
SCIENCE CHINA
Information Sciences

March 2023, Vol. 66 132101:1–132101:21

https://doi.org/10.1007/s11432-020-3403-2

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 info.scichina.com link.springer.com

. RESEARCH PAPER .

BATON: symphony of random testing and concolic
testing through machine learning and taint analysis

Bihuan CHEN1,2*, Yang LIU3, Xin PENG1,2, Yijian WU1,2 & Shengchao QIN4

1School of Computer Science, Fudan University, Shanghai 201203, China;
2Shanghai Key Laboratory of Data Science, Fudan University, Shanghai 201203, China;

3School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore;
4School of Computing, Teesside University, Middlesbrough TS1 3BX, UK

Received 22 July 2020/Revised 15 October 2021/Accepted 9 December 2021/Published online 11 November 2022

Abstract Random testing is scalable but often fails to hit corner program behaviors, while systematic

testing (e.g., concolic execution) is promising to cover corner program behaviors but is not scalable to

explore all program behaviors. Prior attempts to integrate random testing with systematic testing lack

targeted guidance. In this paper, we propose a guided hybrid testing approach, named Baton, to synergize

random testing with concolic testing. It integrates the knowledge inside test cases and their executions into

a conditional execution graph, and uses such knowledge to guide test case generation. Specifically, we learn

classification models for some conditionals in the conditional execution graph in a demand-driven way. These

models are used to guide random testing to reach and cover partially-covered conditionals. We further employ

targeted concolic testing to cover conditionals that cannot be fully covered by guided random testing. We

implemented Baton for Java and evaluated it on three benchmarks. The results show that Baton improved

branch coverage and mutation score over random testing by 16.2%–29.4% and 19.0%–30.0%, over adaptive

random testing by 16.8%–33.8% and 19.4%–34.2%, over concolic testing by 2.3%–29.9% and 2.9%–30.1%,

and over simple hybrid testing by 1.6%–14.5% and 1.4%–18.7%.

Keywords system testing, random testing, concolic testing

Citation Chen B H, Liu Y, Peng X, et al. Baton: symphony of random testing and concolic testing through ma-

chine learning and taint analysis. Sci China Inf Sci, 2023, 66(3): 132101, https://doi.org/10.1007/s11432-020-3403-2

1 Introduction

Automated software testing is one of the primary ways to detect bugs. A scalable method is random
testing [1, 2]. However, randomly-generated test cases may lack diversity and only cover a small part of
all possible behaviors of a program, which hinders the effectiveness of random testing. Then, adaptive
random testing [3, 4] and Quasi-random testing [5, 6] are proposed to improve the diversity of generated
test cases in order to cover different program behaviors. The main challenges of these techniques are that
they lack insightful guidance during test case generation and hence generate redundant test cases; and
they can efficiently cover general conditionals (e.g., x > 100), but often fail to cover corner conditionals
(e.g., x == 1000), and thus cannot break through the coverage plateau [7].

Different from random testing, systematic testing leverages the knowledge inside a program to generate
test cases. Symbolic execution [8–10] and concolic execution [11, 12] are typical systematic testing tech-
niques. They collect path conditions based on the internal code structure, and systematically negate and
solve path conditions to generate test cases that execute different paths. In that sense, they are naturally
promising to cover corner conditionals. However, given the exponential program paths and limited time
budget, they usually end up with a small number of explored paths. Their main challenge is that they
require extensive constraint solving, rely on the capability of constraint solvers and might get stuck in
loops, and thus become inefficient or even impractical for complex programs.

*Corresponding author (email: bhchen@fudan.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-020-3403-2&domain=pdf&date_stamp=2022-11-11
https://doi.org/10.1007/s11432-020-3403-2
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-020-3403-2
https://doi.org/10.1007/s11432-020-3403-2


Chen B H, et al. Sci China Inf Sci March 2023 Vol. 66 132101:2

To integrate the efficiency of random testing on general conditionals with the effectiveness of systematic
testing on corner conditionals, some prior attempts have been made. At the system testing level, Ma-
jumdar and Sen [13] proposed to use concolic execution to search for an uncovered branch when random
testing saturates; and Driller [14] applied the similar idea to binary fuzzing. At the unit testing level,
Inkumsah and Xie [15] and Galeotti et al. [16] integrated search-based testing with symbolic execution;
and Garg et al. [17] interleaved guided random testing with concolic execution. These approaches leverage
concolic/symbolic execution in a blind or less targeted way, and thus expensive concolic/symbolic exe-
cution is excessively used, even for general conditionals. Their key challenge is how to leverage dynamic
testing execution knowledge from one technique to guide test generation in another technique.

To address the challenges, we focus on system testing in this paper, and propose a guided hybrid testing
approach, named Baton, to improve code coverage and bug detection. Baton synergizes random testing
with concolic testing and systematically guides test case generation based on the knowledge inside test
cases and their executions. While we are not the first one to use random testing and concolic testing in
combination [13], the targeted guidance as proposed in Baton is novel and improves testing effectiveness.

In particular, to obtain the knowledge inside test case executions, for each executed test case, we
record the conditional execution sequence (i.e., a sequence of executed conditionals) via instrumentation,
identify the dependency between executed conditionals and input variables via dynamic taint analysis,
and integrate them into a conditional execution graph. This graph captures various knowledge: the set
of test cases executing the true/false branch of a conditional, the dependency of a conditional on input
variables, the coverage of a conditional (i.e., whether it is partially or fully covered), and the context of
a conditional (i.e., the prefix conditionals to reach it).

Choosing a partially-covered conditional in the conditional execution graph as the target, we leverage
machine learning in a demand-driven way to learn classification models for the target and its prefix
conditionals based on two kinds of knowledge: the set of test cases executing the true/false branch of
the conditional, and the dependency between the conditional and input variables. Therefore, we learn
a two-class classification model for a fully-covered conditional that can label a test case as taking either
the true branch or false branch, and a one-class classification model for a partially-covered conditional
that can indicate whether or not a test case takes the covered branch. Since such models capture the
constraints of conditionals, we use them to guide random testing to reach and fully cover the target.

If the target is not fully covered by our guided random testing, we employ targeted concolic testing to
fully cover it based on the set of test cases that execute the true or false branch of the target. Specifically,
we run concolic execution with one of the test cases, and negate the path condition at the target to
generate test cases by constraint solving. Such test cases can fully cover the target. The collected
symbolic constraints for each conditional along the path are used as features to improve classification
models for guided random testing.

We implemented Baton for Java and conducted experiments on three benchmarks from the (adaptive)
random testing community [18,19], the concolic/symbolic execution community [20,21], and the software
testing community [22]. We compared Baton with random testing, adaptive random testing, concolic
testing, and simple hybrid testing. On average, Baton can improve branch coverage and mutation score
over random testing by 16.2%–29.4% and 19.0%–30.0%, over adaptive random testing [4] by 16.8%–
33.8% and 19.4%–34.2%, over concolic testing [20] by 2.3%–29.9% and 2.9%–30.1%, and over simple
hybrid testing [13] by 1.6%–14.5% and 1.4%–18.7%.

In summary, this paper makes the following contributions.

• We propose a guided hybrid testing approach, named Baton, to synergize random testing with
concolic testing with targeted guidance.

• We propose a conditional execution graph to integrate the knowledge inside test cases and their
executions for guiding Baton.

• We have implemented Baton for Java and evaluated Baton on several benchmarks with respect to
branch coverage and mutation score, which has shown promising results.

The rest of the paper is organized as follows. Section 2 introduces a motivating example and the
approach overview. Section 3 elaborates the approach details. Section 4 evaluates the approach. Section 5
reviews the related work, before Section 6 draws the conclusion.



Chen B H, et al. Sci China Inf Sci March 2023 Vol. 66 132101:3

Figure 1 (Color online) A running example (with instrumented code in blue).

2 Overview

In this section, we first introduce a motivating example and then present the overview of Baton.

2.1 Motivating example

Figure 1 presents a Java program, which will be used as a running example to illustrate the main ideas
of Baton throughout the paper. The program has six conditionals C0, C1, . . ., C5. Random testing [1]
and adaptive random testing [4] can easily cover C3, C4, and C5, but fail to cover the true branch of C0
and cannot reach C1 and C2 as C0 is a corner conditional that is very difficult to satisfy. Thus, (adaptive)
random testing has a branch coverage of 57.1%. However, concolic testing [20] can easily cover C0, C1, and
C2, but may fail to cover C3 due to the complex non-linear constraint of C3, leading to a branch coverage
of 64.3%. Even though some meta-heuristic-based solvers (e.g., CORAL [23]) have been developed for
complex constraints, they are non-deterministic and might be time-consuming. As a result, concolic
testing may get stuck in the loop, i.e., keep unfolding the loop that has a complex non-linear conditional
C5. Hence, simple hybrid testing [13] may be stuck in the loop without reaching the uncovered C0, leading
to a branch coverage of 57.1%. Instead, by synergizing random testing with concolic testing in a targeted
and guided way, Baton starts with random testing to cover C3, C4, and C5, switches to concolic testing
to efficiently break through C0, and switches back to random testing and guides random testing to cover



Chen B H, et al. Sci China Inf Sci March 2023 Vol. 66 132101:4

InstrumentationProgram

ML Machine learning TA Taint analysis

Guided 

random testing

Testing 

strategy analysis

Targeted

concolic testing
Terminate

TA

ML

?
Pure 

random testing

Test 

cases

Figure 2 The approach overview of Baton.

C1 and C2. Thus, Baton has a much higher branch coverage of 100%.

2.2 Approach overview

Figure 2 shows an overview of Baton, which takes as input the program under test, and returns a set
of automatically generated test cases. The overall algorithm of Baton is described in Algorithm 1.

Baton first performs instrumentation on the program under test at source code level to facilitate the
collection of the dynamic execution knowledge of test cases (line 3, see Subsection 3.1). Specifically, we
add a branch recorder for each branch of the conditionals in the program, which is used to record the
conditional execution sequence (including the taken branch of conditionals) for each test case; and set a
taint tag for each input variable of the program, which is used to identify the dependency of conditionals
on input variables.

Then, Baton applies pure random testing to generate the first set of n test cases (line 4) because there
is no prior knowledge for guiding either random testing or concolic testing. After that, Baton works
through a number of iterations (lines 5–15).

At each iteration, Baton performs testing strategy analysis based on the collected execution knowl-
edge; i.e., it chooses a testing strategy (either guided random testing or targeted concolic testing) to cover
a target partially-covered conditional (lines 7–15, see Subsection 3.2). Specifically, we collect two kinds
of execution knowledge: the conditional execution sequence by running each generated test case, and
the taint tags for each executed conditional (i.e., the dependency of each conditional on input variables)
through dynamic taint analysis (line 7, see Subsection 3.2.1). Based on such execution knowledge and
the test cases, we construct a conditional execution graph, which maintains various knowledge for each
conditional (line 8, see Subsection 3.2.2). Then, we systematically choose a partially-covered conditional
from the conditional execution graph as the target for testing, where we give at most m chances for
each partially-covered conditional to be the target (line 9, see Subsection 3.2.3). Finally, we determine a
testing strategy to fully cover the target (lines 12 and 14, see Subsection 3.2.4).

If the target conditional has been chosen for less than m times, Baton employs our guided random
testing to attempt to fully cover the target (lines 12 and 13, see Subsection 3.3). Here we try guided
random testing for several (at most m− 1) times to cover a particular target conditional because of its
efficiency. In particular, we extract a trace from the start conditional of the conditional execution graph
to the target conditional. Then, based on the set of test cases executing the true and false branches of
a conditional, and the dependency of a conditional on input variables, we learn a two-class classification
model for each fully-covered conditional in the trace, which labels a generated test case as taking the true
or false branch; and we learn a one-class classification model for the target conditional, which indicates
whether a generated test case takes the covered branch or not. We learn the models in such a demand-
driven way that only the conditionals in the trace are involved in the learning. Based on such models, we
generate test cases that can follow the trace, reach the target conditional and cover its uncovered branch.

Otherwise, if the target conditional has been chosen for m times, Baton employs our targeted concolic
testing to attempt the fully cover the target (lines 14 and 15, see Subsection 3.4). Hence, due to its
effectiveness, targeted concolic testing is only used for once after our guided random testing has failed
to fully cover the target for m − 1 times. In particular, we run concolic execution with a test case that
reaches the target, negate the path condition at the target conditional, and apply constraint solving to
generate test cases that cover the uncovered branch of the target, if feasible. We collect the symbolic
constraint for each executed conditional along the path, and attach it to the conditional execution graph.
It is used as a feature to improve learned classification models.

Baton terminates when (i) the time budget is reached, or (ii) all the partially-covered conditionals in
the conditional execution graph have been attempted to cover by Baton for m times (line 10).



Chen B H, et al. Sci China Inf Sci March 2023 Vol. 66 132101:5

Algorithm 1 The overall algorithm of Baton

Input: P : the program under test.

Output: T : the set of generated test cases.

1: T ← ∅; // initialize the set of generated test cases

2: G← null; // initialize the conditional execution graph

3: IP← instrument the program under test P ; // instrumentation

4: NT← generate n test cases using pure random testing; // pure random testing

5: while true do

6: T ← T∪ NT; // testing strategy analysis

7: S,D ← collect execution knowledge for each test case in NT;

8: G← construct the conditional execution graph using NT, S, and D;

9: c← choose a partially-covered conditional, which has been chosen as the target for no more than m times, from G as the

target;

10: if time budget is reached, or c is null then

11: break // terminate Baton

12: else if this is not the m-th time that c is chosen as the target then

13: NT← generate at most n test cases using our guided random testing; // guided random testing

14: else if this is the m-th time that c is chosen as the target then

15: NT← generate test cases using our targeted concolic testing; // targeted concolic testing

16: return T .

3 Methodology

In this section, we first elaborate the details of Baton, and then discuss the interplay between different
techniques in Baton.

3.1 Instrumentation

We instrument the program under test at source code level to collect dynamic execution knowledge of
each test case. We consider two kinds of dynamic knowledge: the conditional execution sequence, and
the dependency between conditionals and input variables. For the ease of presentation, hereafter we
focus our discussion on if and for conditionals. switch conditional and ?: operator are handled in the
similar way to if conditional. foreach, while and do conditionals are handled in the similar way to for

conditional.

On one hand, to collect the conditional execution sequence, we traverse the abstract syntax tree of the
program under test, assign an id and determine the type (e.g., if, for and while) for each encountered
conditional, and insert a branch recorder for each branch of the conditional. A branch recorder is an API
call Profile.add (id,branch,type) that maintains the sequence of executed conditionals including the
taken branch of each executed conditional.

Example 1. The program in Figure 1 has six conditionals. For the if conditional at line 7, its id is 0,
and its two branch recorders are inserted at lines 8 and 24 to capture whether the true or false branch
is taken. The conditional at line 36 is a for conditional, its id is 4, and its two branch recorders are
inserted at lines 37 and 47, capturing whether the loop body is executed or the loop is exited.

On the other hand, to track the dependency between conditionals and input variables, we set a taint
tag for each input variable of the program under test. As we focus on system testing, we identify the set
of input variables by identifying all the primitive arguments of all the method invocations in the entry
method main. Besides, we provide users with a configuration capability to specify and customize which
arguments of a method need to set a taint tag. For each input variable, we insert an API call to set
a taint tag at the beginning of the corresponding method, which follows the exposed interface of the
dynamic taint analysis tool Phosphor [24] we used in Baton.

Example 2. The program in Figure 1 has four primitive arguments in the method invocation in the
main method, i.e., the four arguments of the bar method. Thus, it has four input variables x, y, m, and
n, whose tags are respectively set to 1, 2, 4, and 8 at lines 3–6.

3.2 Testing strategy analysis

For each generated test case, we analyze its execution knowledge for testing strategy analysis in three
steps (Subsections 3.2.2–3.2.4).



Chen B H, et al. Sci China Inf Sci March 2023 Vol. 66 132101:6

3.2.1 Execution knowledge

We first define execution knowledge. For simplicity, a test case, t, is denoted as an assignment to input
variables. The conditional execution sequence of a test case t, St, is defined as a list of pairs 〈id, branch〉,
where id is the id for each executed conditional, and branch ∈ {T, F} means the true or false branch is
taken. St is collected by running t with instrumented program.

For each executed conditional c in St, the dependency on input variables, dct , is defined as the subset
of input variables the executed conditional has data flow dependency on. dct is context-sensitive, and the
context is the prefix of c in St. Hence, we can distinguish the dependency information of a conditional
that is executed for multiple times (e.g., a method is invoked in multiple places of the program under
test). Therefore, the dependency information from a test case t, Dt, is denoted as a list of dependencies
of executed conditionals in St on input variables. Dt is collected via dynamic taint analysis on the test
case t with the instrumented program.

Example 3. For a randomly generated test case t1 = 〈3257.8, 7136.2, 6,−1525〉, its conditional execution
sequence St1 is 〈0, F 〉, 〈3, F 〉; and the dependency information Dt1 is d0t1 = {x, y}, d3t1 = {x, y}. Dt1 shows
that conditional C0 at line 7 and C3 at line 26 all depend on x and y.

3.2.2 Constructing conditional execution graph

To integrate execution knowledge of different test cases, we incrementally construct a conditional execu-
tion graph according to each generated test case t, the conditional execution sequence St and dependency
information Dt. In a conditional execution graph G, each node v corresponds to an executed conditional,
and is denoted by a 5-tuple 〈id, type, dep, eT , eF 〉, where id and type is the id and type of the executed
conditional, dep is the dependency of the executed conditional on input variables, and eT and eF are
edges in the graph. Each edge eT or eF represents the execution of a conditional i by taking the true or
false branch to reach another conditional j, and is denoted by a 3-tuple 〈p, q,Σ〉, where p and q are nodes
(p.id = i and q.id = j) in the graph, and Σ is a set of test cases that take the edge. The start node of G
represents the conditional that is always first executed in all conditional execution sequences.

Algorithm 2 gives the procedure to update a conditional execution graph G. It first gets the root node
(initially a newly-created node without setting its id, type, dep, eT and eF ) of G as the current node in
the traversal (line 1), and then works by iterating a conditional execution sequence St of a test case t

(lines 4–30). At each iteration, it has three steps. First, it gets the id of the executed conditional and
its taken branch (line 5), sets the id and type of the current node if this is the first time to execute the
conditional under a context1) (i.e., the prefix trace of the conditional in the graph) (lines 6 and 7), and
updates the dependency information (line 8). Second, it decides if the current node corresponds to a loop
conditional (e.g., for and while). If yes, it pushes the current node to a stack if this is the first time
and first iteration to execute the loop (lines 9 and 10), and it pops a node from the stack if the loop is
exited (i.e., the false branch is taken) (lines 11 and 12). We maintain such a stack for loop conditionals
that loops are not unfolded in the graph (see the following step). Third, it links the current node to the
next node (line 19/28) if the current node’s true/false branch is not taken before (lines 13 and 14/22 and
23). Here the next node is set to the peek node of the stack if the next conditional in St corresponds to
the peek node (i.e., this is not the first iteration of the loop) (lines 15 and 16); otherwise, it is set to a
newly-created node (line 18). It then attaches the test case t to the taken branch of the current node (line
20/29), and sets the current node to the next node following the taken branch to continue the traversal
(line 21/30).

Apart from test cases and dependency information, a conditional execution graph also maintains cov-
erage (i.e., whether a conditional is partially-covered or fully-covered) and context (i.e., the prefix trace of
a conditional in the graph to reach the conditional) knowledge for each executed conditional. Compared
to a symbolic execution tree whose size can be exponential to loop iteration bounds as loops are unfolded
till a bound is reached, we do not unfold loops in a conditional execution graph but only distinguish
conditional executions inside loops. Thus, the context knowledge is not precise, and a conditional execu-
tion graph is designed to balance scalability (making the size irrelevant to loop iterations) and context
precision (see the evaluation in Subsection 4.6).

Example 4. Given t1, St1 , and Dt1 from Example 3, the conditional execution graph after executing t1
is shown in Figure 3(a), where the dep of each node is shown in braces and the Σ of each edge is omitted

1) Throughout the paper, conditional means context-sensitive conditional when it is referred in a conditional execution graph.



Chen B H, et al. Sci China Inf Sci March 2023 Vol. 66 132101:7

Algorithm 2 Update a conditional execution graph

Input: G: the graph; t: test case; St: conditional execution sequence; Dt: dependency information.

Output: G: the updated graph.

1: curr← the root node of G; // the current node

2: next← null; // the next code

3: stack← ∅; // a stack of loop-related nodes

4: for i← 0 to St.size() do

5: id← St[i].id; branch← St[i].branch;

6: if curr.id = null then

7: curr.id← id; curr.type← the type of conditional id;

8: curr.dep← curr.dep∪Dt[i];

9: if curr.type is loop-related and curr 6= stack.peek() then

10: stack.push(curr);

11: if curr.type is loop-related and branch = F then

12: stack.pop();

13: if branch = T then

14: if curr.eT = null then

15: if St[i+ 1].id = stack.peek().id then

16: next← stack.peek();

17: else

18: next← newNode(); // uninitialized

19: curr.eT ← newEdge(curr,next);

20: curr.eT .Σ← curr.eT .Σ ∪ {t};

21: curr← curr.eT .q;

22: else if branch = F then

23: if curr.eF = null then

24: if St[i+ 1].id = stack.peek().id then

25: next← stack.peek.();

26: else

27: next← newNode(); // uninitialized

28: curr.eF ← newEdge(curr,next);

29: curr.eF .Σ← curr.eF .Σ ∪ {t};

30: curr← curr.eF .q;

31: return G.

T

T

T T F

T F

F

T, FT F

T F

F

T, F

T

T

T

F

T T F

T F

F

T, F

(b) (c) (d)

F

F

(a)

C0

C3

C0 C0 C0

C3 C3 C3

C4

C5

C1

C2 C4

C5

C4

C5

C2

C1

C2

{x, y}

{x, y}

{x, y}

{x, y} {x, y}

{x, y}

{x, y}

{x, y}

{x, y, n} {x, y, n}{x, y, n}

{n} {n}{n}

{m}{m}

Figure 3 (Color online) Conditional execution graph of Figure 1. (a) After executing t1; (b) after executing t2; (c) after concolic

testing; (d) after mutation.

for clarity. For test case t2 = 〈6218.4, 6204.4,−8416,−4772〉, it takes the true branch of C3 and executes
the loop at lines 36–47. Figure 3(b) is the updated conditional execution graph for t2, where the new
part is highlighted in blue. The loop conditional C4 does not depend on input variables as the number
of loop iterations is a constant. The conditional C5 inside the loop depends on x, y, and n, and both its
true and false branch are taken during loop iterations in t2. Since loops are not unfolded, there are two
edges from the node for C5 back to the node for C4, and we do not create new nodes for C4 and C5 for
each iteration of the loop.

Note that loops with return statements, break statements and recursive invocations will break Algo-
rithm 2. To handle them, we add instrumentations to mark return and break statements as well as the
entries and exits of recursions, which are not introduced in Subsection 3.1 and not reflected in Algorithm 2
for simplicity.



Chen B H, et al. Sci China Inf Sci March 2023 Vol. 66 132101:8

3.2.3 Choosing target conditional

In a conditional execution graph, we choose a target conditional for Baton to cover. The target condi-
tional needs to be partially-covered and depend on input variables. If a conditional is partially-covered
but does not depend on input variables, we cannot fully cover it no matter how we generate test cases. An
if conditional is said to be fully-covered if both its true and false branches have been taken; otherwise,
it is partially-covered. A for conditional is said to be fully-covered if its loop body has been executed
zero times (i.e., directly taking the false branch without executing the loop body) and one or more times
(i.e., taking the true branch to execute the loop body); otherwise, it is partially-covered.

To systematically choose a target conditional, we perform breadth-first search on the conditional
execution graph, starting from the start node. In this way, we give higher priority to shallow conditionals
in the graph than deep conditionals. The reasons are that deep conditionals are more difficult to be
fully covered than shallow conditionals, and covering shallow conditionals can reveal deep conditionals.
Moreover, instead of infinitely attempting to cover a target conditional, we give at most m attempts; i.e.,
we will not choose a conditional as the target if it has been chosen for m times.

Example 5. In Figure 3(b), the node for conditional C0 is the start node. Conditional C3 and C5 is
fully-covered; C0 is partially-covered as its true branch is not taken; and C4 is partially-covered as the
loop is not directly exited without executing its body. Assuming that it is the first time to choose a
target conditional, the start node is chosen as the target, highlighted in red in Figure 3(b). C4 will never
be chosen as the target conditional as it does not depend on input variables.

3.2.4 Choosing testing strategy

After a target conditional c is chosen, we choose our guided random testing (Subsection 3.3) to cover
its uncovered branch if c has been chosen as the target for less than m times; otherwise (which means
guided random testing has failed to fully cover c for m − 1 times), we choose our targeted concolic
testing (Subsection 3.4) to cover the uncovered branch. Hence, we give m − 1 attempts to our guided
random testing to fully cover the target before we finally resort to our targeted concolic testing for once,
considering the efficiency of guided random testing and the effectiveness of target concolic testing. If
targeted concolic testing also fails to cover the target, we regard the target as infeasible (although the
target can be feasible but concolic testing cannot solve the path condition), and will not attempt to cover
it anymore.

3.3 Guided random testing

Given the target conditional in the conditional execution graph, we attempt to guide random testing to
reach and fully cover it based on the knowledge in the conditional execution graph. Our overall idea is to
learn a classification model for a conditional to determine how a generated test case will take its branches,
and to use a search-based way to generate test cases that have a high potential to cover a specific branch.
The learned models are used in the search to measure how close a generated test case covers a branch.

First, we extract a trace by backward traversal from the target conditional to the start node of the con-
ditional execution graph. We maintain the depth of each node to the start node, traverse the conditional
execution graph in such a backward way that the depth always decreases, and thus generate only one
trace. Hence, for loop conditionals, we do not consider how many iterations the loop is executed before
reaching the target for the same reason of not unfolding loops in the conditional execution graph (Sub-
section 3.2.2). The trace gives the information on how to reach the target conditional, while the target

conditional gives the information on where to cover. The trace is denoted as v0
eb0−−→ v1

eb1−−→ · · · vn
ebn−−→ vt,

where v0 is the start node, vt is the target conditional, and bi ∈ {T, F} (0 6 i 6 n) means that vi takes
the edge ebi (i.e., the true or false branch).

Second, for each fully-covered conditional v in the trace, if v has dependency on input variables
(v.dep! = null), we will learn a two-class classification model, which can label a generated test case as
taking the true or false branch. If v does not depend on input variables, we will not learn such a model
because we cannot control its taken branch by manipulating the values of input variables. On the other
hand, for the partially-covered target conditional vt, we will learn a one-class classification model, which
can indicate whether a generated test case takes the covered branch or not. For the other partially-
covered conditionals in the trace, we will not learn such a model due to the systematic way we choose



Chen B H, et al. Sci China Inf Sci March 2023 Vol. 66 132101:9

the target conditional (Subsection 3.2.3); i.e., they have already been chosen as the target, and their
uncovered branches have been regarded as infeasible.

• To build the dataset for learning a two-class classification model of a conditional v, we use the test
cases that execute the true and false branch of v (v.eT .Σ and v.eF .Σ). If v is an if conditional, v.eT .Σ
(resp. v.eF .Σ) is used to create and label instances as taking the true (resp. false) branch. If v is a for

conditional, v.eT .Σ (resp. v.eF .Σ − v.eT .Σ) is used to create and label instances as executing the loop
body (resp. directly exiting the loop).

• To create an instance based on a test case, we consider two kinds of features: (1) the value of the
input variables that v depends on (v.dep), and (2) the satisfaction (0 or 1) of the collected symbolic
constraints of v (Subsection 3.4). The second feature exists only for conditionals executed by concolic
execution. By these features, we attempt to learn the constraint of v in a clasification model.

Notice that the one-class classification model for the target conditional is similarly learned. We learn
the models in such a demand-driven way that only the conditionals in the trace are involved in the
learning. The machine learning models we use are evaluated in Subsection 4.2.

Third, we generate test cases that can follow the trace and cover the uncovered branch of vt in a
search-based way.

• Seed. We use a combination of randomly generated test cases and the previously executed test cases
that reach vt as the seed. The size of the seed is limited to n, i.e., the same size of test cases generated
by pure random testing (line 4 in Algorithm 1).

• Objectives. The searching objectives are: (1) a test case takes ebi of vi (0 6 i 6 n and a model has
been learned for vi) as many as possible and as close as possible, and (2) a test case takes the uncovered
branch of vt as close as possible. Note that the learned models output a value in [0,1] for each test case,
measuring how close each test case covers a branch.

•Mutation. We mutate the value of one of the input variables (i.e., v0.dep∪v1.dep∪· · ·∪vn.dep∪vt.dep)
that the trace depends on, which can reduce the searching space.

In each iteration of the multi-objective searching process, we mutate each test case in the seed, create
an instance for the mutated test case, and classify the instance using those learned models to evaluate the
objectives. The test cases in the seed and the mutated test cases that have higher value of the objectives
are kept as the seed for the next iteration. After a number of iterations, the set of Pareto-optimal test
cases (whose size can be at most n) are generated.

Example 6. Following Example 5, the start node in Figure 3(b) is the target conditional. Therefore,
we only learn a one-class classification model for C0, and generate test cases that are classified as not
taking the false branch of C0. However, as C0 is a corner conditional that is difficult to satisfy, our guided
random testing fails to cover its true branch, and hence target concolic testing is used to generate two test
cases 〈0.0, 0.0, 0, 0〉 and 〈−4232.6, 0.0, 8529, 5555〉 (as will be discussed in Example 7). The conditional
execution graph is then updated to Figure 3(c), where C1 is chosen as the target conditional. Then, we
learn a two-class classification model for C0 and a one-class classification model for C1. Mutating one of
x, y, and m that C0 and C1 depend on, we generate test cases that take the false branch of C2; e.g., one of
the test cases 〈0.0, 0.0,−3194, 0〉 is generated from 〈0.0, 0.0, 0, 0〉 by mutating m, and the updated graph
is in Figure 3(d), where there are two nodes for C2 as we distinguish possible paths to a conditional for
providing targeted guidance.

3.4 Targeted concolic testing

Given the target conditional that our guided random testing fails to cover, we run concolic execution with
one of the test cases that reaches the target conditional, backtrack the symbolic execution tree, negate the
path condition whenever encountering the target conditional, and apply constraint solving to generate
a test case, if feasible, to cover the uncovered branch. More than one test case might be generated,
as a compound conditional corresponds to several bytecode-level conditionals and a conditional inside a
loop might be encountered for several times during the backtrack. In this targeted way, we only need
to run one concolic execution to generate one symbolic path, without an exhaustive depth-first path
exploration to first find an uncovered branch that is unknown in advance as is done in [13]. In addition,
we collect the symbolic constraints for each executed conditional along the path, which are more accuracy
representations of a conditional, and are used as features (Subsection 3.3) to improve the learned model
(see the evaluation in Subsection 4.2). Besides, the generated test cases can help guided random testing
to explore deeper (see Example 6).



Chen B H, et al. Sci China Inf Sci March 2023 Vol. 66 132101:10

Example 7. Following Example 5, the start node in Figure 3(b) is the target conditional, but it is
not covered by guided random testing as shown in Example 6. Thus, targeted concolic testing is run
with the test case t1 = 〈3257.8, 7136.2, 6754,−1525〉 in Example 3; and two test cases 〈0.0, 0.0, 0, 0〉 and
〈−4232.6, 0.0, 8529, 5555〉 are generated and the symbolic constraints of C0 and C3 are collected. The
constraints of C0 are x == 0 and y == 0, which correspond to the two bytecode-level conditionals as C0
is a compound conditional.

3.5 The interplay

Baton integrates several techniques, i.e., random testing, concolic testing, machine learning, and taint
analysis. The interplay between these techniques, which distinguishes Baton from the existing studies
(see Section 5), is discussed as follows. In general, as illustrated in Figure 2, machine learning and taint
analysis are supporting techniques to provide targeted guidance to random testing and concolic testing.

More specifically, taint analysis guides random testing and concolic testing to focus on conditionals that
have dependency on input variables, and avoids wasting testing effort on input-independent conditionals
(Example 5). Taint analysis also provides machine learning with representative features (i.e., the input
variables that a conditional depends on). Machine learning, together with the conditional execution graph,
guides random testing to systematically put testing effort on different program behaviors (Example 6).

Random testing, with the guidance of machine learning and taint analysis, efficiently reaches commonly-
executed program behaviors that might be difficult for concolic testing to touch, and thus relieves some
of the burden from concolic testing (Example 6). Moreover, random testing provides useful test cases
that reach a target conditional to achieve a targeted concolic testing (Example 7). On the other hand,
concolic testing breaks through the coverage bottleneck, and provides more representative features (i.e.,
the collected symbolic constraints of a conditional) for machine learning to improve the accuracy of the
learned models and thus improve the guidance to random testing. Further, concolic testing provides
useful test cases to help guided random testing explore deeper (Example 6).

4 Evaluation

We implemented Baton for Java with 7.4k lines of Java code. We implemented our targeted concolic
testing by extending jDart [20], used Weka [25] to learn classification models, and used Phosphor [24] for
dynamic taint analysis.

4.1 Evaluation setup

To evaluate the effectiveness of Baton, we compared Baton with several state-of-the-art testing tools
with respect to branch coverage and fault detection rate on several benchmarks. We used EclEmma [26]
to compute branch coverage. We used mutation score as the indicator of fault detection rate. As
evidenced in [27], mutants can be used as a substitute for real faults when comparing testing techniques,
and mutation score can be an indicator of fault detection rate. We used the mutation testing system
muJava [28] to automatically generate mutants by applying all method-level mutation operators to all
classes of the used benchmarks and then to compute the mutation score. Assertions for mutation testing
are manually written for each benchmark program. We ran our experiments on a desktop with 3.50 GHz
Intel Xeon CPU and 16 GB RAM.

Baton is most closely related to random testing, adaptive random testing, and concolic testing, and
thus we compared Baton with them. Previous empirical studies [4, 19, 29] have shown that adaptive
random testing methods FSCS [30], RRT [31], and EAR [4] have similar effectiveness. Hence, we selected
EAR as the state-of-the-art adaptive random testing method. For concolic testing, we used jDart [20]
as the-state-of-the-art as it outperformed other symbolic/concoloc execution engines (e.g., SPF [10] and
jFuzz [32]). When using jDart, we used Z3 [33] and Coral [23] as the constraint solver. We also compared
Baton with the simple or unguided hybrid testing approach in [13], which is the closest work to ours.
Since it targets C programs and the tool is not available, we implemented a Java version based on our
testing infrastructure of Baton. This simple hybrid testing can be seen as Baton without the guidance of
machine learning and taint analysis. Notice that unit testing tools (e.g., Randoop [34] and EvoSuite [35])
generate tests against each method separately, but Baton generates system tests that test the entire
system as a whole. As a result, some branches that will never be covered in system tests could be covered



Chen B H, et al. Sci China Inf Sci March 2023 Vol. 66 132101:11

Table 1 Benchmark programs

Program Lines of code Source

Bessj 131 (adaptive) random testing community [18, 19]

Expint 86 (adaptive) random testing community [18, 19]

Fisher 71 (adaptive) random testing community [18, 19]

Gammq 89 (adaptive) random testing community [18, 19]

Remainder 48 (adaptive) random testing community [18, 19]

Triangle 26 (adaptive) random testing community [18, 19]

Triangle2 46 (adaptive) random testing community [18, 19]

WBS 231 Concolic/symbolic execution community [20, 21]

Raytrace 570 Concolic/symbolic execution community [20, 21]

MinePump 559 Concolic/symbolic execution community [20, 21]

Siena 1256 Concolic/symbolic execution community [20, 21]

NanoXML 4608 Concolic/symbolic execution community [20, 21]

Schedule 412 Siemens benchmark [22]

Schedule2 374 Siemens benchmark [22]

Totinfo 315 Siemens benchmark [22]

PrintTokens2 570 Siemens benchmark [22]

Replace 564 Siemens benchmark [22]

by unit tests. Thus, the comparison between Baton and Randoop/EvoSuite becomes biased, and we
did not conduct such comparison, following [4,13,20]. Potential extensions to Baton for supporting unit
testing will be discussed in Subsection 5.2.

The evaluations were conducted on the following benchmarks. A benchmark from the (adaptive)
random testing community [18, 19] contains 11 numerical programs, and we selected 7 programs that
involve complex mathematical computations; and the remaining four programs were excluded as they
were not challenging for all testing techniques. A benchmark from the concolic/symbolic execution
community [20, 21] has 5 systems: WBS is a wheel brake system; Raytrace is a system for rendering
shades on surfaces; MinePump is a real-time system that monitors and controls the fluid level and
methane concentration in a mine shaft; Siena is an Internet-scale event notification middleware; and
NanoXML is an XML parser for Java. NanoXML takes XML input, while Baton currently supports
primitive types for input variables (Subsection 3.1). Following the same procedure in [21], we treat an
XML as an array of chars. The Siemens benchmark [22], widely used in the testing community, has 7
programs, and we selected 5 of them and omitted TCAS and PrintTokens as they are easy to cover.
The Siemens programs were originally written in C and were manually translated to Java in [21]. These
benchmarks were chosen to ensure the diversity (from different communities) of programs under test.
The detailed information of these benchmark programs is reported in Table 1, including the number of
lines of code and the benchmark source.

We ran the state-of-the-art random testing (RT), adaptive random testing (ART) [4], concolic testing
(CT) [20], and simple hybrid testing (HT) [13] with the same amount of time that Baton took; and
Baton was configured to use the second stopping criterion and empirically set the number of generated
tests n and the number of attempts m to 10 and 3 respectively (Subsection 2.2). To account for the
randomness, we ran each method for each benchmark for five times and reported their average results in
the following subsections. Based on the above setup, we conducted the evaluation to answer four research
questions:

• Q1: How do different classification models impact on Baton?

• Q2: Can Baton improve branch coverage and mutation score over RT, ART, CT, and HT?
• Q3: How do guided random testing, targeted concolic testing and taint analysis contribute to branch

coverage and mutation score?

• Q4: What is performance overhead of Baton?

4.2 Impact of classification models (Q1)

We used naive Bayes, random forest, LibSVM, and J48 as the classifiers to learn the classification models
in our guided random testing; and we performed 10-fold cross validation and computed F-measure [36] as
the indicator of the accuracy of learned models. As shown in Figure 4(a), naive Bayes, random forest, and



Chen B H, et al. Sci China Inf Sci March 2023 Vol. 66 132101:12

Naive

Bayes

Random

forest

LibSVM

F
-m

ea
su

re

40

50

60

70

80

90

100

Naive

Bayes

Random

forest

LibSVM

F
-m

ea
su

re

40

50

60

70

80

90

100

(a) (b)

J48 J48

Figure 4 (Color online) Accuracy of learned models. (a) Different classifiers; (b) with/without symbolic constraints.

J48 achieved similar accuracy, while LibSVM was 13% lower on average. Notice that consistent results
were obtained for precision and recall, and thus here, we only reported F-measure. Meanwhile, Baton

achieved almost the same branch coverage and mutation score with these four classifiers, but Baton

with LibSVM invoked our targeted concolic testing 4% more often than Baton with the other classifiers.
The two differences of LibSVM from the other classifiers are statistically significant (p 6 0.05 across all
benchmark programs using Wilcoxon signed-rank test [37]). These results indicate that the low accuracy
of learned models causes unnecessary invocations of targeted concolic testing to cover conditionals that
could have been covered by guided random testing. In terms of performance, with random forest, LibSVM
and, J48, our guided random testing took 1.6×, 2.2×, and 0.2×more time than with naive Bayes. Overall,
naive Bayes and J48 are better classifiers for Baton, and thus we show the results with native Bayes in
the following subsections.

Moreover, we also analyzed the impact of using collected symbolic constraints as features on the
accuracy of learned models. From the previous 10-fold cross validation, we distinguish learned models
that have and do not have symbolic constraints as features, and report their F-measure in the right and
left boxplot in Figure 4(b). We can see that for each classifier, the accuracy is at least 8% higher when
symbolic constraints are used as features. This result indicates that the collected symbolic constraints
are not the only key features that ensure the effectiveness of our machine learning step.

Further, we also analyzed the size of instances used to learn classification models. Generally, the size
of instances has a positive correlation with the number of generated tests (see the penultimate column of
Table 2) and a negative correlation with the depth of a conditional located in the conditional execution
graph. Numerically, the mean size of instances for the three benchmarks is respectively 59, 1006, and
4076. This further indicates that naive Bayes is suitable for Baton, as it suits well for small dataset [38].

Answer to Q1. Naive Bayes is the most suitable classifiers for Baton by considering the accuracy of
learned models, invocations of targeted concolic testing, performance, and size of instances; and symbolic
constraints can improve the accuracy of learned models.

4.3 Branch coverage and mutation score (Q2)

Table 2 reports the results of branch coverage and mutation score with RT, ART, CT, HT, and Baton.
The first and second columns list the benchmarks and programs. The third to fifth columns report
the program details: the lines of code, the number of non-loop/loop conditionals, and the number of
generated mutants. The next fifteen columns report the branch coverage, the mutation score, and the
number of generated test cases of the five testing methods. The last column gives the time overhead of
Baton.

RT and ART had the lowest branch coverage and mutation score for all programs except for Siena since
both RT and ART do not have the capability to break through corner conditionals. ART, claimed to be
better than RT, was unexpectedly worse than RT, because of the heavy calculation of distances among
test cases in ART, which has also been evidenced in [18] and reflected by the much smaller number of
generated test cases. Baton significantly improved branch coverage and mutation score over RT (p-value
is 0.00044 and 0.0003 using Wilcoxon signed-rank test [37]) by 29%, 16%, 28% and 30%, 19%, 23% for
those three benchmarks, and over ART (p-value is 0.00044 and 0.0003) by 32%, 17%, 34% and 34%,
19%, 29%. This is because Baton integrates concolic testing to break through corner conditionals and



Chen B H, et al. Sci China Inf Sci March 2023 Vol. 66 132101:13

Table 2 Comparisons of Baton with RT, ART, CT, and HT on branch coverage and mutation scorea)

Program Branch coverage (%) Mutation score (%) Generated tests (#)
Time (s)

Name LOC Cond. Mut. RT ART CT HT Baton RT ART CT HT Baton RT ART CT HT Baton

B
.M

.
1

[1
8
,
1
9
]

Bessj 131 9/2 1572 47.2 44.4 38.9 84.2 91.7 42.3 31.7 37.7 49.6 82.0 115740 2220 7 171 562 58.8

Expint 86 7/3 709 33.3 30.6 47.2 66.7 75.0 22.0 20.9 48.7 52.9 63.5 44610 1200 7 121 122 17.2

Fisher 71 6/2 866 81.2 68.8 56.2 62.5 100 43.8 28.2 21.1 35.5 76.8 49970 830 4 148 366 13.8

Gammq 89 9/3 849 52.4 52.4 26.2 52.4 57.1 73.5 71.4 22.4 57.5 75.3 25800 920 4 48 78 10.8

Remainder 48 5/4 577 79.2 79.2 37.5 81.9 91.7 72.1 72.1 29.8 69.4 72.3 9230 400 31 65 67 2.4

Triangle 26 6/0 242 68.8 68.8 100 75.0 100 33.9 33.9 84.3 64.5 84.3 24100 570 19 132 108 3.1 (1.0)∗

Triangle2 41 10/0 458 47.1 47.1 100 91.2 100 27.1 27.1 70.1 65.0 70.7 8200 330 14 130 60 2.2 (0.7)∗

Average 58.5 55.9 58.0 73.4 87.9 45.0 40.8 44.9 56.3 75.0 39664 924 12 116 195 –

B
.M

.
2

[2
0
,
2
1
] WBS 225 37/0 810 37.8 37.8 66.7 66.7 66.7 24.2 24.2 45.7 48.8 48.8 85810 1250 24 604 2638 29.3 (0.7)∗

Raytrace 363 21/2 1601 57.7 57.7 65.4 71.2 75.0 36.6 36.6 50.3 54.9 55.5 58070 760 90 235 424 70.5

MinePump 366 32/1 455 42.3 42.3 61.5 61.5 61.5 21.1 21.1 53.4 53.4 53.4 65230 1230 36 561 5555 90.9 (0.9)∗

Siena 1256 163/14 1758 16.1 16.1 13.2 16.1 16.1 52.6 52.6 49.1 52.4 52.7 202190 3990 130480 1290 7850 561.5

NanoXML 4608 199/37 3088 5.1 2.3 19.0 16.5 20.9 7.0 4.8 23.4 20.1 26.2 74600 2070 31710 1158 1590 126.1

Average 31.8 31.2 45.2 46.4 48.0 28.3 27.9 44.4 45.9 47.3 97180 1860 32468 770 3611 –

B
.M

.
3

[2
2
]

Schedule 303 19/6 645 37.1 37.1 80.6 72.6 87.1 31.3 23.7 59.1 50.5 67.3 23820 1120 121 452 1488 21.8 (1.3)∗

Schedule2 334 29/6 762 58.1 58.1 81.4 77.9 81.4 43.3 43.3 73.6 60.2 74.3 134220 2790 134 663 4434 115.8 (14.5)∗

Totinfo 189 16/10 1490 77.8 75.9 79.6 75.9 87.0 82.3 82.0 81.8 81.8 83.7 33240 860 5 114 333 14.0

PrintTokens2 529 96/8 1663 72.2 51.9 86.6 80.6 86.6 62.4 51.1 63.9 56.8 71.3 427990 9830 489 1232 28745 879.4 (4.3)∗

Replace 665 127/11 3289 22.1 16.7 68.8 63.0 66.3 23.0 15.7 64.0 60.9 62.2 46470 1540 1715 2500 2352 46.0 (6.3)∗

Average 53.5 47.9 79.4 74.0 81.7 48.5 43.2 68.5 62.0 71.8 133149 3228 493 992 7470 –

a) The highest values are highlighted in bold.

explores more program behaviors. Besides, Baton generated 203×, 27×, and 18× less test cases than RT
because the targeted guidance in Baton helps systematically put testing effort on different conditionals.
Baton generated a comparable number of test cases to ART. Notice that both RT and ART became
saturated in branch coverage within the same time that Baton took.

Compared to CT, for programs that have floating-point inputs and complex computations (e.g., Bessj,
Expint, Fisher, Gammq, Remainder, Raytrace, and Totinfo), Baton achieved much higher branch cov-
erage and mutation score. This is because the constraint solver used in CT takes much time or is unable
to handle some complex floating-point constraints and CT may get stuck. However, Baton uses ran-
dom testing to cover complex conditionals as many as possible, and only applies concolic testing for
those corner complex conditionals. For programs that have many input-dependent loops (e.g., Siena
and NanoXML), Baton had slightly higher branch coverage and mutation score than CT. The reason
is that CT can get stuck in such loops (i.e., keep unfolding the loops), which is also reflected in a large
number of generated test cases. Instead, Baton does not unfold loops but only distinguishes conditional
executions inside loops, and thus will not get stuck in loops without making any further progress. For
programs where the inputs are integer and most computations are simple (e.g., Triangle, Triangle2, WBS,
MinePump, Schedule, Schedule2, PrintTokens2, and Replace), Baton achieved the almost same branch
coverage and mutation score as CT. In such cases, CT took much less time than Baton, as indicated
by a ∗ mark in the last column where the time overhead of CT is given in parentheses. This is because
the constraint solver can efficiently solve almost all the constraints. Baton becomes less helpful for such
programs. This gives us the implication that a static analysis to estimate the complexity of the program
under test or even the complexity of the conditionals can be helpful to decide which testing method
should be used to cover which program or conditional in a proactive way. Overall, the improvement of
Baton over CT on branch coverage and mutation score is significant, i.e., p-value is 0.00578 and 0.0012.

HT achieved higher branch coverage and mutation score than RT, ART, and CT, but lower thanBaton

for those complex programs (e.g., Bessj, Expint, Fisher, Gammq, Remainder, and Raytrace). The reason
is that, like Baton, HT applies concolic testing to only break through corner conditionals; but different
from Baton, it does not distinguish the same conditional under different contexts and needs to search
for uncovered conditionals during concolic testing. For less complex programs (e.g., Triangle, Triangle2,
Schedule, Schedule2, PrintTokens2, and Replace), HT had lower branch coverage and mutation score
than both CT and Baton. This is because CT considers almost all the contexts of each conditional, but
HT does not distinguish the context of conditionals. Overall, the improvement of Baton over HT on
branch coverage and mutation score is significant (p-value is 0.00096 and 0.00064). This indicates that
our guided random testing and targeted concolic testing via learning and taint analysis are effective.

Answer to Q2. Baton can significantly outperform RT, ART, CT, and HT in terms of branch
coverage and mutation score (p-values are less than the significant level 0.05). It owes to the use of a
conditional execution graph to guide random testing in a learning and context-sensitive way and the use
of targeted concolic testing.



Chen B H, et al. Sci China Inf Sci March 2023 Vol. 66 132101:14

Table 3 Unique conditionals (fully/partially) covered and unique mutants killed

Unique conditionals (#/#) Unique mutants (#)

Program Baton vs. RTBaton vs. ARTBaton vs. CTBaton vs. HTBaton vs. ALLBaton vs. RTBaton vs. ARTBaton vs. CTBaton vs. HTBaton vs.ALL

RT Baton ART Baton CT Baton HT Baton ALL Baton RT Baton ART Baton CT Baton HT Baton ALL Baton

Bessj 0/0 7/2 0/0 8/2 0/0 8/2 0/0 2/0 0/0 1/0 25 649 0 790 28 724 9 433 53 411

Expint 0/0 7/2 0/0 8/2 1/0 7/2 0/0 3/1 1/0 3/1 12 306 9 311 161 266 13 88 161 87

Fisher 0/0 3/0 0/0 5/0 0/0 4/0 0/0 3/0 0/0 2/0 21 307 1 422 7 489 23 370 38 265

Gammq 0/0 2/1 0/0 2/1 0/0 5/6 0/0 2/1 0/0 2/1 16 31 11 44 1 450 10 60 17 31

Remainder 0/0 3/0 0/0 3/0 0/0 9/1 0/0 4/0 0/0 2/0 9 10 9 10 0 245 0 53 9 2

Triangle 0/0 2/0 0/0 2/0 0/0 0/0 0/0 1/0 0/0 0/0 0 122 0 122 1 1 0 48 1 1

Triangle2 0/0 8/1 0/0 8/1 0/0 0/0 0/0 2/0 0/0 0/0 4 204 4 204 6 9 15 40 15 0

WBS 0/0 5/9 0/0 5/9 0/0 0/0 0/0 0/0 0/0 0/0 0 207 0 207 0 10 0 0 0 0

Raytrace 0/0 5/0 0/0 5/0 0/0 4/0 0/0 1/0 0/0 1/0 0 190 0 190 4 72 4 11 5 6

MinePump 0/0 4/4 0/0 4/4 0/0 0/0 0/0 0/0 0/0 0/0 0 59 0 59 0 0 0 0 0 0

Siena 0/0 0/0 0/0 0/0 0/0 14/0 0/0 0/0 0/0 0/0 0 1 1 2 5 66 4 9 8 0

NanoXML 0/0 36/13 0/0 42/14 0/0 4/1 0/0 10/3 0/0 2/0 0 420 0 437 24 48 5 159 28 24

Schedule 0/0 8/12 0/0 8/12 0/0 0/2 0/0 2/3 0/0 0/2 13 241 0 277 1 54 3 110 17 49

Schedule2 0/0 8/5 0/0 8/5 0/0 0/0 0/0 1/1 0/0 0/0 0 236 0 236 12 17 2 109 13 9

Totinfo 0/0 5/0 0/0 6/0 0/0 4/0 0/0 6/0 0/0 4/0 11 31 10 35 1 29 8 36 11 28

PrintTokens2 0/0 15/4 0/0 29/10 0/0 0/0 0/0 4/2 0/0 0/0 66 185 35 327 2 124 2 219 92 20

Replace 0/0 31/53 0/0 36/58 3/0 0/0 3/0 2/0 3/0 0/0 2 1293 0 1531 62 3 106 150 111 0

4.4 Unique conditionals and mutants (Q2)

We also looked into the conditionals that were uniquely covered by one testing method but not by the
others as well as the mutants that were uniquely killed. Table 3 reports the detailed results. The first
column lists the programs. The next ten columns report the number of unique conditionals that are
fully/partially-covered when comparing Baton with RT, ART, CT, HT, and all of them (ALL). In the
same way, the next ten columns give the number of unique mutants that are killed.

Compared to RT and ART, Baton covered all the conditionals that were covered by RT and ART,
and covered many conditionals that were only partially covered or even not reached by RT and ART.
This is because RT and ART have difficulty for corner conditionals, which are covered by Baton through
concolic testing. Besides, only a small number of mutants were killed by RT and ART but not killed by
Baton, while the number of mutants that were killed by Baton but not killed by RT and ART was very
large. This indicates that Baton integrates and guides random testing in such a reasonable way that it
takes almost full advantage of random testing (see more discussions in Subsection 4.5).

Compared to CT, Baton covered all the conditionals that were covered by CT for all programs except
for Expint and Replace. Specifically, the nondeterministic constraint solver CORAL [23] caused the one
uncovered conditional in Expint, and our imprecise handling of loop conditionals (i.e., not unfolding loops)
caused those three uncovered conditional in Replace. Besides, Baton covered many unique conditionals,
especially for those complex programs. With respect to unique mutants, except for Expint and Replace,
CT killed a small number of unique mutants, but Baton killed many unique mutants. This indicates
that our integration of concolic testing is also reasonable (see more discussions in Subsection 4.5).

The comparison results between HT and Baton are similar to those between CT and Baton, which
indicates that simple integration of random testing and concolic testing is not sufficient to take the
full advantage of random testing and concolic testing. Interestingly, when compared to all the covered
conditionals and killed mutants of RT, ART, CT, and HT, Baton covered more conditionals and killed
more mutants, especially for complex programs. This indicates that our integration of random testing
and concolic testing is not just a simple combination but a synergy to further improve the effectiveness.

Answer to Q2. Baton can improve branch coverage and mutation score over RT, ART, CT, and
HT thanks to the reasonable synergy of random testing and concolic testing via targeted guidance.

4.5 Contributions of each component (Q3)

To investigate how guided random testing, targeted concolic testing, and taint analysis contribute to
branch coverage and mutation score, we ran Baton in two configurations: with taint analysis enabled
and disabled, respectively. In each configuration, we computed the number of test cases generated by
guided random testing and targeted concolic testing as well as the branch coverage and mutation score
achieved by these test cases. This experiment was run on the first benchmark as the interplay between the
components can be better reflected by complex benchmarks. Table 4 reports the results, where columns
BC and MS show branch coverage and mutation score.

With taint analysis disabled, both guided random testing and targeted concolic testing spent more
time for all programs except for Remainder and Triangle. The reason is that those input-independent



Chen B H, et al. Sci China Inf Sci March 2023 Vol. 66 132101:15

Table 4 Statistics about each component in Baton with taint analysis enabled or disabled

Subject

Taint analysis enabled

Guided random testing Targeted concolic testing Strategy analysis

Time (s) Tests (#) BC (%) MS (%) Time (s) Tests (#) BC (%) MS (%) Time (s)

Bessj 2.8 555 47.2 34.4 47.6 7 88.9 81.8 8.4

Expint 0.9 100 55.6 46.7 15.8 22 69.4 61.4 0.5

Fisher 2.7 358 81.2 30.9 9.3 8 100 74.6 1.8

Gammq 0.8 74 52.4 42.3 8.2 4 38.1 63.1 1.8

Remainder 0.7 63 79.2 70.5 1.5 4 45.8 30.7 0.2

Triangle 1.2 97 68.8 28.5 1.5 11 100 84.3 0.4

Triangle2 0.9 52 61.8 39.3 1.1 8 79.4 59.2 0.2

Average 1.4 186 63.7 41.8 12.1 9 74.5 65.0 1.9

Subject

Taint analysis disabled

Guided random testing Targeted concolic testing Strategy analysis

Time (s) Tests (#) BC (%) MS (%) Time (s) Tests (#) BC (%) MS (%) Time (s)

Bessj 3.2 797 47.2 34.4 54.7 10 86.1 74.7 1.3

Expint 1.8 130 55.6 46.7 18.8 23 69.4 61.4 0.2

Fisher 2.9 405 81.2 30.9 11.6 7 93.8 60.9 0.4

Gammq 1.2 99 47.6 40.5 14.5 4 38.1 63.1 0.1

Remainder 0.6 65 79.2 70.5 1.5 4 45.8 30.7 0.1

Triangle 1.2 101 68.8 28.5 1.5 11 100 84.3 0.1

Triangle2 1.7 100 61.8 39.3 1.8 8 79.4 59.2 0.1

Average 1.8 242 63.1 41.5 15.0 10 73.2 62.0 0.3

conditionals will be chosen as the target conditional for guided random testing and targeted concolic
testing to cover as we assume that all conditionals depend on all input variables when taint analysis is
disabled. Such testing effort is actually wasted, and also leads to a larger number of test cases for guided
random testing. Besides, strategy analysis took less time because taint analysis was disabled, but the
reduction was overshadowed by the increased overhead of guided random testing and targeted concolic
testing. Furthermore, the branch coverage and mutation score of guided random testing on Gammq
were decreased when taint analysis was disabled due to the imprecise features for learning, while the
branch coverage and mutation score of targeted concolic testing on Bessj and Fisher were low due to
nondeterministic solvers but not disabled taint analysis.

For guided random testing with taint analysis enabled, its branch coverage was the same as RT in
Table 2 except for Expint where the branch coverage was increased by 22.3%. By closely looking into the
test cases that contributed to the improved coverage, we found that these test cases were mutated from
the test cases generated by concolic testing to break through corner conditionals. This indicates that
concolic testing can guide random testing to cover conditionals that are inside corner ones, as shown in
Example 6. The mutation score was lower than RT in Table 2 as Baton is coverage-driven.

For targeted concolic testing with taint analysis enabled, its branch coverage and mutation score were
respectively increased by 16.5% and 20.1% when compared to CT in Table 2. This is because random
testing relieves some of the burden to cover complex conditionals from concolic testing, and also guides
concolic testing to be more targeted and to have less chance to get stuck in constraint solving.

Answer to Q3. Taint analysis makes random testing and concolic testing more targeted, and our
guided random testing and targeted concolic testing are synergized to benefit from each other.

4.6 Performance overhead (Q4)

To analyze the performance of each component in Baton, we report the size of conditional execution
graph (i.e., the number of nodes), the total time overhead, and the overhead of guided random testing,
targeted concolic testing, and strategy analysis in Table 5. Here we report the results for the two
benchmarks with large programs.

The total time overhead is nearly proportional to the size of the graph as Baton is guided by sys-
tematically exploring the graph. Thus, the size of the graph has a great impact on the performance of
Baton. This also explains why we do not unfold loops for balancing scalability and context precision.
Moreover, 42%, 30%, and 28% of the time was respectively spent in guided random testing, targeted



Chen B H, et al. Sci China Inf Sci March 2023 Vol. 66 132101:16

Table 5 Performance of each component in Baton

Subject Size (#) Total time (s)
Guided random

testing (%)

Targeted concolic

testing (%)
Strategy analysis (%)

WBS 375 29.3 38 24 38

Raytrace 165 70.5 33 52 15

MinePump 869 90.9 49 18 33

Siena 3787 561.5 21 60 19

NanoXML 395 126.1 39 11 50

Schedule 321 21.8 55 19 26

Schedule2 1381 115.8 55 25 20

Totinfo 40 14.0 23 58 19

PrintTokens2 5267 879.4 57 20 23

Replace 337 46.0 49 16 35

Average 42 30 28

concolic testing, and strategy analysis, where machine learning, constraint solving, and test execution
(together with taint analysis) are respectively the most expensive task in each component. Besides, tar-
geted concolic testing has a higher overhead than guided random testing for Raytrace, Siena, and Totinfo
because Raytrace and Totinfo have complex constraints, and Siena has many input-dependent loops.

Answer to Q4. Baton’s performance is proportional to the size of the conditional execution graph,
which is acceptable given improved branch coverage and mutation score but can be further improved (see
more discussions in Subsection 4.7).

4.7 Discussion

The main threat to the validity of the evaluation is that the benchmarks are not very large as Baton

uses concolic execution. Baton relieves some burden from concolic testing to random testing, but
still partially shares the similar limitations of concolic execution. We used two real-life systems Siena
and NanoXML; and further studies are required to generalize the results. We plan to apply concolic
execution selectively on code segments where concolic execution is scalable to maximize its effectiveness
while improving Baton’s scalability.

Besides, n and m were empirically set as the good threshold for the used benchmarks in our evaluation.
As a guideline, m can be set to a small value (e.g., 3) to avoid unnecessary effort in random testing, and n

can be set to a large value (e.g., 10) to fully utilize the capability of random testing and ensure sufficient
training data. We are also investigating the possibility of automatically and dynamically determine n

and m by analyzing the coverage progress feedback obtained from existing test case executions.

To improve the performance of Baton, we plan to use incremental machine learning to learn models,
reuse the symbolic execution tree in concolic testing instead of constructing it from scratch every time
concolic execution is invoked, and perform selective taint analysis only on a small part of test cases.
Besides, as the collected symbolic constraints can improve the accuracy of learned models (Subsection 4.2),
we are investigating how to use concolic execution to collect symbolic constraints for more conditionals
with acceptable overhead. As the proposed approach is general, we are also implementing Baton for
programming languages (e.g., C) where the concolic execution engine is more mature with respect to
large benchmarks.

Currently, Baton supports primitive types of input variables. Testing programs that process struc-
tured inputs is challenging; and Baton treats such inputs as a sequence of chars, which is effective as
shown by the fuzzing community [39]. We will improve our mutation strategy to be aware of input
structures, following our recent work on grammar-aware fuzzing approach [40, 41].

5 Related work

Here we focus on the most relevant studies, and refer readers to [42–46] for a comprehensive analysis of
the state-of-the-art.



Chen B H, et al. Sci China Inf Sci March 2023 Vol. 66 132101:17

5.1 System-level random testing

Random testing [1, 2, 47, 48] often fails to cover all regions of the input domain. To generate diverse
test cases, adaptive random testing [49] is proposed, and advanced by many approaches, including fixed
size candidate set [3, 30], restricted random testing [31], mirror adaptive random testing [50], adaptive
random testing by partition [51], bisection [52], lattice [53], distribution metric [54], and evolutionary
adaptive random testing [4]. However, the heavy cost for computing distances of test cases makes it
less scalable even for toy programs [18]. To reduce the computation overhead, quasi-random testing [5,6]
applies mathematically developed quasi-random sequences to produce low-discrepant test cases. Shahbazi
et al. [19] leveraged the geometric structure of the input domain to achieve speedup. Besides, in the
security community, guided fuzzing (e.g., AFL2), AFLFast [55], and Steelix [56]) often uses coverage as
the feedback to guide random testing. Due to the randomness nature, all these approaches have the
difficulty to cover corner conditionals, but Baton integrates concolic testing to handle them.

Taint analysis is used to guide random test generation [57,58], i.e., to find the inputs that conditionals
depend on. Then for partially-covered conditionals, fuzzing [58] or nonlinear optimization technique [57]
finds the setting for such inputs to fully cover them. Similarly, we leverage taint analysis to guide random
testing, and make concolic testing targeted.

5.2 Unit-level random testing

Guided unit test generation was first introduced by Eclat [59]. Since then, many advances have been
made to improve the code coverage. Palulu [60] builds a call sequence model from an example execution,
and uses it to create legal method sequences. Randoop [34,61] can produce diverse test inputs, which use
execution feedback to prune illegal or redundant inputs. Yatoh et al. [62] improved Randoop by selecting,
adding, and deleting primitive value pools. Ma et al. [63] improved Randoop via static and dynamic
program knowledge. Specifically, they reuse constants in the program for the inputs, which becomes
less effective when the inputs are involved in complex computations before used in corner conditionals,
where concolic execution is helpful. Thus, such a seeding strategy can partially break through corner
conditionals but cannot completely substitute the concolic execution in Baton. Further, Baton uses
different techniques (e.g., machine learning, taint analysis, and conditional execution graph) to guide
random testing than the approach in [63]. To handle the large space of possible method sequences,
several techniques are proposed. MSeqGen [64] mines code bases and extracts frequent method sequences
that can be used in test generation. Instead of randomly reusing sequences, RecGen [65] recommends
sequences that have more relevant methods to the method under test. Similarly, Palus [66] extends
Palulu [60] by testing relevant methods together to increase the chance of exploring different program
behaviors. Here the relevance of two methods is determined by the fields they both access. Seeker [67]
uses program synthesis to construct a method sequence that drives the method under test to reach an
uncovered target branch.

These approaches focus on unit testing and handle the problem of how to generate a method sequence
to test the method under test. Instead, Baton focuses on system testing, and does not need to handle
the method sequence problem. However, it is interesting to investigate how to extend Baton to support
unit testing. One simple idea is to apply Baton to each generated unit test, and systematically test the
subsystem that each unit test involves. However, because of the huge number of generated unit tests, we
will explore how to focus on interesting unit tests that have high potential to lead to faults.

5.3 Search-based testing

Search-based testing [45, 46, 68–70] leverages metaheuristic search techniques to generate test cases that
optimize a fitness (e.g., branch coverage or revealed faults) in a limited time budget. Since the early work
of Tonella [71], a number of advances have been made. Arcuri and Yao [72], Baresi and Miraz [73], Baars
et al. [74], and Lakhotia et al. [75] all targeted a single method sequence during the optimization of one
coverage goal. Instead, EvoSuite [35, 76] generates the whole test suites with the aim of satisfying all
coverage goals while keeping the total size small, and can achieve high code coverage [77, 78]. EvoSuite
is equipped with similar seeding strategies [79,80] as in [63]. The difference of Baton from such search-
based unit testing is the same as guided unit testing (see Subsection 5.2). Several search-based system
testing techniques are proposed for domain-specific systems [81, 82]. Arcuri [83] started a search-based

2) American fuzzy lop (2014). http://lcamtuf.coredump.cx/afl/.

http://lcamtuf.coredump.cx/afl/


Chen B H, et al. Sci China Inf Sci March 2023 Vol. 66 132101:18

system testing project for enterprise systems. It is in the early stage of development, and thus we leave
the empirical comparison for future work.

5.4 Concolic testing

Concolic testing [11,12,20,32,84–86] uses dynamic symbolic execution to generate test cases that explore
different execution paths of a program. These tools usually use depth-first search as the default explo-
ration strategy. Different exploration strategies have been proposed to choose branches where constraints
are negated, e.g., CREST [87], Fitnex [88], and SAGE [89]. CREST [87] applies a control-flow-directed
strategy to choose the branch with the minimum distance to an uncovered branch. Fitnex [88] uses a
fitness-guided strategy to pick the branch closest to cover a target path. SAGE [89] uses a generational
search to negate as many constraints in a path condition as possible. However, they have the difficulty
to handle complex conditionals, while Baton relieves some of the burden to random testing. Several
advances have been made to improve the scalability of dynamic symbolic execution [90–92]. SMART [90]
performs dynamic test generation in a compositional way by generating and reusing function summaries.
SAGE [91] uses grammar-based input specification to avoid generating invalid highly-structured inputs.
Qi et al. [92] grouped paths that have the same symbolic outputs together so that only one test case
is generated for each group, which is much more efficient than the exhaustive path exploration. More
recently, Wang et al. [93] proposed to compute the optimal concolic testing strategy (i.e., when to ap-
ply concrete execution, when to apply symbolic execution and which program path to apply symbolic
execution). They can be leveraged to improve the scalability of Baton as Baton integrates concolic
testing.

5.5 Hybrid testing

Majumdar and Sen [13] interleaved random testing with concolic testing, and Driller [14] applied the
same idea to binary fuzzing. This is the closest work to Baton. It uses concolic testing to search for an
uncovered branch when random testing does not cover new branches; and when an uncovered branch is
found by concolic testing, random testing is invoked again. This method leverages concolic testing in a
blind way, i.e., many concolic executions are needed to find an uncovered branch; and it is most suitable
for testing reactive programs. Instead, we use concolic execution in such a targeted way that only one
concolic execution is needed to cover the target conditional. Besides, we use conditional execution graph
to distinguish conditional contexts and use machine learning to guide random testing.

For unit testing, Evacon [15] is proposed to integrate evolutionary testing and symbolic execution in
a sequential way (without interleaving). Similarly, Galeotti et al. [16] integrated EvoSuite with dynamic
symbolic execution. These approaches use symbolic execution in a less efficient way. In addition, Garg
et al. [17] proposed to interleave Randoop with concolic testing. When Randoop saturates, a set of
uncovered branches in less explored methods are chosen as the target for concolic testing to explore.
These approaches provide us with good starting points to extend Baton to support unit testing.

6 Conclusion

We have proposed and implemented a guided hybrid testing approach, named Baton. The key novelty
of Baton is that it integrates the knowledge inside test cases and their executions into a conditional
execution graph, and uses such knowledge to synergize random testing with concolic testing in a smart
way, and it also integrates machine learning and taint analysis to guide random testing and concolic
testing effectively. Our evaluation on three benchmarks has demonstrated that Baton can significantly
outperform random testing, adaptive random testing, concolic testing, and simple hybrid testing in terms
of branch coverage and mutation score. In the future, we plan to (i) improve the scalability of Baton so
that it can be used for larger programs, (ii) extend Baton to support unit testing by integrating with
existing unit testing techniques to help generate methods so that Baton can support both system and
unit testing, and (iii) extend Baton to support the C programming language.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant No. 61802067).

References

1 Loo P, Tsai W. Random testing revisited. Inf Softw Tech, 1988, 30: 402–417

https://doi.org/10.1016/0950-5849(88)90037-7


Chen B H, et al. Sci China Inf Sci March 2023 Vol. 66 132101:19

2 Arcuri A, Iqbal M Z, Briand L. Random testing: theoretical results and practical implications. IEEE Trans Softw Eng, 2012,

38: 258–277

3 Chen T Y, Kuo F C, Merkel R G, et al. Adaptive random testing: the ART of test case diversity. J Syst Softw, 2010, 83:

60–66

4 Tappenden A F, Miller J. A novel evolutionary approach for adaptive random testing. IEEE Trans Rel, 2009, 58: 619–633

5 Chen T Y, Merkel R. Quasi-random testing. IEEE Trans Rel, 2007, 56: 562–568

6 Liu H, Chen T Y. Randomized quasi-random testing. IEEE Trans Comput, 2016, 65: 1896–1909

7 Böhme M, Paul S. On the efficiency of automated testing. In: Proceedings of the 22nd ACM SIGSOFT International

Symposium on Foundations of Software Engineering, 2014. 632–642

8 Xie T, Marinov D, Schulte W, et al. Symstra: a framework for generating object-oriented unit tests using symbolic execution.

In: Proceedings of International Conference on Tools and Algorithms for the Construction and Analysis of Systems, 2005.

365–381

9 Cadar C, Dunbar D, Engler D. Klee: unassisted and automatic generation of high-coverage tests for complex systems programs.

In: Proceedings of the 8th USENIX Conference on Operating Systems Design and Implementation, 2008. 209–224

10 Păsăreanu C S, Visser W, Bushnell D, et al. Symbolic PathFinder: integrating symbolic execution with model checking for

Java bytecode analysis. Autom Softw Eng, 2013, 20: 391–425

11 Godefroid P, Klarlund N, Sen K. DART: directed automated random testing. In: Proceedings of the ACM SIGPLAN Con-

ference on Programming Language Design and Implementation, 2005. 213–223

12 Sen K, Marinov D, Agha G. CUTE: a concolic unit testing engine for C. In: Proceedings of the 10th European Software

Engineering Conference Held Jointly with the 13th ACM SIGSOFT International Symposium on Foundations of Software

Engineering, 2005. 263–272

13 Majumdar R, Sen K. Hybrid concolic testing. In: Proceedings of the 29th International Conference on Software Engineering,

2007. 416–426

14 Stephens N, Grosen J, Salls C, et al. Driller: augmenting fuzzing through selective symbolic execution. In: Proceedings of

Network and Distributed System Security Symposium, 2016

15 Inkumsah K, Xie T. Improving structural testing of object-oriented programs via integrating evolutionary testing and symbolic

execution. In: Proceedings of the 23rd IEEE/ACM International Conference on Automated Software Engineering, 2008. 297–

306

16 Galeotti J P, Fraser G, Arcuri A. Improving search-based test suite generation with dynamic symbolic execution. In: Pro-

ceedings of the 24th International Symposium on Software Reliability Engineering, 2013. 360–369

17 Garg P, Ivancic F, Balakrishnan G, et al. Feedback-directed unit test generation for c/c++ using concolic execution.

In: Proceedings of the 35th International Conference on Software Engineering, 2013. 132–141

18 Arcuri A, Briand L. Adaptive random testing: an illusion of effectiveness? In: Proceedings of the 20th International Sympo-

sium on Software Testing and Analysis, 2011. 265–275

19 Shahbazi A, Tappenden A F, Miller J. Centroidal voronoi tessellations — a new approach to random testing. IEEE Trans

Softw Eng, 2013, 39: 163–183

20 Luckow K, Giannakopoulou D, Howar F, et al. JDart: a dynamic symbolic analysis framework. In: Proceedings of Interna-

tional Conference on Tools and Algorithms for the Construction and Analysis of Systems, 2016. 442–459

21 Wang H J, Liu T, Guan X H, et al. Dependence guided symbolic execution. IEEE Trans Softw Eng, 2017, 43: 252–271

22 Hutchins M, Foster H, Goradia T, et al. Experiments of the effectiveness of dataflow- and controlflow-based test adequacy

criteria. In: Proceedings of the 16th International Conference on Software Engineering, 1994. 191–200

23 Borges M, d’Amorim M, Anand S, et al. Symbolic execution with interval solving and meta-heuristic search. In: Proceedings

of the 5th International Conference on Software Testing, Verification and Validation, 2012. 111–120

24 Bell J, Kaiser G. Phosphor: illuminating dynamic data flow in commodity JVMs. In: Proceedings of ACM International

Conference on Object Oriented Programming Systems Languages & Applications, 2014. 83–101

25 Frank E, Hall M A, Witten I H. Data Mining: Practical Machine Learning Tools and Techniques. 4th ed. San Francisco:

Morgan Kaufmann 2016

26 Hoffmann M R, Janiczak B, Mandrikov E. Eclemma 2.3.3. 2017. http://www.eclemma.org/

27 Just R, Jalali D, Inozemtseva L, et al. Are mutants a valid substitute for real faults in software testing? In: Proceedings of

the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, 2014. 654–665

28 Ma Y S, Offutt J, Kwon Y R. MuJava: an automated class mutation system. Softw Test Verif Reliab, 2005, 15: 97–133

29 Mayer J, Schneckenburger C. An empirical analysis and comparison of random testing techniques. In: Proceedings of Inter-

national Symposium on Empirical Software Engineering, 2006. 105–114

30 Chen T, Leung H, Mak I. Adaptive random testing. In: Proceedings of Annual Asian Computing Science Conference, 2005.

320–329

31 Chan K P, Chen T, Towey D. Restricted random testing. In: Proceedings of European Conference on Software Quality, 2002.

321–330

32 Jayaraman K, Harvison D, Ganesh V, et al. JFUZZ: a concolic whitebox fuzzer for java. In: Proceedings of the 1st NASA

Formal Methods Symposium, 2009. 121–125

33 de Moura L, Bjørner N. Z3: an efficient smt solver. In: Proceedings of International Conference on Tools and Algorithms for

the Construction and Analysis of Systems, 2008. 337–340

34 Pacheco C, Lahiri S K, Ernst M D, et al. Feedback-directed random test generation. In: Proceedings of International

Conference on Software Engineering, 2007. 75–84

35 Fraser G, Arcuri A. Whole test suite generation. IEEE Trans Softw Eng, 2013, 39: 276–291

36 Powers D M W. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. Int J

Mach Learn Technol, 2011, 2: 37–63

37 Sheskin D J. Handbook of Parametric and Nonparametric Statistical Procedures. 4th ed. Boca Raton: Chapman & Hall/CRC,

2007

38 Forman G, Cohen I. Learning from little: comparison of classifiers given little training. In: Proceedings of European Conference

on Principles of Data Mining and Knowledge Discovery, 2004. 161–172

39 Liang H L, Pei X X, Jia X D, et al. Fuzzing: state of the art. IEEE Trans Rel, 2018, 67: 1199–1218

40 Wang J J, Chen B H, Wei L, et al. Skyfire: data-driven seed generation for fuzzing. In: Proceedings of IEEE Symposium on

Security and Privacy, 2017. 579–594

41 Wang J J, Chen B H, Wei L, et al. Superion: grammar-aware greybox fuzzing. In: Proceedings of the 41st International

https://doi.org/10.1109/TSE.2011.121
https://doi.org/10.1016/j.jss.2009.02.022
https://doi.org/10.1109/TR.2009.2034288
https://doi.org/10.1109/TR.2007.903293
https://doi.org/10.1109/TC.2015.2455981
https://doi.org/10.1007/s10515-013-0122-2
https://doi.org/10.1109/TSE.2012.18
https://doi.org/10.1109/TSE.2016.2584063
http://www.eclemma.org/
https://doi.org/10.1002/stvr.308
https://doi.org/10.1109/TSE.2012.14
https://doi.org/10.1109/TR.2018.2834476


Chen B H, et al. Sci China Inf Sci March 2023 Vol. 66 132101:20

Conference on Software Engineering, 2019. 724–735

42 Orso A, Rothermel G. Software testing: a research travelogue (2000–2014). In: Proceedings of Future of Software Engineering

Proceedings, 2014. 117–132

43 Anand S, Burke E K, Chen T Y, et al. An orchestrated survey of methodologies for automated software test case generation.

J Syst Softw, 2013, 86: 1978–2001

44 Păsăreanu C S, Visser W. A survey of new trends in symbolic execution for software testing and analysis. Int J Softw Tools

Technol Transfer, 2009, 11: 339–353

45 McMinn P. Search-based software testing: past, present and future. In: Proceedings of the 4th International Conference on

Software Testing, Verification and Validation Workshops, 2011. 153–163

46 McMinn P. Search-based software test data generation: a survey. Softw Test Verif Reliab, 2004, 14: 105–156

47 Hamlet R. Random testing. In: Encyclopedia of Software Engineering. Hoboken: Wiley & Sons, 1994. 970–978

48 Duran J W, Ntafos S C. An evaluation of random testing. IEEE Trans Softw Eng, 1984, 10: 438–444

49 Chen T Y, Tse T H, Yu Y T. Proportional sampling strategy: a compendium and some insights. J Syst Softw, 2001, 58:

65–81

50 Chen T Y, Kuo F C, Merkel R G, et al. Mirror adaptive random testing. In: Proceedings of the 3rd International Conference

on Quality Software, 2003. 4–11

51 Chen T Y, Merkel R, Wong P K, et al. Adaptive random testing through dynamic partitioning. In: Proceedings of the 4th

International Conference on Quality Software, 2004. 79–86

52 Mayer J. Adaptive random testing by bisection and localization. In: Proceedings of International Workshop on Formal

Approaches to Software Testing, 2006. 72–86

53 Mayer J. Lattice-based adaptive random testing. In: Proceedings of the 20th IEEE/ACM International Conference on Auto-

mated Software Engineering, 2005. 333–336

54 Chen T Y, Kuo F C, Liu H. Adaptive random testing based on distribution metrics. J Syst Softw, 2009, 82: 1419–1433

55 Bohme M, Pham V T, Roychoudhury A. Coverage-based greybox fuzzing as Markov chain. IEEE Trans Softw Eng, 2019, 45:

489–506

56 Li Y K, Chen B H, Chandramohan M, et al. Steelix: program-state based binary fuzzing. In: Proceedings of the 11th Joint

Meeting on Foundations of Software Engineering, 2017. 627–637

57 Leek T R, Baker G Z, Brown R E, et al. Coverage Maximization Using Dynamic Taint Tracing. Massachusetts Inst Of Tech

Lexington Lincoln Lab Technical Report, 2007

58 Ganesh V, Leek T, Rinard M. Taint-based directed whitebox fuzzing. In: Proceedings of the 31st International Conference

on Software Engineering, 2009. 474–484

59 Pacheco C, Ernst M D. Eclat: automatic generation and classification of test inputs. In: Proceedings of European Conference

on Object-Oriented Programming, 2005. 504–527

60 Artzi S, Ernst M D, Zun A K, et al. Finding the needles in the haystack: generating legal test inputs for object-oriented

programs. In: Proceedings of the 1st Workshop on Model-Based Testing for Object-Oriented Systems (M-TOOS), 2006

61 Pacheco C, Lahiri S K, Ball T. Finding errors in .Net with feedback-directed random testing. In: Proceedings of International

Symposium on Software Testing and Analysis, 2008. 87–96

62 Yatoh K, Sakamoto K, Ishikawa F, et al. Feedback-controlled random test generation. In: Proceedings of International

Symposium on Software Testing and Analysis, 2015. 316–326

63 Ma L, Artho C, Zhang C, et al. GRT: program-analysis-guided random testing. In: Proceedings of the 30th IEEE/ACM

International Conference on Automated Software Engineering, 2015. 212–223

64 Thummalapenta S, Xie T, Tillmann N, et al. MSeqGen: object-oriented unit-test generation via mining source code.

In: Proceedings of the 7th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT In-

ternational Symposium on Foundations of Software Engineering, 2009. 193–202

65 Zheng W J, Zhang Q R, Lyu M, et al. Random unit-test generation with MUT-aware sequence recommendation. In: Pro-

ceedings of IEEE/ACM International Conference on Automated Software Engineering, 2010. 293–296

66 Zhang S, Saff D, Bu Y Y, et al. Combined static and dynamic automated test generation. In: Proceedings of International

Symposium on Software Testing and Analysis, 2011. 353–363

67 Thummalapenta S, Xie T, Tillmann N, et al. Synthesizing method sequences for high-coverage testing. SIGPLAN Not, 2011,

46: 189–206

68 Ali S, Briand L C, Hemmati H, et al. A systematic review of the application and empirical investigation of search-based test

case generation. IEEE Trans Softw Eng, 2010, 36: 742–762

69 Harman M, McMinn P. A theoretical and empirical study of search-based testing: local, global, and hybrid search. IEEE

Trans Softw Eng, 2010, 36: 226–247

70 Harman M, Jia Y, Zhang Y Y. Achievements, open problems and challenges for search based software testing. In: Proceedings

of the 8th International Conference on Software Testing, Verification and Validation (ICST), 2015. 1–12

71 Tonella P. Evolutionary testing of classes. In: Proceedings of ACM/SIGSOFT International Symposium on Software Testing

and Analysis, 2004. 119–128

72 Arcuri A, Yao X. Search based software testing of object-oriented containers. Inf Sci, 2008, 178: 3075–3095

73 Baresi L, Miraz M. Testful: automatic unit-test generation for java classes. In: Proceedings of the 32nd International

Conference on Software Engineering, 2010. 281–284

74 Baars A, Harman M, Hassoun Y, et al. Symbolic search-based testing. In: Proceedings of the 26th IEEE/ACM International

Conference on Automated Software Engineering, 2011. 53–62

75 Lakhotia K, Harman M, Gross H. AUSTIN: an open source tool for search based software testing of C programs. Inf Softw

Tech, 2013, 55: 112–125

76 Fraser G, Arcuri A. Evosuite: automatic test suite generation for object-oriented software. In: Proceedings of the 19th ACM

SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering, 2011. 416–419

77 Fraser G, Arcuri A. Sound empirical evidence in software testing. In: Proceedings of the 34th International Conference on

Software Engineering, 2012. 178–188

78 Fraser G, Arcuri A. A large-scale evaluation of automated unit test generation using evosuite. ACM Trans Softw Eng Methodol,

2014, 24: 1–42

79 Fraser G, Arcuri A. The seed is strong: seeding strategies in search-based software testing. In: Proceedings of the 5th

International Conference on Software Testing, Verification and Validation, 2012. 121–130

80 Rojas J M, Fraser G, Arcuri A. Seeding strategies in search-based unit test generation. Softw Test Verif Reliab, 2016, 26:

https://doi.org/10.1016/j.jss.2013.02.061
https://doi.org/10.1007/s10009-009-0118-1
https://doi.org/10.1002/stvr.294
https://doi.org/10.1109/TSE.1984.5010257
https://doi.org/10.1016/S0164-1212(01)00028-0
https://doi.org/10.1016/j.jss.2009.05.017
https://doi.org/10.1109/TSE.2017.2785841
https://doi.org/10.1145/2076021.2048083
https://doi.org/10.1109/TSE.2009.52
https://doi.org/10.1109/TSE.2009.71
https://doi.org/10.1016/j.ins.2007.11.024
https://doi.org/10.1016/j.infsof.2012.03.009
https://doi.org/10.1145/2685612
https://doi.org/10.1002/stvr.1601


Chen B H, et al. Sci China Inf Sci March 2023 Vol. 66 132101:21

366–401

81 Gross F, Fraser G, Zeller A. Search-based system testing: high coverage, no false alarms. In: Proceedings of International

Symposium on Software Testing and Analysis, 2012. 67–77

82 Abdessalem R B, Nejati S, Briand L C, et al. Testing advanced driver assistance systems using multi-objective search and

neural networks. In: Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering, 2016.

63–74

83 Arcuri A. Evomaster: evolutionary multi-context automated system test generation. In: Proceedings of the 11th International

Conference on Software Testing, Verification and Validation, 2018. 394–397

84 Sen K, Agha G. CUTE and jCUTE: concolic unit testing and explicit path model-checking tools. In: Proceedings of Interna-

tional Conference on Computer Aided Verification, 2006. 419–423

85 Cadar C, Ganesh V, Pawlowski P M, et al. EXE: automatically generating inputs of death. In: Proceedings of the 13th ACM

Conference on Computer and Communications Security, 2006. 322–335

86 Tillmann N, de Halleux J. Pex: white box test generation for .Net. In: Proceedings of International Conference on Tests and

Proofs, 2008. 134–153

87 Burnim J, Sen K. Heuristics for scalable dynamic test generation. In: Proceedings of the 23rd IEEE/ACM International

Conference on Automated Software Engineering, 2008. 443–446

88 Xie T, Tillmann N, de Halleux J, et al. Fitness-guided path exploration in dynamic symbolic execution. In: Proceedings of

IEEE/IFIP International Conference on Dependable Systems & Networks, 2009. 359–368

89 Godefroid P, Levin M Y, Molnar D A. Automated whitebox fuzz testing. In: Proceedings of the Network and Distributed

System Security (NDSS) Symposium, 2008

90 Godefroid P. Compositional dynamic test generation. In: Proceedings of the 34th Annual ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages, 2007. 47–54

91 Godefroid P, Kiezun A, Levin M Y. Grammar-based whitebox fuzzing. SIGPLAN Not, 2008, 43: 206–215

92 Qi D W, Nguyen H D, Roychoudhury A. Path exploration based on symbolic output. In: Proceedings of Joint European

Software Engineering Conference and Symposium on the Foundations of Software Engineering, 2011. 278–288

93 Wang X Y, Sun J, Chen Z B, et al. Towards optimal concolic testing. In: Proceedings of the 40th International Conference

on Software Engineering, 2018. 291–302

https://doi.org/10.1145/1379022.1375607

	Introduction
	Overview
	Motivating example
	Approach overview

	Methodology
	Instrumentation
	Testing strategy analysis
	Execution knowledge
	Constructing conditional execution graph
	Choosing target conditional
	Choosing testing strategy

	Guided random testing
	Targeted concolic testing
	The interplay

	Evaluation
	Evaluation setup
	Impact of classification models (Q1)
	Branch coverage and mutation score (Q2)
	Unique conditionals and mutants (Q2)
	Contributions of each component (Q3)
	Performance overhead (Q4)
	Discussion

	Related work
	System-level random testing
	Unit-level random testing
	Search-based testing
	Concolic testing
	Hybrid testing

	Conclusion

