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Objects, textures, and materials can be identified by ex-

tracting haptic interaction information [1,2]. For haptic ad-

jective understanding, Gao et al. [3] adopted deep models

as a unified way to learn information from vision and hap-

tics modalities. Nevertheless, this approach depends on a

transfer learning method designed for object classification.

Unlike feature learning methods, Chu et al. [4] designed a

hand-crafted feature, which is hand-designed and usually

has a clear physical meaning, to distinguish haptic adjec-

tives. In general, most scholars attempt to solve the abstract

and tortuous haptic problems with an entirely single-feature

extraction method: a hand-crafted feature or a learning fea-

ture. In this study, we attempt to fuse measurements to

avoid these defects based on a new sparse coding model.

Sparse coding [5] is the representation of the back neurons

by the strong activation of a relatively small group of pre-

ceding neurons and is widely used in unconventional unsu-

pervised learning methods. Sparse coding is a remarkable

tool for multimeasurement fusion that aims to find a com-

plete sparse representation of the input data. Sparse coding

tries to solve the primary problem:

min
x

‖y −Dx‖2
2
+ λ‖x‖1, (1)

where y ∈ R
m×1 is the original data, D ∈ R

m×n is the dic-

tionary matrix, x ∈ R
n×1 is the sparse coefficient vector, λ

is a hyperparameter, m < n, and ‖ ‖1 is the sum of absolute

values of elements in the vector x.

We divide haptic data such as in Figure 1 into scalar and

electrode array signals. Formally, the matrix SG ∈ R
dS×N

constituted by vectors comprising the features of scalar sig-

nals is derived as

SG =
[

S1,1,S2,1, . . . ,SN1,1, . . . ,SN2,2, . . . ,SNo,O

]

,

where G denotes the different haptic adjectives and N de-

notes the number of samples in the training set. In the same

way, the matrix EG ∈ R
dE×N constituted by vectors con-

sisting of the features of electrode array signals is defined

as

EG =
[

E1,1,E2,1, . . . ,EN1,1, . . . ,EN2,2, . . . ,ENo,O

]

.

The training set obtains N =
∑

Ni samples, where o indi-

cates the last object and Ni indicates the number of samples

of the i-th object. During the testing phase, all measure-

ments of the test sample are simultaneously entered into the

constructed classifier to obtain a common prediction label

that lies in {positive, negative}.

Generally, for multisensor information fusion, a sparse

coding method is used to attempt to solve the following op-

timization problem:

min
DS ,DE ,XS,XE

ΦR (DS ,DE ,XS ,XE) + ΦP (XS ,XE) ,

(2)

where ΦR (DS ,DE ,XS ,XE) = ‖SG −DSXS‖
2

F +

‖EG −DEXE‖2F , ΦP (XS ,XE) is the penalty term, which

contains a traditional sparse term and other penalty terms

in many studies. DS ∈ R
dS×K is the dictionary matrix for

scalar signals, and DE ∈ R
dE×K is the dictionary matrix

for electrode array signals. XS is the matrix comprising

sparse coefficient vectors of scalar signals in training sam-

ples, and XE is the matrix comprising sparse coefficient

vectors of electrode array signals in training samples.

We use two projection matrices that can perfectly project

raw features to a higher dimensional space:

SG → PT

S SG, EG → PT

E EG,

where PS ∈ R
dS×d and PE ∈ R

dE×d are the projection

matrices, PT

S PS = PT

E PE = Id, and d is the subspace

dimension. With the development of convex optimization

methods, this function can be easily solved by off-the-shelf

solvers. The reconstruction error term can be reconstructed

with projection matrices as

ΦR(D,XS ,XE)=
∥

∥

∥
PT

S SG−DXS

∥

∥

∥

2

F
+
∥

∥

∥
PT

E EG−DXE

∥

∥

∥

2

F
,

(3)
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Figure 1 (Color online) Haptic signals were recorded from a PR2 robot trial using two BioTac sensors installed in its left hand.

A single record contains pressure (PAC, PDC), temperature (TAC, TDC), and spatially distributed impedance-measuring electrodes

(E1:19), and each integrated process contains four exploratory procedures, including squeeze, hold, slow slide, and fast slide.

where D = [d1,d2, . . . ,dK ] ∈ R
d×K is a dictionary matrix

with d < K. The proposed fusion model can be defined as

the following optimization problem:

min
D,XS ,XE ,PS ,PE

ΦR (D,XS ,XE) + ΦP (XS ,XE) . (4)

‖dk‖2 6 1 is a typical constraint that can prevent obtaining

an oversized solution, and PT

S
PS = PT

E
PE = Id.

For our haptic adjective recognition model, the constraint

of the proposed fusion model can be defined as

ΦP (XS ,XE) = ∂ ‖[XS ,XE ]‖
1,1 + ΦL (XS ,XE) , (5)

where ‖[XS ,XE ]‖
1,1 is the sum of absolute values of ele-

ments in [XS ,XE ]. The label of training samples is defined

as

q∗,i =

{

+δ, when object i is labeled as positive,

−δ, when object i is labeled as negative,
(6)

where δ is a positive number usually set as one, and * refers

to any sample in object i. Labels of training samples can be

combined as

Q =
[

q1,1, q2,1, . . . , qN1,1, . . . , qN2,2, . . . , qNo,O

]

. (7)

Inspired by [6], we linearly transform all coefficient vectors

to a common label for pairing, which can be defined as

+ δ = WS,TxS,T = WT

E xE,T ,

− δ = WT

S xS,F = WT

E xE,F , (8)

where xS,T is the coefficient vector of scalar signals of any

positively labeled sample, and xS,F is the coefficient vector

of scalar signals of any negatively labeled sample. Similarly,

xE,T is the coefficient vector of electrode array signals of any

positively labeled sample, and xE,F is the coefficient vector

of electrode array signals of any negatively labeled sample.

According to the above discussion, the entire optimization

problem can be constructed as

min
D,XS ,XE ,PS ,PE

ΦR (D,XS ,XE) + ΦP (XS ,XE) ,

ΦR (D,XS ,XE) =
∥

∥

∥
PT

S SG −DXS

∥

∥

∥

2

F

+
∥

∥

∥
PT

EEG −DXE

∥

∥

∥

2

F
,

ΦP (XS ,XE) = ∂ ‖[XS ,XE ]‖
1,1

+ β

∥

∥

∥

∥

∥

[

Q

Q

]

−

[

WT

S XS

WT

EXE

]
∥

∥

∥

∥

∥

2

F

+ χ‖ [WS ,WE ] ‖2F , (9)

where ‖[WS ,WE ]‖2F can prevent the overfitting problem.

β and χ are weight parameters. The above approximation

solution can be obtained by iterating a process that immobi-

lizes different variables according to a fixed sequence. With

the optimal solution, D∗, W ∗

S
, W ∗

E
, P ∗

S
, and P ∗

E
are ob-

tained. With the feature sG of the scalar signal and the

feature eG of the electrode array signal of a testing sample,

the label l of the testing sample can be decided by

l =

{

positive, W ∗T

S
x∗

S
+W ∗T

E
x∗

E
> 0,

negative, W ∗T

S
x∗

S
+W ∗T

E
x∗

E
< 0.

(10)

Conclusion. Traditional methods cannot fuse multimodal

haptic measurements well; to solve this problem, we attempt

to translate multimodal sparse codes obtained using a uni-

fied dictionary into a shared label. The proposed model not

only preserves the original multimodal information but also

transforms the raw data into a shared feature space.
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