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Abstract The Hf0.5Zr0.5O2 (HZO)-based ferroelectric field-effect transistor (FeFET) synapse is a promis-

ing candidate for at-scale deep neural network (DNN) applications, because of its high symmetry, great

accuracy and fast operation speed. However, the degradation of the remanent polarization (Pr) over time

caused by the depolarization field has not been effectively resolved, greatly affecting the accuracy of the

trained DNN. In this study, we demonstrate a ferroelectric (FE)-resistive switching (RS) switchable synapse

using the FE mode for high-speed weight training and the RS mode for stable weight storage to overcome

accuracy degradation. The FE-RS hybrid characteristic is accomplished by an HZO-based metal-ferroelectric-

metal (MFM) capacitor with asymmetric electrodes, and the best FE endurance, as well as the most reliable

RS behavior, is demonstrated by testing several electrodes materials. High memory windows are achieved

in both FE and RS modes. Through this design, excellent accuracy is maintained over time, as verified by

network simulation.
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1 Introduction

Deep neural networks (DNNs) have been successfully demonstrated for artificial intelligence (AI) tasks,
such as text, image, and speech recognition [1]. With the exponential growth of the number of devices
required for ultralarge-scale data processing, transmitting and storing all the data would consume unaf-
fordable power and time budgets. One of the optimization directions is to use traditional logic devices,
developing edge-computing accelerators to preprocess data in place and transmitting only the most criti-
cal part of the data to the Cloud [2,3]. However, this method can mainly reduce the power consumption
in the neural network’s computation part. The power consumption of data transmission between the
off-chip memory (dynamic random-access memory (DRAM)) and registers is still as high as several watts
or even dozens of watts [4,5], even under a 14-nm process node. Thus, developing new computational de-
vices and architectures is particularly important. In-memory computing architectures based on emerging
nonvolatile memories (NVMs) can provide on-chip information computing and storage, which is promis-
ing for achieving edge systems with power consumption lower than 100 mW. This solution has high
requirements in terms of area, latency, power consumption, and device accuracy.
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Analog NVMs meet the requirements for on-chip weight training and storage for DNN acceleration.
Typical analog NVMs, such as resistive random-access memory (RRAM) and ferroelectric field-effect
transistor (FeFET), have been systematically studied. NVM’s optimizable characteristics for improved
synaptic performance include symmetry and linear conductance (to obtain more conductance states),
operation speed, and accuracy (parameter consistency). Woo et al. [6] proposed an AlOx/HfO2 bi-
layer RRAM array in the case of filament-type RRAM, but due to the lack of symmetry, there are few
available conductance states. While interfacial or multifilament-type RRAM, such as Pr0.7Ca0.3MnO3

(PCMO)-based interfacial RRAM devices [7], Ag+-ion-based conductive-bridge memristor devices [8], and
TaOx-based resistive synaptic arrays with super multistate (200 conductance states) [9], can overcome
the symmetry problem, the operation speeds become extremely slow due to the weak programming. To
our knowledge, the best synaptic performance of RRAM-based synapses was proposed by Li et al. [10].
The 128 × 64 memristor cross-bar array can demonstrate signal processing, image compression, and
convolutional filtering functions, but the parameter consistency issue remains unsolved. The parame-
ter consistency issue, which refers to the consistency in a single device during writing (here, the read
disturbance is not considered), mainly adversely affects the training process of DNNs and reduces the
accuracy of the algorithm (assuming that the read operation does not affect the stored state). Since the
consistency problem of RRAM devices is difficult to fundamentally solve, the only way to deal with it is
to train off-line and then infer on-line, and the price is a dramatic increase in power consumption.

When compared with RRAM-based synapses, the FeFET has inherent advantages in symmetry, op-
eration speed, and accuracy owing to the precise and fast partial polarization switching under the pro-
gramming electric field, which makes it a promising candidate for DNN applications [11, 12]. However,
the issue of Pr degradation over time resulting from field depolarization is a fatal flaw [13–16]. In ac-
tual network applications, the stored information is quantified as a weight; thus, even slight variations
ultimately decrease the accuracy of the entire network during the inference process [17,18]. Under these
circumstances, it is particularly important to address the Pr delegation over time in FeFET-based DNNs.
Unfortunately, Pr delegation is an inherent problem of FeFETs because of the field depolarization. In
filamentary RRAM, the resistance state remains relatively unchanged over time. If the advantages of
RRAM and FeFET can be combined, the overall performance of the on-chip DNN in both the training
and inference processes can be greatly improved.

In this study, we demonstrate an Hf0.5Zr0.5O2 (HZO)-based metal-ferroelectric-metal (MFM) capacitor
with asymmetric electrodes for the design of ferroelectric (FE)-resistive switching (RS) hybrid synapses.
The FE mode of the MFM capacitor, which is associated with an n-channel metal-oxide-semiconductor
field-effect transistor (MOSFET), is used for on-line weight training, while the RS mode is used for weight
storage (Figure 1). After investigating several top electrode (TE) metals with TiN bottom electrodes
(BEs), the best FE endurance and most reliable RS behavior were obtained. To realize key operations,
such as matrix products and weight updates, such synapses’ cell structures can be developed in a pseudo-
crossbar array. We stimulate the accuracy degradation of a DNN training a neural network on the
MNIST dataset by comparing the measured degradation speed of Pr and resistance states over time in
the capacitor. The results show that in the single FE mode, the DNN’s recognition accuracy drops to
<60% in 104 s. In contrast, there is almost no degradation in accuracy over time in the FE-RS hybrid
mode. The proposed synapse has great potential for on-line learning.

2 Results and discussion

The FE endurance performance of capacitors with different metal TEs was analyzed at 1 MHz for bipolar
cycle switching and 50 kHz for P-V measurement (Figure 2(a)), and the variation in P-V loops over
different cycle numbers is shown in Figure 2(b)–(g). The electrode materials, Pt, Pd, Ta, Ru, W and
Au, were selected based on the following considerations. First, the RS behavior in HZO films is based
on the valence change mechanism (VCM) of the oxygen vacancies [19–21], and the utilization of TiN
BEs to induce stable FE characteristics limits the redox reaction to occurring near the BE of the MFM
capacitor [22–25]. Thus, TEs must be chemically stable metals, meaning it is difficult for them to undergo
redox reactions. Second, the TE should not negatively affect the ferroelectricity; in other words, the TE
should have been proven to produce stable ferroelectricity in the literature. Finally, the compatibility
of material preparation with the standard complementary metal-oxide-semiconductor (CMOS) process
needs to be considered. For an intuitive demonstration, voltage was applied to the BE when exhibiting
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Figure 1 (Color online) Schematic diagram of synapse working principle. An HZO-based ferroelectric capacitor is connected

with a transistor in series. During the weight-training process, by verifying the programming pulse applied on the top electrode of

the ferroelectric capacitor, the partial polarization switching can carry out a gradual modulation to the channel and lead to the

accumulation, depletion or possible inversion (depending on the strength of the polarization control ability) state. Then during the

weight storage process, by switching the resistance state between high and low resistance states, the voltage drop on the gate will

make corresponding changes.

the electrical performance of a single capacitor. Due to the asymmetric electrode structure applied to
obtain RS characteristics, as well as the 8 nm film thickness, the HZO layers easily breakdown, and the
endurance limits of all samples are not outstanding compared to other reports. However, the endurance
limits of at least 108 cycles are basically equal to those of most reported ferroelectric capacitors [26–30]
and sufficient to meet the training time requirements.

Of all kinds of TE metals, Ta is the first to be excluded. Although the value of Pr for Ta is quite
large, its endurance performance is the worst. The large work function difference between Ta and TiN
(near 0.45 eV) leads to an asymmetrical Ec, and this large Ec may be one of the root causes of the poor
endurance [22]. In addition, Au is not applicable. Its initial P-V loop is anti-ferroelectric-liked with small
Pr, and its remarkable wake-up effect may affect the stability of the weights.

The RS characteristics of other samples need to be investigated. To guarantee the read margin of the
FE current, the high resistance state (HRS) current during RS operation must be low and not cover up
the FE current. The compliance current is one of the key factors that determine the reset states, and we
set it to a large value (1 mA) to achieve an exhaustive reset process [30]. As shown in Figure 3, capacitors
with Pt and Pd TE exhibit gradient reset processes with large memory windows; however, the other two
electrode metals cannot achieve similar functions. The capacitor with Ru TE exhibits a mutated reset
process and thus cannot achieve multi-value RS behavior by adjusting the reset voltage; additionally, the
RS memory window of the capacitor with W TE is too small. Based on the above investigations, Pt and
Pd are available for our FE-RS hybrid synapse.

The capacitors with Pt TEs demonstrate that the operation modes of FE and RS can be freely switched
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Figure 2 (Color online) Testing method and the FE endurance performance of HZO-based capacitors with TiN BE and different

TE metals. (a) The pulse frequency for bipolar switching stress cycling is 1 MHz, and the pulse frequency for P-V measurement

is 50 kHz. Capacitors with (b) Pt, (c) Pd, (d) Ta, (e) Ru, (f) W, and (g) Au TEs, respectively. (h) SEM section view image of a

TiN/HZO/Pt structured FE capacitor.

(Figure 4(a)). Here, we start from the FE operation, and the initial state shows a large Pr (2Pr approx-
imately 40), with coercive voltages at approximately −0.8 and 1 V, respectively. Then, during the first
RS operation, to ensure the formation of a strong conductive filament (CF) and a subsequent thorough
reset process, a 3 mA compliance current is applied. A thorough reset makes the capacitor return to the
HRS; thus, the leakage current does not cover the FE switching current. The FE and RS measurements
are operated one by one following the sequence of the blue arrow. The RS operations shown in the
lower figures in Figure 4(a) are cycled for 20 times, which demonstrate great stability and parametric
uniformity. Here we only show a part of data of the operation transformation, and the results are enough
to justify our findings. All the P-V loops during the operation transformation are assembled and show
great uniformity (Figure 4(b)), which demonstrates that the transformation does not interfere with the
original characteristics of the two operations. Based on the independent FE and RS operation modes,
the core function of our FE-RS hybrid synapse is implemented, and the ability of multi-times transfor-
mation enables the network to be retrained for different tasks. Considering the memory window, the
endurance performance, the multi-value operation ability, and the CMOS compatibility, Pt should be
the best choice for the TE metal. To investigate the crystalline properties and chemical composition of
the ferroelectric layers, a TiN/HZO/Pt structured capacitor was subject to high-resolution transmission
electron microscopy (HRTEM) imaging and energy dispersive X-ray spectroscopy (EDX) mapping (data
are not shown here). The HRTEM images prove that the HZO layer is polycrystalline with multiple
mixed phases. The component elements (including Pt, O, Hf, Zr, Ti, and N) were investigated by EDX
mapping. In the HZO layer, the component ratio of Hf and Zr approaches 1:1, and the fraction of Zr is
marginally greater. To determine the crystal phases of the HZO layers, a special aberration corrected
transmission electron microscope (AC-TEM) was used for higher resolution (Figure 5(a)), and the fast
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Figure 3 (Color online) RS cycling performance of HZO-based capacitors with TiN BE and different TE metals. Capacitors with

(a) Pt, (b) Pd, (c) Ru, and (d) W TEs, respectively.
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Figure 4 (Color online) Free transformation between ferroelectric and resistive-switch operation. (a) Transformation from fer-

roelectric to resistive-switching in turn. (b) All the P-V loops during the operation transformation are assembled and show great

uniformity, which demonstrates that the transformation does not interfere with the original characteristics of the two operations.

Fourier transform (FFT) patterns from the square areas of the TEM image were analyzed. The square
area is in accordance with the diffraction pattern of the orthorhombic phase (o-phase, space group Pca21)
with a zone axis [0 0 1], as displayed in Figure 5(b).

The TiN/HZO/Pt structured capacitor was used for all the following experiments. The P-V loops under
different polarization voltages show a precise and analogic Pr response (Figure 6(a)). After forming, the
RS memory window is greater than 3 orders of magnitude. The RS behavior between the high and
low resistance states can be achieved by adjusting the reset voltage (Figure 6(b)). With the multi-
value characteristics, this capacitor has the potential for analog synapse applications based on FE or
RS properties. To implement the function shown in Figure 1(a), which uses the FE mode for weight
training and the RS mode for weight storage, an n-channel MOSFET is connected to the MFM structured
capacitor in series (the width of the channel is 300 nm). The transfer and output characteristics of such a
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Figure 6 (Color online) Electrical performance of the TiN/HZO/Pt structured capacitor and corresponding FE-RS hybrid

synapse. (a) P-V loops under different polarization voltages; (b) the multivalue resistive-switching behaviors; (c) transfer char-

acteristics of a fresh MOSFET under different drain voltages; (d) output characteristics of a fresh MOSFET under different gate

voltages; (e) transfer characteristics of a 1T-1C series-connected device under different drain voltages; (f) different reset voltages

to achieve multivalue resistances and modulate the voltage drop on the gate with the modulation of drain current Id.

fresh transistor (T0) are shown in Figures 6(c) and (d), respectively. When the gate is connected to an FE
capacitor, the voltage applied on the capacitor (Vc) can modulate the threshold voltage (Vth) owing to the
effect of polarization (Figure 6(e)). Since the HRS of capacitor is much smaller than the gate resistance,
to amplify the regulation effect of the capacitor on the gate voltage during the RS process [31,32], another
transistor T1 is used to connect the bottom electrode of the capacitor with the source, and the channel
resistance of T1 is set to match the resistance of the capacitor. Here, we replace T1 with a 10 MΩ resistor,
and the operation voltage is applied to the TE of the capacitor. It should be emphasized that the reset
voltage polarity must be consistent with the polarization direction in assisting transistor turning on. Since
the minimum reset voltage is 1.5 V, which is larger than Ec, it can be supposed that during the reset
process with different operation voltages, the polarization directions of the capacitor are all saturated
and assist with the T0 turning on. The result of the modulation of the drain current by RS operation is
shown in Figure 6(f).

The transistors used in this study were fabricated based on the 180 nm process node, so the area of
the gate was much smaller than that of the MFM structured capacitor (50 µm × 50 µm). Based on poor
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Figure 7 (Color online) Remanent polarization response according to the programming pulse number. (a) Scheme 1: fixed pulse
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pulse width. Retention characteristics of the TiN/HZO/Pt capacitor: (d) FE and (e) RS operation. The circuit unit structure of

FE-RS hybrid synapses: (f) structure of the pseudo-crossbar array.

area matching, the retention of polarization in the capacitor can be extremely poor when it is connected
to the gate [33]. This means that the normal FeFET conductance behavior in response to multiple pulse
schemes cannot be measured (unless the area matching is optimized). Owing to the excellent scalability
of HfO2-based ferroelectric, we believe that area match problem can be easily solved. Therefore, since
we have proven that the connected FE capacitor can indeed modulate the Vth of T0, the polarization
characteristics in a single FE capacitor are used to represent the FeFET conductance responses in this
study. This substitution is a way of compromise to investigate the polarization degradation and its
effect to the recognition accuracy of DNN, but the difference between the polarization tuning and the
conductance tuning cannot be ignored.

By verifying the programming pulse schemes, we can obtain synaptic potentiation and depression
behaviors. There were three kinds of programming schemes, and all of them had 32 triangle pulses in
the potentiation and depression processes. In scheme 1, the pulse height and pulse width were fixed
at +1.21 V/−1.6 V and 500 ns. In scheme 2, the pulse height was fixed to the same value as that in
scheme 1, but the pulse width was modulated starting from 50 ns increase in steps of 50 ns. In scheme
3, the pulse width was fixed as in scheme 1, but the pulse height was modulated from +0.6 V/−1 V
increasing/decreasing in steps of 60 mV. All the values of pulse heights, pulse widths, and progressive
steps were the best values selected from many experiments that achieved the best results. As shown in
Figure 7(c), scheme 3 with a fixed pulse width and modulated pulse height displays the best linearity
and symmetry, which means that it is the most suitable programming scheme for synaptic behaviors.

Since the degradation of Pr over time is one of the most important factors inducing a recognition
accuracy decrease in FeFET-based DNNs, the degradation speed of the device in both FE and RS modes
was investigated, and the TiN/HZO/Pt structured capacitor was still used to represent the entire synapse.
The retention characteristics (at room temperature) of both the FE and RS modes were measured for
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Figure 8 (Color online) Simulation results. (a) The MNIST dataset trained on a neural network consists of three convolutional

layers and a fully-connected classifier for simulation. (b) The accuracy declines over time due to the effect of the retention properties.

103 s, and extended to 108 s (Figures 7(d) and (e)), in which the polarization shows an obvious decline over
time, while the resistance shows excellent stability. Figure 7(d) shows that the decay rates of polarization
over time are different when starting from different initial values (the middle values have faster decay
rates), and all the decay rates are extracted for the subsequent network simulation.

The cell structure of such FE-RS hybrid synapses can be developed in a pseudo-crossbar array, as
shown in Figure 7(f), to realize key operations such as matrix products and weight updates. The input
vector Vin is calculated through the weight matrix Gds and outputs Iout. WL1 is used to select specific
units to program, and the programming pulse is input through BL. The FeCap and series connected T0

are the core components to perform the FE and RS operations. To amplify the regulation effect of the
ferroelectric capacitor on the gate voltage, another MOSFET T1 is used to connect the bottom electrode
and the source. T1 is controlled by WL2; during the weight training process, it is turned off; then,
during the inference process, it is turned on, and the channel resistance should be adjusted to match
the resistance of the ferroelectric capacitor. Thus, such a 3T1C cell structure is the minimum size to
implement the FE-RS hybrid synapse. With the back-end-of-line (BEOL)-compatible FE capacitor, the
only extra area consumption compared to the minimum 2T FeFET-based DNN cells is for the transistor
T1.

To investigate the effect of Pr degradation over time on the accuracy of DNN over time, a neural
network consisting of three convolutional layers and a fully connected classifier was trained on MNIST
dataset for simulation. The feature maps of each layer were 64, 128 and 256. For better performance,
batch normalization and rectified linear units were applied (Figure 8(a)). We trained both a full-precision
model (for a single FE mode) and a 3-bit quantized model (for the FE-RS hybrid mode). In the single
FE mode, the polarization characteristics were used to represent the FeFET conductance response; thus,
the weights were analogous to [−1, 1] mapped to the polarization of [2, 20]. Based on the different decline
rates of different initial polarization values, we assumed that all devices in the network belong to the
fastest, slowest, and evenly distributed decline rates. In the FE-RS hybrid mode, to reduce the impact
of RRAM parameter variation, the analogically trained weights were quantized into 3-bit digital data.
In the full-precision model, the initial recognition accuracy reaches 99.46%, but according to the decline
rate category of devices in the network, the accuracy decreases significantly over time. In the worst case,
after 104 s, the accuracy degrades to less than 60%, which means that the network is no longer working.
In the quantized model, the initial recognition accuracy is slightly lower at 98.3%, but does not degrade
over time (Figure 8(b)).

3 Conclusion

In this study, an FE-RS hybrid synapse was demonstrated that overcame the accuracy degradation in
FeFET-based DNNs. The proposed device can be freely switched between the FE and RS modes. Several
TE metals were investigated to obtain the best FE endurance and most stable RS behavior. The quantized
model for the FE-RS hybrid mode shows an initial accuracy of up to 98.3% and does not degenerate over
time. According to existing reports, the optimized synapse adds only one additional transistor in area
consumption in a unit cell with almost no increase in power consumption, while the reliability in terms
of the recognition accuracy maintenance of the whole network is greatly improved. Therefore, the FE-RS
hybrid synapse proposed in this study has great value for in-memory computing applications.
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4 Experimental section

The HZO-based MFM capacitor was manufactured on SiO2/Si substrates with a TiN BE. An 8 nm atomic
layer deposited (ALD) HZO (Hf:Zr approximately 1:1) layer was deposited at 280◦C using TEMAH
(Hf[NCH2C2H5]4), TEMAZ (Zr[NCH3CH5]4) and H2O as the Hf, Zr and O precursors. To obtain stable
filamentary RRAM characteristics, an asymmetric electrode structure was applied, and all electrode
films were deposited by a sputtering system. The prepared capacitors were annealed at 500◦C in a
N2 environment for 30 s to induce ferroelectricity, and the cell size was 50 µm × 50 µm. The NMOS
transistors used in this paper are fabricated by 0.18 µm CMOS technology. The electrical characteristics
were tested by an Agilent B1500 semiconductor parameter analyzer with a B1530A generator unit module
and a radiant precision multiferroic II tester. The simulation of the effect of Pr degradation over time on
the accuracy of the DNN was trained in a neural network on MNIST dataset.
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