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The weight decision problem, which requires determining

the Hamming weight of a given binary string, is a natu-

ral and important problem with lots of applications, such

as cryptanalysis [1] and coding theory. In this study, we

investigate the exact quantum query complexity of weight

decision problems, where the exact quantum algorithm must

always output the correct answer within finite steps (see Ap-

pendix A for a detailed explanation). Specifically we con-

sider a partial Boolean function fk,l
n : {0, 1}n → {0, 1} as

follows:

fk,l
n (x) =















0, if |x| = k,

1, if |x| = l,

undefined, otherwise,

which distinguishes the Hamming weight of the length-n in-

put between k and l. In the definition of fk,l
n , we put no

further restrictions on n, k and l, except assuming that they

are integers satisfying 0 6 k < l 6 n.

In particular, the Deutsch-Jozsa problem [2] and Grover

search problem [3] can be interpreted as the special cases

of this problem. Many previous studies on weight de-

cision problems generalized the above mentioned prob-

lems. For example, Montanaro, Jozsa, and Mitchison [4]

considered the discrimination of |x| = n
2

from |x| ∈
{0, 1, n− 1, n}. Qiu and Zheng [5] proved that the exact

quantum query complexity of distinguishing |x| = n
2

from

|x| ∈ {0, . . . , k, n− k, . . . , n} is k + 1 (see Appendix B for

more related work).

Our contributions include upper and lower bounds for a

precise number of queries. For most choices of (k, l) and

sufficiently large n, the gap between the upper and lower

bounds is at most one. To obtain the results, we build

the connection between the Chebyshev polynomials and our

problem. We determine all the boundary cases of ( k
n
, l
n
)

with matching upper and lower bounds. We generalize the

boundary cases via a new quantum padding technique. This

quantum padding technique can be of independent interest

in designing other quantum algorithms.

To characterize the effect of the quantum padding tech-

nique, we introduce the notion of upper-left region and

lower-right region for every (x, y) ∈ I2, where x < y and

I := [0, 1]. The upper-left region UL(x, y) and lower-right

region LR(x, y) are as follows:

UL(x, y) :=
{

(κ, λ) ∈ I2|(1− κ)(1 − y) > (1 − λ)(1 − x),

λx > κy, κ < λ} ;
LR(x, y) :=

{

(κ, λ) ∈ I2|(1− κ)(1 − y) 6 (1 − λ)(1 − x),

λx 6 κy, κ < λ, (κ, λ) 6= (x, y)} .

Then we extend the definition of UL and LR to every set

S ⊆ I2 as UL(S) :=
⋃

(x,y)∈S UL(x, y) and LR(S) :=
⋃

(x,y)∈S LR(x, y). Intuitively, for integers 0 6 k < l 6 n

and κ = k
n
, λ = l

n
, if (κ, λ) ∈ UL(x, y), then any exact

quantum algorithm which solves fk′,l′

n′
for ( k′

n′
, l′

n′
) = (x, y)

will induce an exact quantum algorithm solving fk,l
n after

padding some zeros and ones to the input of fk,l
n . There-

fore, QE(fk,l
n ) 6 QE(fk′,l′

n′
). Similar reduction holds for

(κ, λ) ∈ LR(x, y), when (x, y) ∈ UL(κ, λ).

Now, we introduce the definition of Sd composed of the

boundary cases, which we can solve with d-query exact

quantum algorithms. Indeed, every element in Sd corre-

sponds to a pair of the consecutive extrema of degree-D

Chebyshev polynomial, where D = 2d or D = 2d − 1. For

every d ∈ N, we define Sd as below:

Sd :=

{(

1−cos γπ

2d
2

,
1−cos

(γ+1)π
2d

2

)

∣

∣

∣
γ ∈ {0, . . . , 2d − 1}

}

,

⋃

{(

1−cos γπ

2d−1

2
,
1−cos

(γ+1)π
2d−1

2

)

∣

∣

∣
γ ∈ {1, . . . , 2d− 3}

}

.

A major contribution of this study is the construction

of a family of exact quantum algorithms that immediately

implies the following theorem.

Theorem 1 (Upper bounds). For every d ∈ N and 0 6 k

< l 6 n with k, l, n ∈ N, let κ = k
n

and λ = l
n
. If (κ, λ) ∈

UL(Sd), then QE(fk,l
n ) 6 d.

The upper bound of QE(fk,l
n ) is determined by elements

of Sd that fk,l
n can be reduced to via an enhanced “quantum
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padding” technique, since every case in Sd can be solved ex-

actly with d quantum queries (see Appendix C for details).

We expect to translate general (1−2κ, 1−2λ) to the extrema

of a Chebyshev polynomial (1− 2s, 1− 2t). Let a, b > 0 and

a2 = l−k
t−s

− ls−kt
t−s

−n, b2 = ls−kt
t−s

. The initial state is |Ψ0〉 =
cos θ|α⊥〉+sin θ|α〉, where |α⊥〉 := 1√

n−|x|+a2
(
∑

i:xi=0 |i〉+
a|L〉), |α〉 := 1√

|x|+b2
(
∑

i:xi=1 |i〉 − b|R〉), and sin2 θ =

|x|+b2

n+a2+b2
. Intuitively, we introduce a|L〉 and b|R〉 to rep-

resent the unnormalized superpositions of newly padded a2

zeros and b2 ones, respectively, which can translate k and l

into s(n+ a2 + b2) and t(n + a2 + b2), even if they are not

integers. It is obvious that a2, b2 > 0 if (κ, λ) ∈ UL(Sd).

Our algorithm will utilize two unitary transformations

W (a, b) and U(a, b), with parameters a, b > 0.

(1) W (a, b) is a unitary transformation over a Hilbert

space of dimension n + 2 with basis vectors {|k〉|k ∈ [n]}
and {|L〉, |R〉}. It is a unitary transform described as fol-

lows:














W (a, b)|k〉 = 2
n+a2+b2

(
∑n

i=1 |i〉+ a|L〉 − b|R〉
)

− |k〉,
W (a, b)|L〉 = 2a

n+a2+b2

(
∑n

i=1 |i〉+ a|L〉 − b|R〉
)

− |L〉,
W (a, b)|R〉 = −2b

n+a2+b2

(
∑n

i=1 |i〉+ a|L〉 − b|R〉
)

− |R〉.

(2) U(a, b) is a unitary transformation over a Hilbert

space of dimension
(

n
2

)

+ 3n+ 3 where the basis vectors are

{|k〉, |L〉, |R〉, |i, j〉, |k,L〉, |k,R〉, |L,R〉|k, i, j ∈ [n], i < j}.
It is a unitary completion of the following form:


































































U(a, b)|k〉 = 1
n+a2+b2

(
∑n

i=1 |i〉+ a|L〉+ b|R〉
)

+ 1√
n+a2+b2

(

−∑i:i<k |i, k〉+∑i:k<i |k, i〉
)

+ 1√
n+a2+b2

(a|k,L〉+ b|k,R〉) , k ∈ [n],

U(a, b)|L〉 = a
n+a2+b2

(
∑n

i=1 |i〉+ a|L〉+ b|R〉
)

+ 1√
n+a2+b2

(

−
∑n

i=1 |i,L〉+ b|L,R〉
)

,

U(a, b)|R〉 = b
n+a2+b2

(
∑n

i=1 |i〉+ a|L〉+ b|R〉
)

+ 1√
n+a2+b2

(

−∑n
i=1 |i,R〉 − a|L,R〉

)

.

Let G(a, b) := W (a, b)Ox and R(a, b) := U(a, b)Ox. In

particular, G(a, b) degenerates into the standard Grover

operator when a = b = 0. After d − 1 applications of

G(a, b), the initial state |Ψ0〉 transforms into |Ψd−1〉 :=

G(a, b)d−1|Ψ0〉,

|Ψd−1〉 = cos((2d − 1)θ)|α⊥〉+ sin((2d − 1)θ)|α〉.

Without loss of generality, we assume γ is odd.

(1) s = 1
2
(1 − cos( γπ

2d−1
)) and t = 1

2
(1 − cos(

(γ+1)π
2d−1

)).

Now measure the final state |Ψd−1〉 and get a measurement

result m. If m = L, return |x| = l; if m = R, return |x| = k;

otherwise, m ∈ [n] and we need a query to xm. Similarly, if

xm = 0, then |x| = l; otherwise, |x| = k.

(2) s = 1
2
(1− cos(γπ

2d
)) and t = 1

2
(1− cos( (γ+1)π

2d
)). Ap-

plying R(a, b) to |Ψd−1〉 gives us

|Ψd〉 := R(a, b)|Ψd−1〉 = cos(2dθ)|β⊥〉+ sin(2dθ)|β〉,

where


























|β⊥〉 := 1√
n+a2+b2

(
∑n

i=1 |i〉+ a|L〉+ b|R〉
)

,

|β〉 := 1√
(n−|x|+a2)(|x|+b2)

(

∑

i:xi=0
j:xj=1

|i, j〉

−a
∑

i:xi=1 |i,L〉+ b
∑

j:xj=0 |i,R〉+ ab|L,R〉
)

.

Finally, we measure the final state |Ψd〉 and get a mea-

surement result. If m ∈ {k,L,R|k ∈ [n]}, |x| = l; else,

|x| = k.

Unlike the classical padding, where the number of padded

zeros and ones must be nonnegative integers, our quantum

padding technique can effectively pad an arbitrary (even real

numbers such as 2/3 or
√
2) non-negative number of zeros

and ones to the input 0/1 string to reduce the general prob-

lem in some special cases. Therefore, QE(fk,l
n ) has an upper

bound fully and smoothly determined by k
n

and l
n
.

For the lower-bound part, we discover the relation be-

tween the weight decision function fk,l
n and extrema of the

Chebyshev polynomials and prove the exact quantum query

lower bound for elements in Sd via a degree analysis. Finally,

we apply the same padding technique as before (but in the

other direction) for generalization. We have the following

theorem.

Theorem 2 (Lower bounds). For every d ∈ N and 0 6 k

< l 6 n with k, l, n ∈ N, let κ = k
n

and λ = l
n
. If (κ, λ) ∈

LR(Sd), then QE(fk,l
n ) > d+1 for a sufficiently large n (see

Appendix E for the proof).

The lower bound of QE(fk,l
n ) is fully determined by

κ = k
n

and λ = l
n

when n is sufficiently large.

Combining Theorems 1 and 2, we derive the upper and

lower bounds for QE(fk,l
n ) by determining the correspond-

ing Sd1 and Sd2 , such that d1 + 1 6 QE(fk,l
n ) 6 d2. Using

a numerical calculation, we find that our upper and lower

bounds are nearly optimal — the bounds exactly match for

> 56% area of [0, 1]2, and the gap is no more than one for

> 97% area.
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