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Appendix A: Derivation of the proposed ℓ
2
1-RLS method

Consider an input-output parameter estimation setting given by the standard relation:

y(k) =

N−1∑

i=0

hixi(k) + n(k) = hTx(k) + n(k) (1)

where h = [h0 h1 · · ·hN−1]
T denotes the unknown system vector to be estimated, x(k) = [x0 x1 · · ·xN−1]

T

is the input vector signal, y(k) is the output signal, n(k) is the measurement noise and k denotes the
time index. The system is sparse when only a few elements of h are non-zero. The estimation goal is to
provide an estimate of h at time k (call it ĥ(k)) by using input and output signals collected up to time

k. The estimation is recursive when the estimate ĥ(k) is updated online when new data x(k), y(k) are
collected at time k.

To formulate the recursive estimation problem, define the following cost function associated with a
least squares problem with ℓ1-regularization

JN (k) =
1

2

k∑

i=1

(
y(i)− ĥT (k)x(i)

)2
+

1

2
(ĥT (k)− ĥT (0))P−1(0)(ĥ(k)− ĥ(0)) +

ρ

2
||ĥ(k)||21 (2)

where ĥ(0) is an initial estimate of h, P (0) is an initial covariance matrix used for initialization, and
ρ > 0 is the regularizing parameter. Note that (2) contains the square of the ℓ1-norm, which is consistent
with the presence of the square of the ℓ2-norm in Tikhonov regularization, whose cost can be written as

JN (k) =
1

2

k∑

i=1

(
y(i)− ĥT (k)x(i)

)2
+

1

2
(ĥT (k)− ĥT (0))P−1(0)(ĥ(k)− ĥ(0)) +

ρ

2
||ĥ(k)||22

with the ℓ2-norm instead of the ℓ1-norm. In this sense, the parameters P−1(0) and ρ in (2) play the
same role as P−1(0) and ρ in Tikhonov regularization1). A large value of P−1(0) gives more weight

to minimize the l2 norm of ĥ, and a large value of ρ gives more weight to minimize the l1 norm of ĥ.
However, if these parameters are chosen very large, less weight will be given to the estimation error in the
first term of eq. (2), which will inevitably become worse. Therefore, in practice, it is up to the designer to

*Corresponding author (email: )

1) It is worth mentioning that the second term of the cost function (ĥT (k) − ĥ
T (0))P−1(0)(ĥ(k) − ĥ(0)) is often omitted in

standard Tikhonov regularization, in favour of the term ρ||ĥ(k)||2
2
. Mathematically speaking, such term should not be omitted,

because it is needed to correctly initialize the recursive equations with ĥ(0) and P−1(0) [1]. If the second term is omitted in favour

of ρ||ĥ(k)||2
2
, then one should initialize ĥ(0) = 0 and P (0) = ρ−1I.
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tune the parameters to find a good trade-off between having small norms of ĥ (i.e. sparsity) and having
a good estimation.

We will now aim to find the vector of coefficients which minimizes the cost function (2) in a recursive
manner. Let us denote by X(k) = [x(k) x(k − 1) · · ·x(1)]T the collection of past inputs, and by Y (k) =

[y(k) y(k − 1) · · · y(1)]T the collection of past outputs. Let ĥ(k) denote the estimate of vector h at time
k. This estimate is optimal when it is the vector that makes the gradient of the cost function (2) equal
to zero:

∇JN (k) = −XT (k)
(
Y (k)−X(k)ĥ(k)

)
+ P−1(0)(ĥ(k)− ĥ(0)) + ρ∇||ĥ(k)||21 = 0 (3)

where ∇||ĥ(k)||21 indicates one of possible subgradients of the nonsmooth function ||ĥ(k)||21, which in
this work is taken as

∇||ĥ(k)||21 =




sgn(ĥ0(k))

sgn(ĥ1(k))
...

sgn(ĥN−1(k))




[
sgn(ĥ0(k)) sgn(ĥ1(k)) · · · sgn(ĥN−1(k))

]




ĥ0(k)

ĥ1(k)
...

ĥN−1(k)




(4)

where we have used the relation

||ĥ(k)||1 = ĥ0(k)sgn(ĥ0(k)) + ĥ1(k)sgn(ĥ1(k)) + · · ·+ ĥN−1(k)sgn(ĥN−1(k)).

Here, sgn is the sign function applied to each component of the vector:

sgn(ĥi(k)) =





ĥi(k)

|ĥi(k)|
if ĥi(k) 6= 0

0 if ĥi(k) = 0.

(5)

A more compact form for (4) can be obtained by introducing the notation

sgn(k) =




sgn(ĥ0(k))

sgn(ĥ1(k))
...

sgn(ĥN−1(k))



,

so that we can write ∇||ĥ(k)||21 = sgn(k) sgnT (k) ĥ(k). It is easy to get the following equation from (3)

(XT (k)X(k) + P−1(0) + ρsgn(k) sgnT (k))ĥ(k) = P−1(0)ĥ(0) +XT (k)Y (k). (6)

We can see from (6) that sgn(k) should be calculated based on the vector ĥ(k) which is not yet
available. A similar issue arises in other ℓ1-regularization methods, such as [3–5], and it is solved assuming
that the signs of the coefficients vector estimate values do not change significantly in a single iteration.
Therefore, if ĥ(k − 1) is the optimal estimate obtained using the data from 0 to k − 1, we can use
sgn(k − 1) to replace sgn(k).

Therefore, the estimate of ĥ(k) which minimizes the cost function can be written as

ĥ(k) = (XT (k)X(k) + P−1(0) + ρsgn(k − 1) sgnT (k − 1))−1
(
P−1(0)ĥ(0) +XT (k)Y (k)

)
. (7)

It is clear that (7) is a non-recursive2) relation, since it uses all the data X(k), Y (k) collected up to
time k. In the following we want to derive recursive relations to update the estimate. In order to achieve
this, let us now derive the recursive formula for calculating P (k). Let us define

P−1(k) = XT (k)X(k) + P−1(0) + ρsgn(k − 1) sgnT (k − 1). (8)

2) To further highlight the difference with Tikhonov regularization, recall that that the non-recursive relation for ĥ(k) in

Tikhonov regularization is

ĥ(k) = (X
T
(k)X(k) + P

−1
(0) + ρI)

−1
(
P

−1
(0)ĥ(0) + X

T
(k)Y (k)

)

which shows the role of P−1(0) and ρ in the regularization.
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Then, we can get the recursive relationship between P−1(k) and P−1(k − 1) as follows:

P−1(k)− P−1(k − 1) = XT (k)X(k)−XT (k − 1)X(k − 1)

+ ρsgn(k − 1)sgnT (k − 1)− ρsgn(k − 2)sgnT (k − 2)

= xT (k)x(k)

+ ρsgn(k − 1)sgnT (k − 1)− ρsgn(k − 2)sgnT (k − 2).

(9)

However, in order to avoid the calculation of the inverse of P (k), a more convenient recursive relation
is the one between P (k) and P (k−1) (rather than between P−1(k) and P−1(k−1)). To this purpose, we
can use the well-known matrix inversion lemma, that is (A+BC)−1 = A−1−A−1B(I+CA−1B)−1CA−1.
When applying the matrix inversion lemma to (9), we can define

A = P−1(k − 1), B = [x(k)
√
ρsgn(k − 1) −√

ρsgn(k − 2)], C =




xT (k)
√
ρsgnT (k − 1)

√
ρsgnT (k − 2)


 ,

so we can get the recursive form of P (k) as follows:

P (k) = P (k − 1)− P (k − 1)Q(k)

(
I + S(k)P (k − 1)Q(k)

)−1

S(k)P (k − 1) (10)

where we have defined Q(k) = [x(k)
√
ρsgn(k − 1) −√

ρsgn(k − 2)] and S(k) = [x(k)
√
ρsgn(k −

1)
√
ρsgn(k − 2)]T .

From (10) it is easy to obtain the recursive relation between ĥ(k) and ĥ(k− 1). In fact, by combining
(6) and (7), we can get

ĥ(k) = P (k)(P−1(0)ĥ(0) +XT (k − 1)Y (k − 1) + x(k)y(k))

= P (k)
(
P−1(k − 1)ĥ(k − 1) + x(k)y(k)

)

= P (k)
(
P−1(k)ĥ(k − 1)− x(k)xT (k)ĥ(k − 1)− ρ[sgn(k − 1) −sgn(k − 2)]

·
[
sgnT (k − 1)

sgnT (k − 2)

]
ĥ(k − 1) + x(k)y(k)

)
.

(11)

As a result, we get the recursive update equation for ĥ(k) from (11) as follows:

ĥ(k) = ĥ(k − 1) + P (k)x(k)e(k)− ρP (k)[sgn(k − 1) −sgn(k − 2)]

[
sgnT (k − 1)

sgnT (k − 2)

]
ĥ(k − 1) (12)

where e(k) is the instantaneous error term given by e(k) = y(k)− ĥT (k−1)x(k). The resulting ℓ21-RLS
method is summarized in Algorithm 1.
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Algorithm 1: Proposed Sparsity ℓ21
Regularized Recursive Least Squares (ℓ21-RLS)

Data and parameters: x(n), y(n), ρ, ĥ(0), P (0).

1: for time step k = 1, 2, · · · , n, do
2: let e(k) = y(k)− ĥT (k − 1)x(k) and

sgn(k−1) =
[
sgn(ĥ0(k−1)) sgn(ĥ1(k−1)) · · · sgn(ĥN−1(k−1))

]T

3: let Q(k) = [x(k)
√
ρsgn(k − 1) −√

ρsgn(k − 2)]

4: let S(k) = [x(k)
√
ρ sgn(k − 1)

√
ρ sgn(k − 2)]T

5: update P (k) = P (k − 1)− P (k − 1)Q(k)

×
(
I + S(k)P (k − 1)Q(k)

)−1

S(k)P (k − 1)

6: update ĥ(k) = ĥ(k − 1) + P (k)x(k)e(k)

−ρP (k)[sgn(k−1) −sgn(k−2)]

[
sgnT (k−1)

sgnT (k−2)

]
ĥ(k − 1)

7: end for
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Appendix B: Details on comparative experiments

This appendix gives more details about the comparisons of the proposed method with other methods.
The performance of the proposed ℓ21-RLS method is evaluated as compared to the standard RLS, to
ℓ1-RRLS [5] and to ZA-RLS [6]3). For completeness, let us recall the last two algorithms.

The cost function of ℓ1-RRLS is as follows:

JRRLS(k) =
1

2

k∑

s=1

λk−s|e(k)|2 + 1

2
ρ||Wh(k)||1 (13)

where ||Wh(k)||1 stands for the weighted ℓ1 norm of the vector estimate, that is

||Wh(k)||1 =

N−1∑

i=0

wi|hi(k)| (14)

and wi, i = 0, 1, 2, · · · , N − 1 are valued weighting parameters. Accordingly, the matrix W denotes the
N × N diagonal matrix with the elements wi on the main diagonal. In order to make (16) consistent
with the proposed cost function (2), we will choose W as the identity matrix.

The ℓ1-RRLS algorithm can be written as follows:




kλ(k) = P (k − 1)x(k)

k(k) =
kλ(k)

λ+ xT (k)kλ(k)

e(k) = y(k)− ĥT (k − 1)x(k)

P (k) =
1

λ
[P (k − 1)− k(k)kT

λ (k)]

ĥ(k) = ĥ(k − 1) + k(k)e(k) + ρ(
λ− 1

λ
)(I − k(k)xT (k))P (k − 1)

sgn((ĥ(k − 1)))

|ĥ(k − 1)|+ ǫ

(15)

where ĥ(0) = 0 is the initial estimate, P (0) =
1

δ
IN is the initial covariance matrix with δ being a small

positive number and ǫ > 0 is a very small positive number, e.g. ǫ = 10−7, which is introduced for
numerical stability reasons.

The cost function of ZA-RLS is as follows:

JZA−RLS(k) =
1

2

k∑

s=1

λk−s|e(k)|2 + 1

2
ρhHD(k)h (16)

where (·)H denotes the Hermitian operator (which coincides with the transpose operator for real vectors),

D(k)=diag{d0(k), d1(k), · · · , dN−1(k)} with di(k) =
1

|hi(k − 1)|+ ǫ
for 0 6 i 6 N − 1, while ǫ > 0 is a

very small positive number, e.g. ǫ = 10−7, which is introduced for numerical stability reasons.
The ZA-RLS algorithm can be written as follows:





e(k) = y(k)− ĥT (k − 1)x(k)

H(k) = diag
{
(|ĥ0(k − 1)|+ ǫ)/ρ, · · · , (|ĥL(k − 1)|+ ǫ)/ρ

}

D(k) = diag

{
1

(|ĥ0(k − 1)|+ ǫ)
, · · · , 1

(|ĥL(k − 1)|+ ǫ)

}
, for k > 1

P (k) =
1

λ

(
P (k − 1)− P (k − 1)x(k)xT (k)P (k − 1)

λ+ xT (k)P (k − 1)x(k)

)

P̂ (k) = H(k)−H(k)(P (k) +H(k))−1H(k)

ĥ(k) = ĥ(k − 1)− ρP̂ (k)(D(k) − λD(k − 1))ĥ(k − 1) + P̂ (k)x(k)e(k)

(17)

3) Two ZA-RLS methods have been proposed in [6], namely ZA-RLS-I and ZA-RLS-II. Both methods give the same estimation

performance, but the algorithm in ZA-RLS-II is computationally more efficient. This study considers ZA-RLS-I since its algorithm

is closer to RLS and thus easier to understand. ZA-RLS-II would give exactly the same results.
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where ĥ(0) is the initial estimate, P (0) =
1

δ
IN is the initial covariance matrix δ being a small positive

number, while D(0) and D(1) can be initialized as zero matrices.
A benchmark study is set up as follows. The input x(k) is assumed to be white, and additive white

Gaussian noise (AWGN) is added to the system output with a certain signal-to-noise ratio (SNR). For
each trial, the length of the training data was set to 3000. The sparse system in each experiment has a
total of 10 tabs where only K of them are nonzero. The positions of the nonzero tab value are chosen
randomly, but for every trial the norm of h is normalized in such a way that ||h||1 = 1, which of course
also implies ||h||21 = 1. This means that we can choose the same ρ for all algorithms, because the penalty
would have a similar effect for all algorithms, despite using the ℓ1 penalty or the ℓ21 penalty. This is done
in such a way to make the comparisons fair. For example, comparing the cost (13) of ℓ1-RRLS with
the cost (16) of ZA-RLS one can see that their cost is the same (for a small ǫ in ZA-RLS), therefore
they can adopt the same ρ. Then, when looking at the proposed cost (2), again the cost is the same
when ||h||1 = 1 (consider that the term with P−1(0) is also present in ℓ1-RRLS and ZA-RLS due to the
initialization step, although this term is not explicitly reported in the corresponding literature). In other
words, this benchmark study has been designed on purpose to make the parametric conditions fair for
all algorithms used in the testing.

In order to make the comparisons as consistent as possible, we will adopt the following settings:

• The initial values ĥ(0) and P (0), and the regularization parameter ρ are chosen the same for all
algorithms;

• We choose λ = 1 for ZA-RLS, in such a way that (16) is consistent with the proposed cost (2). How-
ever, we cannot choose λ = 1 for ℓ1-RRLS, otherwise this algorithm will degenerate to the standard RLS
(note that the term multiplying (1-λ) in (15) would disappear, resulting in a standard RLS). Therefore,
we will choose λ = 0.9999 for ℓ1-RRLS

4).

In addition, the results are averaged over 1000 random trials, in order to calculate an average perfor-
mance. The estimation performance is evaluated based on the ℓ1-norm and ℓ2-norm error with the true
parameters, defined as

||ĥFIN − h||1 (18)

||ĥFIN − h||2 (19)

where ĥFIN is the estimated ĥ after the final iteration. The norms (18)-(19) are also calculated based
on the average of 1000 independent trials.

The performance of all methods is tested in four aspects:
1) the effect of regularization parameter on the performance;
2) the effect of sparsity on the performance;
3) the effect of signal-to-noise ratio on the performance;
4) the convergence rate.

Effect of regularization parameter on the performance

We analyze the effect of the regularizing parameter ρ on different methods. The system to be identified
presents three circumstances: i) it has a total of 10 coefficients where 3 are nonzero; ii) it has a total of
10 coefficients where 5 are nonzero; iii) it has a total of 10 coefficients where 7 are nonzero. This is done
because increasing ρ increases the zero-attracting effect (driving the estimate towards zero). Therefore,
it is very relevant to test the zero-attracting effect for different levels of sparsity. The SNR is 3 dB in all
cases.

The results are shown in Table 1, Table 2 and Table 3. The parameters for the different algorithms
are chosen as below:

• RLS, ℓ1-RRLS, ZA-RLS, ℓ
2
1-RLS (proposed): P (0) = 103 × I, ĥ(0) = 0

• ℓ21-RLS (proposed), ZA-RLS: λ = 1,
• ℓ1-RRLS: λ = 0.9999.

The regularizing parameter changes from 0.1 up to 5. Except for the standard RLS, the performance
of ℓ21-RLS (proposed), ZA-RLS, and ℓ1-RRLS is sensitive to the regularizing parameter. This is because
a large parameter ρ increases the effect of attracting the estimate towards zero. It is worth mentioning

4) We have also tried other values for ℓ1-RRLS, such as λ = 0.99 or λ = 0.999, but we have experienced unstable behavior in

some scenarios. Therefore, we have eventually chosen λ = 0.9999 which gives a stable behaviour in all scenarios we tested.
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Table 1 Effect of regularizing parameter on performance (when K=3).

ℓ1-norm error ρ = 0.1 ρ = 0.5 ρ = 1 ρ = 1.5 ρ = 2 ρ = 5

RLS 0.1032 0.1032 0.1032 0.1032 0.1032 0.1032

ℓ1-RRLS 0.1036 0.1034 0.1031 0.1028 0.1025 0.1007

ZA-RLS 0.1030 0.1020 0.1008 0.0996 0.0984 0.0916

ℓ21-RLS (proposed) 0.1029 0.1019 0.1006 0.0994 0.0982 0.0922

ℓ2-norm error ρ = 0.1 ρ = 0.5 ρ = 1 ρ = 1.5 ρ = 2 ρ = 5

RLS 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400

ℓ1-RRLS 0.0401 0.0400 0.0399 0.0398 0.0397 0.0391

ZA-RLS 0.0399 0.0397 0.0393 0.0390 0.0387 0.0370

ℓ21-RLS (proposed) 0.0398 0.0396 0.0392 0.0389 0.0386 0.0368

Table 2 Effect of regularizing parameter on performance (when K=5).

ℓ1-norm error ρ = 0.1 ρ = 0.5 ρ = 1 ρ = 1.5 ρ = 2 ρ = 5

RLS 0.1032 0.1032 0.1032 0.1032 0.1032 0.1032

ℓ1-RRLS 0.1037 0.1035 0.1033 0.1032 0.1030 0.1020

ZA-RLS 0.1030 0.1022 0.1013 0.1005 0.0996 0.0948

ℓ21-RLS (proposed) 0.1029 0.1017 0.1002 0.0988 0.0976 0.0926

ℓ2-norm error ρ = 0.1 ρ = 0.5 ρ = 1 ρ = 1.5 ρ = 2 ρ = 5

RLS 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400

ℓ1-RRLS 0.0401 0.0401 0.0400 0.0399 0.0399 0.0395

ZA-RLS 0.0399 0.0397 0.0394 0.0392 0.0390 0.0378

ℓ21-RLS (proposed) 0.0398 0.0395 0.0391 0.0388 0.0384 0.0368

Table 3 Effect of regularizing parameter on performance (when K=7).

ℓ1-norm error ρ = 0.1 ρ = 0.5 ρ = 1 ρ = 1.5 ρ = 2 ρ = 5

RLS 0.1032 0.1032 0.1032 0.1032 0.1032 0.1032

ℓ1-RRLS 0.1037 0.1036 0.1035 0.1034 0.1034 0.1029

ZA-RLS 0.1031 0.1027 0.1022 0.1017 0.1012 0.0988

ℓ21-RLS (proposed) 0.1030 0.1020 0.1009 0.1000 0.0992 0.0979

ℓ2-norm error ρ = 0.1 ρ = 0.5 ρ = 1 ρ = 1.5 ρ = 2 ρ = 5

RLS 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400

ℓ1-RRLS 0.0401 0.0401 0.0401 0.0400 0.0400 0.0398

ZA-RLS 0.0399 0.0398 0.0397 0.0395 0.0394 0.0388

ℓ21-RLS (proposed) 0.0398 0.0396 0.0393 0.0391 0.0389 0.0385

that the zero-attracting effect is beneficial when the level of sparsity is large (e.g. K = 3): this is because
a lot tabs to be estimated are indeed zero. However, as the level of sparsity decreases (e.g. with K = 5
or K = 7), attracting the estimate towards zero is not necessarily beneficial, since many elements of h
are actually different than zero. This explains why ZA-RLS is good for ρ = 5 and K = 3, but it is
outperformed by the proposed ℓ21-RLS method when ρ = 5 and K = 5, K = 7. In other words, the
proposed ℓ21-RLS method seems to provide a good trade-off between attracting the estimate towards zero
and providing a good estimate.
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Effect of sparsity on the performance

The experiment dwells on the effects of the sparsity on the different methods. The sparse system to
be identified has a total of 10 tabs and we change the number of nonzero tabs K to change the level
of sparsity. The SNR is 3 dB in all cases. The number of nonzero coefficients varies from 1 to 9. The
parameters for the different algorithms are chosen as below:

• RLS, ℓ1-RRLS, ZA-RLS, ℓ
2
1-RLS (proposed): P (0) = 103 × I, ĥ(0) = 0, ρ = 1

• ℓ21-RLS (proposed), ZA-RLS: λ = 1,
• ℓ1-RRLS: λ = 0.9999.

The results presented in Table 4 demonstrate that the performance of the standard RLS is independent
of the system sparsity. On the other hand, the performance of ℓ1-RRLS and ZA-RLS degrades with a
decline in sparsity. The error of the proposed ℓ21-RLS method first decreases and then increases as the
number of nonzero terms increases, i.e. the performance seems to be best in the range 20-50% sparsity.
The proposed ℓ21-RLS method gives the best performance in all cases except when having only 1 non-zero
tab.

Table 4 Effect of number of non-zero tabs on performance

ℓ1-norm error K=1 K=3 K=5 K=7 K=9

RLS 0.1032 0.1032 0.1032 0.1032 0.1032

ℓ1-RRLS 0.1024 0.1031 0.1033 0.1035 0.1036

ZA-RLS 0.1001 0.1008 0.1013 0.1022 0.1029

ℓ21-RLS (proposed) 0.1019 0.1006 0.1002 0.1009 0.1022

ℓ2-norm error K=1 K=3 K=5 K=7 K=9

RLS 0.0400 0.0400 0.0400 0.0400 0.0400

ℓ1-RRLS 0.0397 0.0399 0.0400 0.0401 0.0401

ZA-RLS 0.0392 0.0393 0.0394 0.0397 0.0399

ℓ21-RLS (proposed) 0.0396 0.0392 0.0391 0.0393 0.0397

Effect of signal-to-noise ratio on the performance

This experiment compares the performance of the proposed ℓ21-RLS method, standard RLS, ℓ1-RRLS and
ZA-RLS under different SNR values. The underlying system has again a total of 10 coefficients where 3
are nonzero. The performance for SNR values of 1, 3, 5, 7 and 10 dB is shown in Table 5. The parameters
for the different algorithms are chosen as below:

• RLS, ℓ1-RRLS, ZA-RLS, ℓ
2
1-RLS (proposed): P (0) = 103 × I, ĥ(0) = 0, ρ = 1

• ℓ21-RLS (proposed), ZA-RLS: λ = 1,
• ℓ1-RRLS: λ = 0.9999.
Table 5 shows that the proposed ℓ21-RLS method behaves better in noisy situations, and it is only when

the signal-to-noise ratio is above 10 that ZA-RLS behaves as good as the proposed method.

Convergence rate

We finally investigate the learning rate of all the algorithms for different signal-to-noise ratios (similar
to Table 5). The figures show that all methods have a comparable trend (showing that all the methods
used for comparison are consistent with each other). The proposed method and ZA-RLS have the fastest
convergence, where the proposed method behaves a bit better in most scenarios.

Two main points can be identified regarding why the proposed algorithm can overcome some of the
tested state-of-the-art algorithms:

a) The first point is that all algorithms aim to minimize a cost which has no analytic solution in
general. Therefore, some approximation is necessary in order to find a minimum of the cost. The cost
and the approximation method we proposed (cf. (2) in Appendix A) is the one closest to Tikhonov
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Table 5 Effect of signal-to-noise ratio on performance.

ℓ1-norm error SNR=1 SNR=3 SNR=5 SNR=7 SNR=10

RLS 0.1299 0.1032 0.0820 0.0653 0.0461

ℓ1-RRLS 0.1299 0.1031 0.0818 0.0649 0.0457

ZA-RLS 0.1275 0.1008 0.0795 0.0630 0.0437

ℓ21-RLS (proposed) 0.1273 0.1006 0.0794 0.0629 0.0437

ℓ2-norm error SNR=1 SNR=3 SNR=5 SNR=7 SNR=10

RLS 0.0503 0.0400 0.0317 0.0252 0.0179

ℓ1-RRLS 0.0503 0.0399 0.0316 0.0252 0.0177

ZA-RLS 0.0497 0.0393 0.0311 0.0249 0.0172

ℓ21-RLS (proposed) 0.0496 0.0392 0.0310 0.0248 0.0172

regularization, the most standard formulation to address least-squares. This means that the proposed
ℓ21-RLS methodology is deeply rooted in a standard least-squares formulation.
b) The second point is that different algorithms differ regarding the way the cost is approximated, and

some assumptions are needed to perform such approximation. We have discussed that algorithms as
ℓ1-RLS, ℓ1-RRLS require 0 < λ < 1, which means that their approximations cannot work when λ = 1,
since they degenerate in the standard RLS. The proposed ℓ21-RLS approach is potentially applicable for
any value of 0 < λ 6 1 (upon minor modifications not shown in this wok), i.e. it can be adopted in more
general settings.

Because the proposed method behaves well in sparse and non-sparse scenarios, an interesting future
work is to dynamically change the size of the vector to be estimated, i.e., reduce or increase it online
depending on an estimated degree of sparsity. Also, adaptation of ρ is sometimes studied in the literature:
because our goal was to compare state-of-the-art algorithms under similar conditions (note that ℓ1-RRLS,
ZA-RLS do not use adaptation of ρ) we left the adaptation of ρ outside the scope of this work, which is
however a relevant topic amenable for future work.
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(a) SNR=1 (b) SNR=3

(c) SNR=5 (d) SNR=10

Figure 1 Learning curves (in terms of ℓ1-norm error) for RLS, ℓ1-RRLS, ZA-RLS, and proposed ℓ21-RLS.

(a) SNR=1 (b) SNR=3

(c) SNR=5 (d) SNR=10

Figure 2 Learning curves (in terms of ℓ2-norm error) for RLS, ℓ1-RRLS, ZA-RLS, and proposed ℓ21-RLS.


