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Dear editor,

As process technology advances, the parasitic effects of inte-

grated circuits become increasingly prominent, posing seri-

ous challenges for integrated circuit design [1,2]. Variations

in the process corner, voltage, and temperature (PVT) have

a more significant impact on path delay in digital circuits

in advanced processes, especially at the near-threshold volt-

age (NTV) [3, 4]. The delay variability of the critical path

needs to be evaluated to minimize the timing margin while

ensuring reliability. Because NTV circuits have more severe

variability than the super-threshold voltage (STV) circuits,

modeling and analysis of a wide voltage range circuit appear

to be more difficult [5, 6]. Performing circuit timing anal-

ysis over a wide voltage range with traditional EDA tools

(VCS, HSIM, or HSPICE, etc.) becomes complicated and

time-consuming, which is inconvenient for the rapid anal-

ysis of circuit timing and unsuitable for the wide-voltage

design of large-scale system-level integrated circuits. Fortu-

nately, a framework was proposed to fully capture the PVT

variations in path delay variability based on the classic fan-

out-of-4 (FO4) metric [7] as shown in Figure 1(a), which

allowed rapid evaluation of additional random variations in

cycle time margin, providing designers with significant con-

venience. This model is referred to as the single-level FO4

model, which is suitable for a wide voltage range from sub-

threshold to nominal voltage when the path is not very long.

Unfortunately, it loses accuracy when a path has a long logic

length, as referenced in Appendix A, because it ignores the

impact of input slew and load by assuming adjacent cells are

independent of each other. Obviously, the variance of the

path is always larger than the sum of the variances of cells.

Therefore, we propose an enhanced path delay variability

model across a wide voltage range by describing the relation-

ship between logic paths and the FO4 chains while taking

into account the impact of input slew and output load, as

illustrated in Figure 1(b). This method is based on the

multi-level popular FO4 chain that is expanded to isolate

the impact of process technology and PVT conditions by

simply normalizing paths’ delay variability to FO4’s. The

delay variability is then described as a functional relation-

ship between gate- and transistor-level factors such as logic

depth, type of cells, fan-in, driving ability, transistor sizes,

and cell strength. The proposed multi-level FO4 chain en-

ables complex long-path integrated circuit design across a

wide voltage range. This method is applicable to different

process nodes and different paths, offering a quick estimation

of the path delay variability at different supply voltages and

complementary metal oxide semiconductor (CMOS) tech-

nologies with limited accuracy loss. Examples of 28 nm

digital circuits show that our model conforms with Monte

Carlo simulations as well as chips’ measurements.

This model adopts multi-level FO4 delay chain technol-

ogy to characterize the trend of the influence coefficient γ,

which fixes the problem of the large error in the single-level

FO4 model across a wide voltage range. Its key point lies

in that we use an average effect of the m-level FO4 chain

to characterize the path, which takes into the effect of the

input slew and load dependency of the cells in a path. Our

path delay variability model is exhibited in (1) and (2).
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FO4 is the variance of the FO4 inverter’s delay, σ2

FO4(m)
is the mean of the variance of m-level FO4 chain’s delay,
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Figure 1 (Color online) (a) Schematic of an FO4 inverter; (b) the impact of input slew and output load on σ
2; (c) simulation

and predicted σpath and µpath by the proposed model or log-normal distribution at TSMC 28 nm, SS/TT/FF corner, 0.3 V, 25◦C

(10k Monte Carlo).

as shown in (2), with Cov being the sum of covariance in

the path. The mean of the m-level FO4 chain’s delay is

µFO4(m). To establish our path variability model, we adopt

the following five steps.

Step 1. Establish an FO4 chain framework to obtain

σFO4 and µFO4 at wide-voltage, process corners, and tem-

peratures with Monte Carlo simulations.

Step 2. Establish a typical cell set and obtain σcell and

µcell of the cells at wide voltages, process corners, and tem-

peratures.

Step 3. Construct Xcell’s lookup table under typical cor-

ners, temperatures, according to the results of Steps 1 and 2

based on Monte Carlo simulations of typical cells to obtain

σcell, µcell, σFO4 and µFO4.

Step 4. Construct a lookup table for computing the logic

length of the stable point m in a path. The lookup table

is based on the Monte Carlo simulations of a constructed

path. The m table is one-dimensional, and the variable is

cells’ types.

Step 5. Calculate Xpath by (3) for a specific path based

on the obtained parameters, and finally calculate the vari-

ability parameter of σpath/µpath by (1).

The extensive delay variability with different paths from

0.4 to 1.1 V at TT corner and 25◦C in TSMC 28 nm pro-

cess is shown in Appendix A, where the X-axis represents

Monte Carlo simulation results, and the Y -axis indicates the

model calculation results. The majority of the data is in or

close to the y = x line, indicating that our model calcu-

lation results are in good agreement with the Monte Carlo

simulation results.

Results. We compare our model with SPICE as shown

in Figure 1(c) showing that our model is highly accurate for

paths with a logic depth greater than 20. For all paths from

0.4 to 1.1 V, the average error of µpath/σpath between our

model and the Monte Carlo results is 7.3%, which is rela-

tively high and acceptable for path delay variability quick

estimation.

Conclusion. In this study, to quickly evaluate long-path

circuit timing, we propose an efficient path delay model with

m-level FO4 delay chain taking the influence of input slew

and output load on circuit variation into account. It is ver-

ified that the m-level FO4 model achieves high accuracy

compared with the classic EDA tools across wide PVT con-

ditions. This model provides a quick estimation of the tim-

ing variations of the very large scale integrated circuit across

different PVT conditions, which is useful for accelerating the

design process of integrated circuits.
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