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Sparse representation aims to identify a few basic elements

in a signal, so as to use a combination of such elements

to reconstruct the original signal. The ℓ1-norm has been

widely applied in sparse representation, either when pro-

cessing batches of data offline, or online as in adaptive fil-

tering [1–3]. Representative algorithms for online sparse

representation include zero-attracting LMS (ZA-LMS) [4],

ℓ1-RLS [5], ℓ1-RRLS [6], zero-attracting RLS (ZA-RLS) [7],

among others [8, 9]. A new recursive least squares (RLS)

method for sparse representation, named ℓ2
1
-RLS, is pro-

posed in this study. The method, relying on minimizing an

appropriately designed cost with ℓ1 regularization, is com-

pared with state-of-the-art algorithms adopting ℓ2 and ℓ1
regularization.

Proposed ℓ2
1
-RLS method. Consider an input-output pa-

rameter estimation setting given by the standard relation:

y(k) =

N−1∑

i=0

hixi(k) + n(k) = h
T
x(k) + n(k), (1)

where h = [h0 h1 · · ·hN−1]
T denotes the unknown weight

vector to be estimated, x(k) = [x0(k)x1(k) · · ·xN−1(k)]
T

is the input signal, y(k) is the output signal, n(k) is the

measurement noise, and k is the time index. The system

is sparse when only a few elements of h are non-zero. The

estimation goal is to provide an estimate of h at time k,

called ĥ(k), by using input and output signals collected up

to time k.

To formulate the estimation problem, let us define the

following least squares cost function with ℓ1-regularization:

JN (k) =
1

2

k∑

i=1

(
y(i) − ĥ

T(k)x(i)
)2

+
ρ

2
||ĥ(k)||21 (2)

+
1

2
(ĥ(k)− ĥ

T(0))P−1(0)(ĥ(k)− ĥ(0)),

where ĥ(0) is an initial estimate of h, P (0) is an initial co-

variance matrix that weights the ℓ2-norm, and ρ > 0 is the

regularizing parameter that weights the ℓ1-norm. Note the

square of the ℓ1-norm in (2), consistent with the square of

the ℓ2-norm in Tikhonov regularization. The resulting ℓ2
1
-

RLS method is in Algorithm 1. The details of the derivation

of the algorithm are in Appendix A.

Algorithm 1 Proposed ℓ21 regularized recursive least squares

(ℓ21-RLS)

Data and parameters: x(n), y(n), ρ, ĥ(0), P (0).

1: for time step k = 1, 2, . . . , n, do

2: Let e(k) = y(k) − ĥ
T(k − 1)x(k) and sgn(k − 1) =

[sgn(ĥ0(k−1)) sgn(ĥ1(k−1)) · · · sgn(ĥN−1(k−1))]
T;

3: Let Q(k) = [x(k)
√
ρsgn(k − 1) −√

ρsgn(k − 2)];

4: Let S(k) = [x(k)
√
ρ sgn(k − 1)

√
ρ sgn(k − 2)]T;

5: Update P (k) = P (k − 1) − P (k − 1)Q(k) ×(I + S(k)P (k −
1)Q(k))−1S(k)P (k − 1);

6: Update ĥ(k) = ĥ(k − 1) + P (k)x(k)e(k) −ρP (k)[sgn(k−
1) −sgn(k−2)]

[
sgnT(k−1)

sgnT(k−2)

]
ĥ(k−1);

7: end for

Remark 1. By looking at steps 5 and 6 of Algorithm 1,

one can notice that the proposed ℓ2
1
-RLS algorithm adds a

few extra terms to the standard RLS algorithm, which are

P (k) = P (k − 1)−
P (k − 1)x(k)xT(k)P (k − 1)

1 + xT(k)P (k − 1)x(k)
,

ĥ(k) = ĥ(k − 1) + P (k)x(k)e(k).

In step 5 of Algorithm 1, new terms appear resulting from

the matrix inversion lemma: the inverse in step 5 involves a

3×3 matrix I+S(k)P (k−1)Q(k) instead of a scalar inverse

as in the standard RLS. In step 6, notice that the term

−ρP (k)[sgn(k−1) −sgn(k−2)]

[
sgnT(k−1)

sgnT(k−2)

]

ĥ(k−1)

plays the role of attracting the estimate ĥ(k) towards zero.

In this sense, the philosophy to induce sparsity is analogous
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Table 1 Summary of comparisons (the best performance is highlighted with bold notation)

Effect of regularization, K = 3 Effect of sparsity

ρ = 0.1 ρ = 0.5 ρ = 1 ρ = 1.5 ρ = 2 ρ = 5 K=1 K=3 K=5 K=7 K=9

RLS 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400

ℓ1-RRLS 0.0401 0.0400 0.0399 0.0398 0.0397 0.0391 0.0397 0.0399 0.0400 0.0401 0.0401

ZA-RLS 0.0399 0.0397 0.0393 0.0390 0.0387 0.0370 0.0392 0.0393 0.0394 0.0397 0.0399

ℓ21-RLS (proposed) 0.0398 0.0396 0.0392 0.0389 0.0386 0.0368 0.0396 0.0392 0.0391 0.0393 0.0397

Effect of regularization, K = 5 Effect of signal-to-noise ratio

ρ = 0.1 ρ = 0.5 ρ = 1 ρ = 1.5 ρ = 2 ρ = 5 SNR=1 SNR=3 SNR=5 SNR=7 SNR=10

RLS 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0503 0.0400 0.0317 0.0252 0.0179

ℓ1-RRLS 0.0401 0.0401 0.0400 0.0399 0.0399 0.0395 0.0503 0.0399 0.0316 0.0252 0.0177

ZA-RLS 0.0399 0.0397 0.0394 0.0392 0.0390 0.0378 0.0497 0.0393 0.0311 0.0249 0.0172

ℓ21-RLS (proposed) 0.0398 0.0395 0.0391 0.0388 0.0384 0.0368 0.0496 0.0392 0.0310 0.0248 0.0172

Effect of regularization, K = 7

ρ = 0.1 ρ = 0.5 ρ = 1 ρ = 1.5 ρ = 2 ρ = 5

RLS 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400

ℓ1-RRLS 0.0401 0.0401 0.0401 0.0400 0.0400 0.0398

ZA-RLS 0.0399 0.0398 0.0397 0.0395 0.0394 0.0388

ℓ21-RLS (proposed) 0.0398 0.0396 0.0393 0.0391 0.0389 0.0385

to the zero-attracting methods [4, 7]. When ρ = 0, steps 5

and 6 in Algorithm 1 degenerate to the standard RLS.

Comparative experiments. The performance of the pro-

posed ℓ2
1
-RLS is compared with the standard RLS [1], ℓ1-

RRLS [6], and ZA-RLS [7]. The input x(k) is white and

n(k) is additive white Gaussian noise with a certain signal-

to-noise ratio (SNR). The system is as in (1) with a total of

10 coefficients, where only K of them are nonzero. For every

experiment, h is normalized in so that ||h||1 = ||h||2
1
= 1,

which guarantees fair numerical comparisons as the penalty

with ρ has similar effect for all algorithms. The performance

of all methods is tested in three aspects.

(1) The effect of regularization parameter ρ on the per-

formance. This is done because increasing ρ increases the

zero-attracting effect (driving the estimate towards zero).

Therefore, we test the zero-attracting effect for different lev-

els of sparsity. The SNR is 3 dB in all cases.

(2) The effect of sparsity on the performance. We change

the number of nonzero coefficients K to change the level of

sparsity. The SNR is 3 dB in all cases.

(3) The effect of signal-to-noise ratio on the performance.

We change the SNR of the observation noise. The underly-

ing system has 3 nonzero coefficients in all cases.

The estimation performance is evaluated based on the

ℓ2-norm error with the true parameters, i.e., ||ĥFIN − h||2,

where ĥFIN is the estimated ĥ at the final iteration. The

results are averaged over 1000 random trials, so as to obtain

an average performance. The results are collected in Ta-

ble 1. More details on the experiments and the algorithms

used are in Appendix B.

Discussion on the results. The comparisons for different

levels of regularization and sparsity show that the proposed

method strikes a good trade-off between attracting the es-

timates towards zero (useful in sparse environments, e.g.,

K = 3) and providing estimates close to the true h. In fact,

as the level of sparsity decreases (e.g., K = 5 or K = 7),

attracting the estimate towards zero may increase the esti-

mation error, since many elements of h are different than

zero. The proposed ℓ2
1
-RLS outperforms the other methods

in most scenarios. The comparisons for different levels of

SNR demonstrate that the proposed ℓ2
1
-RLS behaves bet-

ter in all noisy situations. It is only when the SNR reaches

10 that ZA-RLS behaves as well as the proposed method.

This good performance can be explained with the fact that

the proposed cost (2) allows a minimization approach anal-

ogous to recursive least squares with Tikhonov regulariza-

tion, which behaves well in sparse and non-sparse scenarios.

Thus, an interesting future study is to dynamically change

the size of the vector to be estimated, i.e., to reduce or in-

crease it online depending on an estimated degree of sparsity.

Acknowledgements This work was supported by National
Natural Science Foundation of China (Grant No. 62073074),
Key Intergovernmental Special Fund of National Key Research
and Development Program (Grant No. 2021YFE0198700),
and Research Fund for International Scientists (Grant No.
62150610499).

Supporting information Appendixes A and B. The sup-
porting information is available online at info.scichina.com and
link.springer.com. The supporting materials are published as
submitted, without typesetting or editing. The responsibility
for scientific accuracy and content remains entirely with the au-
thors.

References

1 Haykin S. Adaptive Filter Theory. 5th ed. Upper Saddle

River: Pearson Prentice Hall, 2013

2 Tang Q, Li B Q, Chai Y, et al. Improved sparse repre-

sentation based on local preserving projection for the fault

diagnosis of multivariable system. Sci China Inf Sci, 2021,

64: 129204

3 Moustakis N, Zhou B, Quang T L, et al. Fault detection

and identification for a class of continuous piecewise affine

systems with unknown subsystems and partitions. Int J

Adapt Control Signal Process, 2018, 32: 980–993

4 Chen Y, Gu Y, Hero A O. Sparse LMS for system identifi-

cation. In: Proceedings of IEEE International Conference

on Acoustics, Speech & Signal Processing, 2019. 3125–3128

5 Lim J, Lee K, Lee S. A modified recursive regularization

factor calculation for sparse RLS algorithm with l1-norm.

Mathematics, 2021, 9: 1580

6 Eksioglu E M. Sparsity regularised recursive least squares

adaptive filtering. IET Signal Process, 2011, 5: 480–487

7 Hong X, Gao J, Chen S. Zero attracting recursive least

squares algorithms. IEEE Trans Veh Technol, 2016, 66:

213–221

8 Li Z F, Li D, Zhang J Q. A new penalized recursive least

squares method with a variable regularization factor for

adaptive sparse filtering. IEEE Access, 2018, 6: 31828–

31839

9 Zou H, Zhang H H. On the adaptive elastic-net with a di-

verging number of parameters. Ann Stat, 2009, 37: 1733–

1751

info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-018-9613-2
https://doi.org/10.1002/acs.2881
https://doi.org/10.3390/math9131580
https://doi.org/10.1049/iet-spr.2010.0083
https://doi.org/10.1109/TVT.2016.2533664
https://doi.org/10.1109/ACCESS.2018.2844950
https://doi.org/10.1214/08-AOS625

