of the state space
in which an equilibrium point is rendered to be asymptotically stable by the given controller. In this
example the equilibrium is x∗ = 0, then a safe set around x∗ = 0 can be constructed and we set the safe
set to be [−1, 1]. We define the control barrier functional as

H(ψ) = 1− ψ4(0).

Given the above barrier functional, we instantiate the parameter as τ = 1/2 and choose α(H) = βH
with β > 0 as the class K function in (11). Then the following equation can be obtained:

Ḣ(ψ) + βH(ψ) = 2ψ6(0) + ψ3(0)ψ3

(

−
1

2

)

+ β(1− ψ4(0))

> ψ4(0)(2ψ2(0)− β) + ψ3(0)ψ3

(

−
1

2

)

+ β

>

(

ψ3(0) +
1

2
ψ3

(

−
1

2

))2

+ ψ6(0)−
1

4
ψ6

(

−
1

2

)

+ β.

If we choose a small enough β, the following equation holds:

Ḣ(ψ) + βH(ψ) > 0.

That is, condition (11) holds. According to Theorem 1, the system is safe. Trajectories with different
initial conditions x(ω) ≡ 1, 0.5 ,0.3, 0, −0.3, −0.5, −1 for ω ∈ [−1/2, 0] are shown in Figure 2.

According to the above analysis, we know that the controller k(x(t)) ≡ 0 can guarantee the safety of
system (17). Now, under the same conditions, we consider the presence of disturbance d, i.e., the system
becomes

ẋ(t) = −
1

2
x3(t)−

1

4
x3(t− τ) + x(t)(u(t) + d). (18)

We choose k(x(t)) ≡ 0 and α(H) = βH with β > 0 as the class K function in (11). Hence, we get

Ḣ(ψ) + βH(ψ) = 2ψ6(0) + ψ3(0)ψ3

(

−
1

2

)

− 4ψ4(0)d+ β(1− ψ4(0))

> ψ4(0)(2ψ2(0)− β − 4d) + ψ3(0)ψ3

(

−
1

2

)

. (19)

According to (19), it is easy to find that condition (11) may not hold when d becomes larger. We choose
the initial condition x(ω) ≡ 0.5 for ω ∈ [−1/2, 0], and use different values on d(·) ≡ 1, 2, 5, 10, the resulting
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trajectories are presented in Figure 2(b). Obviously, some trajectories leave the specified safe set [−1, 1]
in finite time, implying that the system is not safe. Also, it is observed that when the disturbance reaches
a certain limit, the resulting trajectories do not even converge. That is, the controller k(x(t)) ≡ 0 cannot
always guarantee the safety of the system subject to disturbances.

5.2 The input-to-state safe control barrier functionals

Base on the definition of input-to-state safety, we provide an approach to guarantee the safety of DDEs
with disturbances by input-to-state safe barrier functionals (ISSf-BFs) and ISSf-CBFs in this subsection.
Before defining ISSf-BFs, we first introduce a constant e, which is useful for defining comparison function,
as follows:

e = − lim
r→−b

α(r).

Definition 6 (ISSf-BFs). For the time-delay system (13), let C be a set defined as (5)–(7) with a contin-
uous and differentiable functional H : Bτ → R. If there exist a function ε ∈ K[0,a) with limr→a ε(r) = e,
a function α ∈ K(−b,c), and d̄ ∈ [0, a), such that ∀xt ∈ C, ∀d(·) : R>0 → R

m satisfying ‖d‖∞ 6 d̄,

Ḣ(xt) > −α(H(xt))− ε(‖d‖∞), (20)

then we say H is an input-to-state safe barrier functional.

Theorem 2 can guarantee the safety of time-delay systems in the presence of disturbances.

Theorem 2. For the time-delay system (13), let C ⊂ Bτ be a set defined by (5)–(7) with a continuous and
differentiable functionals H : Bτ → R, Cd characterized by (14)–(16) for an β ∈ K[0,a) with limr→a β(a) =
b and d̄ ∈ [0, a). If H is an ISSf-BF, then C is input-to-state safe.

Proof. We just need to prove Cd is forward invariant. According to the definition of Cd, we get a new
functional

ζ(xt, d) = H(xt) + β(‖d‖∞).

We can get the following equation from (20) for H, which is an ISSf-BF

ζ̇(xt, d) = Ḣ(xt) > −α(H(xt))− ε(‖d‖∞)

= −α(ζ(xt, d)− β(‖d‖∞))− ε(‖d‖∞). (21)

Consider the boundary ∂Cd. Since ζ(xt, d) = 0 for xt ∈ ∂Cd, Eq. (21) can be reduced as

ζ̇(xt, d) > −α(−β(‖d‖∞))− ε(‖d‖∞).

Setting r = β(‖d‖∞) and defining ρ(r) := −α(−r), we have that for all r1, r2 ∈ R>0 and r1 > r2
implies that −α(−r1) > −α(−r2), implying that ρ(r1) > ρ(r2). Thus, if r < b, ρ is a class K function.
Consequently, by choosing β = ρ−1 ◦ ε, it follows that for any d̄ ∈ [0, a),

ρ−1 ◦ ε(d̄) < b,

which further implies r < b, thus

ζ̇(xt, d) > ε(‖d‖∞)− ε(‖d‖∞) > 0. (22)

The result follows immediately as Cd is forward invariant by (22).
Theorem 2 shows that ISSf-BFs can guarantee the input-to-state safety of time-delay systems under

disturbances. In order to deal with control input, we give the definition of ISSf-CBFs in the following
and demonstrate its role in safety guarantee.

Definition 7 (ISSf-CBFs). For the time-delay system (13), let C be a set defined by (5)–(7) with a
continuous and differentiable functional H : Bτ → R. If there exist a ε ∈ K[0,a) with limr→a ε(r) = e, an
α ∈ K(−b,c), and a constant d̄ ∈ [0, a) such that for xt ∈ C and d(·) : R>0 → R

m satisfying ‖d‖∞ 6 d̄,

sup
u(t)∈U

[Ḣ(xt)] > −α(H(xt))− ε(‖d‖∞), (23)

then we say H is an input-to-state safe control barrier functional.
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Inspired by the controller construction in [44], we construct our input-to-state safe controller in a
similar way. For a safekeeping controller k(x(t)), we propose the input-to-state safe controller as follows:

u(t) = k(x(t)) +HG(xt), (24)

where HG(xt) denotes the derivative of H with respect to G. A theorem is given below based on the
input-to-state safe controller (24). A new ISSf-CBF, which can guarantee that the set C is input-to-state
safe, is defined in Theorem 3.

Theorem 3. Given time-delay system (13), a set C ⊂ Bτ defined by (5)–(7) with a continuous and
differentiable functional H : Bτ → R, if H satisfies

sup
u(t)∈U

[HF (xt) +HG(xt)u(t)−HG(xt)HG(xt)
T] > −α(H(xt)), ∀xt ∈ C, (25)

for some α ∈ K(−b,c), then H is an input-to-state safe control barrier functional.

Proof. According to (25), we have

Ḣ(xt) > −α(H(xt)) +HG(xt)HG(xt)
T +HG(xt)d(t).

Since HG(xt)HG(xt)
T = |HG(xt)|

2, we have

Ḣ(xt) > −α(H(xt)) + |HG(xt)|
2 − |HG(xt)|‖d‖∞. (26)

Implying that

Ḣ(xt) > −α(H(xt)) +

(

|HG(xt)| −
‖d‖∞
2

)2

−
‖d‖2∞
4

> −α(H(xt))−
‖d‖2∞
4

,

which has the same form as (23). Thus, H is a valid ISSf-CBF.
Theorem 3 shows that an input-to-state safe controller can guarantee the safety of time-delay systems

in the presence of disturbances. Similar to the CBF condition (11), when HG(xt) = 0, Theorem 3 can
only verify whether k(x(t)) ≡ 0 is a safe controller. In the following, we use an example to enhance the
understanding of input-to-sate safe controllers.

Example 2. Consider the time-delay system with τ = 1/2 in Example 1. As discussed in Example 1, the
safekeeping controller k(x(t)) ≡ 0 can guarantee the safety of system (17) in the absence of disturbances.
However, if system (17) is subject to disturbances such as d(·) ≡ 1, 2, 5, i.e., system (18), the controller
cannot ensure the safety of system (18).

Now we apply the following input-to-state safe controller to system (18):

u(t) = k(x(t)) +HG(xt)
T = −4x4(t). (27)

The system driven by the controller (27) will evolve in the safe set subject to certain disturbances such
as d(·) ≡ 1, 2, 3, 5. Some trajectories are displayed in Figure 3.

6 Implementation and experiments

In this section, we first present our algorithm for synthesizing input-to-state safe controllers in Algori-
thm 1. If there are no disturbances in the system (line 2), the controller given by Theorem 1 (line 1) is
safekeeping, so Algorithm 1 returns this controller directly. Otherwise, our algorithm gives an input-to-
state safe controller based on Theorem 3 (line 5). Algorithm 1 shows that safekeeping controllers can be
synthesized by solving constraint (11), and the input-to-state safe controllers, which ensure the safety of
the considered system in the presence of disturbances, can be easily obtained based on the safekeeping
controller. However, the generation of k(x(t)) is still a challenging problem, which will be investigated in
our future work. The present work is based on the condition that k(x(t)) can be automatically generated
or already exists.

Now we use three examples to demonstrate our method.
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Algorithm 1 Input-to-state safe controller

Require: Time-delay system S; barrier functional H; disturbance d.

Ensure: Control input u(t).

1: Synthesize k(x(t)) from the control barrier functional condition: sup
k(x(t))∈U

[Ḣ(xt)] > −α(H(xt));

2: if d ≡ 0 then

3: u(t) = k(x(t));

4: else

5: u(t) = k(x(t)) + HG(xt)
T;

6: end if

7: return u(t).

Example 3. Consider the following dynamical system, adapted from [45]:

ẋ(t) = −x(t)−
1

2
x(t− τ) + x(t)(u(t) + d(t)), (28)

where x ∈ R
n, u(·) : R>0 → U , d ∈ [0, 2] is a constant disturbance. The safe set is [−1, 1]. In this case,

we choose the barrier functional as

H(ψ) = 1− ψ2(0). (29)

Given the barrier functional (29), we discuss two cases with and without disturbances in the following:

(a) Without disturbances, i.e., d = 0. We choose α(H) = βH with β > 0 as the class K function in
(11). Then let τ = 1/2 and k(x(t)) = 0, we get

Ḣ(ψ) + βH(ψ) = 2ψ2(0) + ψ(0)ψ

(

−
1

2

)

+ β(1 − ψ2(0))

> (2− β)ψ2(0) + ψ(0)ψ

(

−
1

2

)

+ β.

When we choose a small β, the following equation holds:

Ḣ(ψ) + βH(ψ) > 0.

Thus k(x(t)) ≡ 0 satisfies the control barrier functional condition, the set [−1, 1] is safe. Algorithm 1
returns u ≡ 0.

(b) With disturbances, i.e., d 6= 0. Different values on d are taken, i.e., d = 0.5, 1, 1.5, 2, to run
Algorithm 1. Taking α(H) = βH with β > 0 as the class K function in (11) and k(x(t)) ≡ 0, we get

Ḣ(ψ) + βH(ψ) = 2ψ2(0) + ψ(0)ψ

(

−
1

2

)

− 2ψ2(0)d+ β(1 − ψ2(0))
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Figure 4 (Color online) (a) Trajectories of the system for different initial functions. The dashed lines correspond to x = −1
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input-to-state safe controller. The dashed lines correspond to x = −1 and x = 1, the boundaries of the safe region.

> (2− β − d)ψ2(0) + ψ(0)ψ

(

−
1

2

)

+ β.

We can find when the disturbance d reaches a certain limit, condition (11) will not hold, so the system
becomes unsafe. As shown in Figure 4(b), the system is safe when the disturbance d is equal to 0.5, but
when the disturbance d is 1, 1.5 or 2, the system is not safe.

Now we use the following input-to-state safe controller as in (24), we get

u(t) = k(x(t)) +HG(xt) = −2x2(t).

By applying the input-to-state safe controller to system (28), the input-to-state safe controller can ensure
system (28) safe under small disturbances according to Theorem 3. Some safe trajectories are demon-
strated in Figure 4(c) when the disturbance d takes 1, 1.5, and 2, respectively.

Example 4 (Population dynamics). Let us consider a population related dynamical system adapted
from [46], given by

q̇(t) = λ[1 − q(t− τ)/M ]q(t), t > 0.

This equation is used to simulate the change of the number of individuals in a single population in
nature. Due to restrictions such as minimum breeding ages or limited resources, the average growth
rate q̇(t)/q(t) = λ[1 − q(t − τ)/M ] of the population relies on the size of the population in the past τ
time units, because individual growth and resource recovery require a certain amount of time. If we set
x(t) = q(t)/M and adjust the time scale at the same time, we can get the following time-delay system as
in [47]:

ẋ(t) = x(t)[1 − x(t − τ)]− (u(t) + d(t)), t > 0,
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where x ∈ R represents the individual number, u : R>0 → U denotes the capture behavior, d : R>0 → R

denotes the constant disturbance. The goal is to keep the number of individuals within [0.5, 1.6]. We
take a barrier functional as

H(ψ) = 0.552 − (ψ(0)− 1.05)2.

Given this barrier functional, we discuss two cases involving the absence and presence of disturbances in
the following:

(a) Without disturbances, i.e., d = 0. We choose α(H) = βH with β > 0 as the class K function in
(11). Instantiating τ = 1.5, we get

Ḣ(ψ) + βH(ψ)

= −2(ψ(0)− 1.05)ψ(0)(1− ψ(−1.5)) + 2(ψ(0)− 1.05)u(t) + β(0.552 − (ψ(0)− 1.05)2) > 0. (30)

If we choose u(t) = k(x(t)) ≡ 0, there exists a small β such that condition (30) holds, so k(x(t)) ≡ 0
satisfies the control barrier functional condition, the set [0.5, 1.6] is safe. Algorithm 1 returns u ≡ 0. As
shown in Figure 5(a), the system always evolves within the safe set.

(b) With disturbances: we take different values on d, i.e., d = −0.5,−1,−1.5, to run Algorithm 1,
respectively. Choosing α(H) = βH with β > 0 as the class K function in (11) and assuming k(x(t)) ≡ 0,
we have

Ḣ(ψ) + βH(ψ)

= −2(ψ(0)− 1.05)ψ(0)(1− ψ(−1.5)) + 2(ψ(0)− 1.05)d+ β(0.552 − (ψ(0)− 1.05)2) > 0. (31)

If the disturbance d is large, the condition (31) cannot hold. As shown in Figure 5(b), the system cannot
stay within the safe set for all time when d = −0.5,−1,−1.5.

Now by employing the following input-to-state safe controller as in (24):

u(t) = k(x(t)) +HG(xt) = 2(x(t)− 1.05).

We can conclude that the system is safe under small disturbances according to Theorem 3. Figure 5
shows some safe trajectories when d = −0.5,−1,−1.5.

Example 5 (PD-controller). The following linear PD-controller is taken from [29, 36], defined as

{

ẋ(t) = s(t),

ṡ(t) = −a1(x(t− τ) − x∗)− a2s(t− τ) + s(t)(u(t) + d(t)),
(32)

where x denotes the position and s is velocity of an autonomous vehicle, u represents the input to control
speed, d represents the unknown disturbance, and the constant τ is the time delay resulting from sensing,
transmission, computation, and actuation. The vehicle needs adjust its acceleration in the light of the
distance between the current location and the reference location x∗. The parameters are instantiated as
a1 = 2, a2 = 3, x∗ = 1, and τ = 0.35. The system modeled by (32) is then transformed into the following
form with x̂ = x− 1:

{

˙̂x(t) = s(t),

ṡ(t) = −2x̂(t− τ)− 3s(t− τ) + s(t)(u(t) + d(t)).
(33)

Let x1 = x̂, x2 = s, and X =
[

x1
x2

]

, the system (33) can be rewritten as a dynamical system described by
two-dimensional matrix as follows:

Ẋ = A1X (t) +A2X (t− τ) +BX (t)(u(t) + d(t)), (34)

where A1, A2, B are as follows:

A1 =

[

0 1

0 0

]

, A2 =

[

0 0

−2 −3

]

, B =

[

0

1

]

.
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Figure 5 (Color online) (a) Trajectories of the system for different initial conditions. The dashed lines correspond to x = 0.5

and x = 1.6, the boundary of the safe set. (b) Trajectories of the system for different disturbances. The dashed lines correspond to

x = 0.5 and x = 1.6, the boundary of the safe set. (c) Trajectories of the system for different disturbances with the input-to-state

safe controller. The dashed lines correspond to x = 0.5 and x = 1.6, the boundary of the safe region.

The safe state set is S = {(x̂; s) | x̂ < 0.2, s < 0.4} and the initial states set is X = [−0.1, 0.1]× [0, 0.1].
We choose the control barrier functional as

H(ψ) =

[

0.2

0.4

]

− ψ(0).

Given the barrier functional, we also discuss two cases, i.e., with and without disturbances:
(a) Without disturbances, i.e., d = 0. We set u = 0. As discussed in [29], the system has one

equilibrium at (0; 0) and is safe. By choosing α(H) = βH with β > 0 as the class K function in (11), we
can also easily find that the following equation holds:

Ḣ(ψ) + βH(ψ) > 0.

Therefore, k(X ) ≡ 0 is a safekeeping controller. Some trajectories of the system are displayed in Figure
6(a).

(b) With disturbances, i.e., d 6= 0. Consider the situation with disturbance, we take the following
time-varying disturbance as the input of Algorithm 1.

d(t) = 1 + 0.2 sin(t).

Also, we display some trajectories of the system in Figure 6(b). Obviously, the system violates the safety
constraint. That is, k(X ) ≡ 0 cannot guarantee the safety of the system.

By applying the following input-to-state safe controller to the system:

u(t) = k(X (t)) +HG(φ) = −x2(t).

Figure 6 displays some trajectories of this system driven by the new input-to-state safe controller, the
input-to-state safe controller can ensure the safety of the system under small disturbances.
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Figure 6 (Color online) (a) Trajectories of the system for initial conditions x1 = 0.1, x2 = 0.1. The dashed lines corresponding to

x = 0.2 and x = 0.4 represent the safe boundaries of states x1 and x2, respectively. (b) Trajectories of the system for disturbance

d(t) = 1 + 0.2 sin(t). The dashed lines corresponding to x = 0.2 and x = 0.4 represent the safe boundaries of states x1 and x2,

respectively. (c) Trajectories of the system for disturbance d(t) = 1+ 0.2 sin(t) with the input-to-state safe controller. The dashed

lines corresponding to x = 0.2 and x = 0.4 represent the safe boundaries of states x1 and x2, respectively.

7 Conclusion

In this paper, we investigated the safety verification for time-delay systems subject to control inputs and
disturbances. We proposed ISSf-CBFs to guarantee the safety. Finally, the theoretical developments of
our approach were demonstrated using three examples.

In the future, it deserves to investigate how to synthesize controllers for time-delay systems and extend
our method to high order control barrier functionals to guarantee the safety of time-delay systems with
a higher relative degree, as well as time-delay systems with frequency domains.
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