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Abstract As the traditional scaling of silicon metal-oxide-semiconductor field-effect transistors (MOS-

FETs) reaches its physical limit, research efforts on novel semiconductor devices are increasingly desired. To

enable the joint optimization of early-stage circuit design and process of novel devices, the rapid creation of

an accurate compact model of these devices with the capability to cover process variations is required. In

this work, a knowledge-based neural network (KNN) modeling method is proposed. This method separates

the geometrical variables from the other input variables of the device, where the geometrical variables are

modeled with physics-based analytical equations, while the remaining part is modeled by an artificial neu-

ral network. The KNN model takes advantage of the automated numerical fitting capability of the neural

network and the geometrical scalability from device physics. The created KNN model is first validated with

silicon MOSFET data from the industry standard BSIM6 and shows more than 20% accuracy improvement as

compared with the traditional neural network model. Furthermore, MoS2 field-effect transistors and circuits,

such as ring oscillators, standard cells, and logic functional circuits, are experimentally fabricated for model

verification. The results show that the KNN model is capable of predicting the electrical characteristics of

devices beyond the measurement geometry and facilitates the accurate simulations of statistical circuits with

respect to experimental data. This work paves the way for future circuit designs and simulations of novel

semiconductor devices.
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1 Introduction

Semiconductor devices are traditionally modeled by using analytical equations for circuit simulations.
However, as the devices approach the nanometer scale, the underlying physics of such devices becomes
much more complicated, making them difficult to be modeled with solely physics-based compact models.
In addition, the actual electrical properties of a device are case sensitive due to process variations [1].

In contrast, the neural network compact model can create high-accuracy numerical models with a short
turnaround time, which is critical for the joint optimization of early-stage design and technology for novel
devices based on emerging semiconductors [2–4]. However, many experiments have demonstrated that
the current neural network modeling method still suffers from several major limitations [5–7]. (1) The
accuracy of the created model typically depends on the number of available data, which increases the
burden of electrical measurements; and (2) the modeling method is entirely based on mathematical
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functions that lack physical meanings, which restricts the model scalability. In other words, the model
output that exceeds the range of the measured training data can be largely unphysical. This further
hinders statistical circuit simulations. Due to these drawbacks, the application of present neural network
modeling methods is limited.

In this work, a knowledge-based neural network (KNN) modeling method is proposed to alleviate
the aforementioned issues. To begin with, geometrical parameters of a transistor, such as the channel
width (W ) and length (L), are extracted according to a well-defined physical formula. Then, the formula
is multiplied by an artificial neural network (ANN). Hereafter, the traditional ANN modeling method
is referred to as “TNN”, in contrast to the new “KNN” method. The KNN method is formulated
and applied to silicon MOSFET and novel 2D material MoS2 FETs. Simulation results of the KNN-
based model match well with the experimental measurements in the device and circuit levels. It is also
demonstrated that the proposed method can achieve a higher accuracy with much less training data, as
compared with the TNN-based method. The proposed method also exhibits better scalability to enable
accurate statistical simulations.

2 Proposed modeling method and device fabrication

2.1 KNN modeling method

In the TNN device model, geometric variables (W,L, . . .) and electrical parameters (Vgs, Vds, . . .) are all
used as inputs to the neural network as in

Ids = F (W,L, . . . , Vgs, Vds, . . .). (1)

In this KNN method, the geometric variables are presented in one function, whereas the other input
variables, such as bias conditions, are presented in another function. Eq. (1) is rewritten as

Ids = g(W,L, . . .)f(Vgs, Vds, . . .). (2)

Therefore, geometric parameters, such asW and L, are first extracted in the KNN method as a function
g(W,L, . . .). The purpose of this preprocessing procedure is to separate the geometric parameters from
the other parameters. Then, the preprocessed device electrical characteristics, such as terminal current
Ids and charge Q as a function of the input bias voltage, are modeled by a multigradient neural network
algorithm [3] in the function f(Vgs, Vds, . . .). Finally, the extracted physical parameters W and L are
mapped back so that the drain current can be expressed as (2). As a general example, the relationship
between the drain current and geometric parameters (W and L) of a MOSFET is given by

g(W,L, . . .) = W a/Lb, (3)

where a and b are the fitting parameters and equal to 1 for the long-channel silicon MOSFET. By
considering the approximated layout effect and parasitic resistance, the drain current will be reduced to
some extent. Hence, a is usually smaller than 1. The parameter b is close to 0.5 in a ballistic transport
regime and close to 1 in a drift-diffusion transport regime [8,9]. Therefore, in our model, the values of a
and b are in the range between 0.5 and 1. When the geometric size of a MOSFET exceeds the range of
the training data, Eq. (3) can be used to ensure the physicality of the model output for the geometric
size exceeding the measurement data range.

2.2 MoS2 device fabrication

The devices are fabricated on a continuous monolayer MoS2 film on the wafer-scale sapphire substrate.
All electrodes (source/drain/gate) are patterned through regular photolithography. After patterning the
shape of the source and drain contacts, 40 nm Au is deposited with electronic beam (E-beam) evaporation.
CF4 plasma etching is performed to define the channel geometry, followed by the dielectric layer deposition
(2 nm SiO2 and 20 nm HfO2) using E-beam evaporation and atomic layer deposition. Finally, 40 nm
Au is deposited via E-beam evaporation to form top-gate electrodes following another lithography. For
the MoS2 circuit fabrication, an additional via hole layer between the source/drain contact and top-gate
electrodes is exercised. SF6 plasma etching is employed to define the via holes followed by the deposition
of 25 nm Au.
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Figure 1 (Color online) Comparisons of Ids-Vgs predicted results with the TNN and KNN for the devices with different W/L

(µm/µm): (a) 35/10 and (b) 100/10. Comparisons of the Cgg-Vg predicted results with the TNN and KNN for the devices with

different W/L (µm/µm): (c) 35/10 and (d) 100/10.

3 Results and discussion

3.1 Model verification with the traditional MOSFET

In this work, long-channel and short-channel silicon-based MOSFETs are considered to validate the KNN
modeling method. The length of the long-channel device is selected as 10 µm, while the length of the
short-channel device is 0.08 µm. The experimental training data are generated with the industry standard
silicon MOSFET BSIM6 model [10].

3.1.1 Long-channel MOSFETs

For the MOSFET with a channel length of 10 µm, the carrier’s transport mechanism is dominated by
drifts and diffusions. According to the KNN modeling method introduced in Subsection 2.1, a and b in
(3) take a value close to 1.

The data of MOSFETs with different W/L (µm/µm) (10/10, 20/10, 30/10, 40/10, and 50/10) are
used as training data for the TNN and KNN modeling methods, while the data of a MOSFET with W/L
(100/10) are used as the benchmark. Figures 1(a)–(d) show the fitting results of I-V and C-V with the
TNN and KNN methods. Both methods can effectively fit the I-V and C-V characteristics when the
W/L (µm/µm) is 35/10. However, when W/L is 100/10, the predicted results with the TNN method
seriously deviate from the target, with an average error of 22.27% for I-V and 29.24% for C-V . By
contrast, the average error with the KNN method is only 1.06% for I-V and 2.01% for C-V .

For the TNN, to obtain the electrical characteristics of different sizes, the corresponding data must be
incorporated into the neural network for training. The TNN model has very accurate prediction results
within the training range (e.g., W/L is 35 µm/10 µm), but it shows poor prediction accuracy out of the
training range (e.g., W/L is 100 µm/10 µm). The KNN combines the advantages of neural networks
and physical modeling, and achieves accurate fitting based on neural networks. Moreover, the KNN
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Figure 2 (Color online) Comparisons of the Ids-Vgs predicted results with the TNN and KNN for the devices with different W/L

(µm/µm): (a) 0.095/0.08 and (b) 0.2/0.08. Comparisons of the Cgg-Vg predicted results with the TNN and KNN for the devices

with different W/L (µm/µm): (c) 0.095/0.08 and (d) 0.2/0.08.

model can predict the data that are not involved in training by using physical methods. Therefore, more
accurate results can be obtained with the KNN method than the TNN method when the data are out of
the training data range.

3.1.2 Short-channel MOSFETs

For the MOSFET with a channel length of 0.08 µm, the layout proximity effect is prominent [11, 12],
and the electrical properties of a transistor will be less dependent on the geometric size. Under this
circumstance, the values of a and b in (3) should be chosen close to 0.5. The data of different W/L
(µm/µm) (0.08/0.08, 0.09/0.08, 0.1/0.08, 0.11/0.08, and 0.12/0.08) are used as training data to obtain
the TNN and KNN models, and the data of W/L (µm/µm) (0.2/0.08) are used as the benchmark. In
Figures 2(a)–(d), the fitting results of the TNN and KNN to the I-V and C-V data generated from the
BSIM6 model are compared.

Figure 2(a) shows that the two methods can accurately capture the results for the MOSFET with
W/L (µm/µm) of 0.095/0.08, where the values of W and L fall into the training data range. However, as
Figure 2(b) demonstrates that for the MOSFET with W/L (µm/µm) of 0.2/0.08, where the values of W
and L are out of the training data range, the KNN can still efficiently model the benchmark data, while
the TNN significantly deviates, especially for the on-state drive current. Compared with the benchmark
data, the TNN method shows an average error of 34.07% for I-V and 13.80% for C-V , whereas for the
KNN method, the average error is only 8.73% for I-V and 3.29% for C-V .

Similar to the long-channel MOSFET, in the short-channel MOSFET, the TNN cannot fit the data
with W/L of 0.2 µm/0.08 µm, which is not included in the training data. However, the KNN can not
only fit the data within the training range (e.g., W/L is 0.095 µm/0.08 µm) but also predict the data out
of the training range (e.g., W/L is 0.2 µm/0.08 µm). Therefore, the KNN method is much more scalable
than the TNN method outside the training data range for the short-channel MOSFET.
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Figure 3 (Color online) Comparisons of the results simulated by circuits with the TNN and KNN for devices with different W/L

(µm/µm). (a) Schematic diagram of a two-stage inverter chain; (b) average delay of the Monte Carlo simulation vs. different W/L

MOSFETs; (c) schematic diagram of a 17-stage ring oscillator circuit; (d) delay per stage vs. device model with different W/L.

3.1.3 Benchmark in circuit simulation

To further test the KNN method on the circuit level, we perform a statistical Monte Carlo simulation
[13, 14] in a ring oscillator (RO) circuit for silicon CMOS, and the simulation results are presented in
Figure 3.

In the Monte Carlo simulation, five sets of devices with W/L (µm/µm) (20/10, 40/10, 60/10, 80/10,
and 100/10) are considered. The standard deviation of W and L is assumed to be 3%. The variations of
W and L are given by (4), where Ran is a random value following the Gaussian distribution and in the
range between −1 and 1.

∆Size = 0.03×Ran × Size, Size ∈ (W,L). (4)

Twenty samples are used in the Monte Carlo simulation. The input signal enters a two-stage inverter
chain, and then the delay between the output and input is obtained. Figure 3(a) shows the schematic
circuit of the inverter chain, and Figure 3(b) shows the relationship between the average delays of the
Monte Carlo simulation with different W/L. For MOSFETs with W/L of 20/10 and 40/10, the circuit
delays resulting from the TNN and KNN methods match well with the benchmark simulations. However,
when W/L exceeds the training data range, the accuracy of the TNN method seriously deteriorates.
Especially for W/L of 100/10, the TNN method predicts the data with an error of 36.18%, while the
KNN method can predict the data with an error of only 1.18%. The model is implemented in Verilog-A
code, and a 17-stage RO is used for simulation to test the model. The schematic diagram is shown in
Figure 3(c). Figure 3(d) demonstrates the delay of each inverter in the RO circuit versus the predictions
obtained with the TNN and KNN methods for different W/L MOSFETs. The findings show that the
KNN method can predict the data with great accuracy when W/L is 100/10. The KNN method has a
10% improvement in accuracy as compared with the TNN method.

3.2 Application of the model in MoS2 FETs and circuits

As silicon-based MOSFET scales down to its physical limit, novel MOSFETs with new materials and/or
new structures have emerged [15–18]. Among these novel devices, semiconductive transitional metal
dichalcogenides, especially molybdenum disulfide (MoS2), have attracted great attention in the academic
and industrial communities [19–23]. Therefore, it is meaningful to demonstrate our modeling methodology
and its simulation capability on experimentally fabricated MoS2 FETs.
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Figure 4 (Color online) (a) Schematic diagram of a MoS2 FET. (b) Raman and (c) PL spectra for the monolayer MoS2.
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Figure 5 (Color online) Model of the MoS2 FET based on the KNN method. Fitting results with the KNN method for the Ids-Vgs

data of the MoS2 MOSFET. The geometric sizes W/L (µm/µm) are (a) 60/40, (b) 90/20, and (c) 30/20. (d) Fitting results with

the KNN method for the C-V data of the MoS2 MOSFET. Wand L are 30 and 20 µm, respectively.

The schematic diagram of a MoS2FET is shown in Figure 4(a), where the channel is monolayer MoS2,
the source and drain electrodes are 40 nm Au, and the insulating layer is 20 nm HfO2 The MoS2 film is
characterized by Raman and photoluminescence (PL) spectroscopy. The Raman spectrum in Figure 4(b)
shows that the difference between E1

2g and A1g peaks is approximately 19 cm−1, indicating that the MoS2
film is one layer. The PL spectrum displayed in Figure 4(c) exhibits an A-exciton peak of 1.875 eV,
which is consistent with the direct bandgap of the monolayer MoS2 film. The electrical characterizations
of MoS2 MOSFETs and circuits are performed with an Agilent B1500A semiconductor analyzer. To
investigate the dynamic response of the circuit units and RO, the input signals are generated by an
Agilent 33622A arbitrary waveform generator, and the output signals are captured by a RIGOL DS1054Z
digital oscilloscope and an Agilent B1500A semiconductor analyzer. Three sets of W/L (µm/µm) (30/20,
90/20, and 60/40) are involved. Among them, the data of 60/40 and 90/20 are used for modeling, while
the data of 30/20 are used for model validation.

The fitting results with the KNN method are shown in Figures 5(a)–(d). The KNN methods can fit
the data of the MoS2 MOSFETs with W/L (60/40, 90/20), as demonstrated in Figures 5(a) and (b).
Moreover, when W/L is 30/20, which is out of the measurement data range, the output results obtained
by the KNN method can still match the experimental results with the minimum error, as presented in
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Figure 6 (Color online) Statistical comparison between the modeling and experimental data. (a) Optical photograph of the MoS2

MOSFET with W/L (30/20); (b) Ids-Vgs characteristics of 30 samples; (c) probability density distribution of the saturation current

(Id sat); (d) probability density distribution of the threshold voltage (Vth).

Figure 5(c). To test the validity of the KNN method for the C-V characteristics of the MoS2 MOSFET,
the data of the MoS2 MOSFET with W/L (30/20) are fitted. The model results are presented in Fig-
ure 5(d), which agree well with the experimental results. The geometric parameters, such as the length
and width, may vary to some extent due to fabrication process variations and lead to the variation of
the device’s electrical characteristics. The variations of the electrical characteristics with respect to the
skewness of the geometric parameters are modeled with the KNN method, and the results are compared
with other experimental results [24, 25]. A total of 30 samples are used, and the skew ratios of W , L,
threshold voltage (Vth), and carrier mobility (µn) are 1%.

Figure 6 statistically compares the modeling and experimental data for MoS2FETs. Figure 6(a) shows
the optical photograph of MoS2FETs with W/L of 30/20. Figure 6(b) presents the experimental data and
KNN predicted results of Ids-Vgscharacteristics for 30 MoS2MOSFETs. Here, W/L(µm/µm) of 30/20 is
out of the KNN training data range. The Ids-Vgs characteristics modeled by the KNN match quite well
with the experimental data when W and L are assumed to be the variation sources. The probability den-
sity function represents the random variable’s probability distribution, and the expectation and deviation
values are represented with λ and σ, respectively. As revealed in Figures 6(c) and (d), the uniformity
of the saturation current Id sat and threshold voltage Vth predicted with the KNN method are compared
with those from the experiments. The KNN predicts that the average Id sat of the MoS2MOSFETs is
0.1683 µA with a deviation of 0.0125 µA, while the experiments show that the average Id sat is 0.1679 µA
with a deviation of 0.0180 µA. As for Vth of the MoS2 MOSFETs, the KNN prediction and experiments
for the average values are 1.365 and 1.348 V, and those for the deviation values are 0.058 and 0.041 V,
respectively. The average values of Id sat and Vth predicted with the KNN are close to those of the exper-
iments, and the errors are less than 2%. However, the modeling results for the deviation values of Id sat

and Vth do not match well with the experiment. The reason may be that other variation sources, such
as the Schottky barrier and gate dielectric uniformity, are not considered in the current KNN modeling
method [26, 27].

Furthermore, statistical comparisons between the model and experiments are performed for logic cir-
cuits based on MoS2 FETs. The optical photograph and schematic views of the MoS2 inverter are shown
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Figure 7 (Color online) Inverter based on MoS2 FETs: (a) optical photograph, (b) schematic, and (c) simulation and experimental
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Figure 8 (Color online) Optical photograph, truth tables, measurement, and simulation results (results m: measurement results

(in yellow); results s: simulation results (in green)) for four basic logic circuits. (a) NAND, (b) NOR, (c) DFF, and (d) HALF-

ADDER.

in Figures 7(a) and (b). The transfer characteristics are generated with 30 samples from the experiments
and compared with the simulation outputs from the Monte Carlo simulations based on the KNN models,
as shown in Figure 7(c), which show good agreement. Figure 7(d) shows the statistical distribution of the
switching threshold voltages (STVs). The simulated average value of the STV is 0.637 V, while that of
the experiments is 0.567 V. The deviation values of the STV for the simulation and experiments are 0.123
and 0.117 V, respectively. This difference is possibly caused by variation sources, such as gate dielectric
variations, in the experiment that has not been counted in the model. Figures 7(e) and (f) show the



Qi G D, et al. Sci China Inf Sci February 2023 Vol. 66 122405:9

optical photograph and schematic views of the five-stage MoS2 RO. The output results generated with
the experiment and simulation are shown in Figure 7(g). The experiments show that the frequency of
the RO circuit is 19.5 kHz, while the simulated frequency of the circuit is 19.9 kHz, which is in good
agreement. This finding validates the accuracy of the KNN device model.

To pave the way for the MoS2 FETs and corresponding KNN models for more general digital circuits
designs, four basic logic cells based on the MoS2 FETs are fabricated and simulated with KNN in this
work, as shown in Figure 8. Figures 8(a)–(d) show the optical photograph, truth tables, and measured
and simulated waveforms of the NAND, NOR, D flip-flop (DFF) cell, and HALF-ADDER circuits. The
simulation results agree well with the experimental data for all cases, which further validates that the
KNN model can be used for future 2D material FET circuit simulation and design efforts.

4 Conclusion

In this work, a device compact model based on the KNN methodology was proposed. The KNN combines
the physical behavior of device geometrical scaling with the ANN fitting capability. This methodology can
greatly improve the accuracy and scalability of the TNN method and further enable accurate statistical
simulations due to geometrical variations. First, the KNN methodology is validated with silicon MOSFET
data generated with the industrial standard BSIM6. Then, it is validated against novel MoS2 FETs and
circuits. All the model results agree well with the experiments. The results demonstrate that the KNN
can not only capture the electrical characteristics of devices and circuits in great precision but also be
suitable for statistical analysis using Monte Carlo simulations. This work provides a feasible solution for
fast, compact modeling of novel semiconductor devices, which may facilitate the joint optimization of the
early-stage circuit design and process technology.

Acknowledgements This work was supported in part by National Key Research and Development Program (Grant No. 2021YFA-

1200500), Innovation Program of Shanghai Municipal Education Commission (Grant No. 2021-01-07-00-07-E00077), Shanghai

Municipal Science and Technology Commission (Grant No. 21DZ1100900), Shanghai Pujiang Program (Grant No. 20PJ1400900),

Natural Science Foundation of Shanghai (Grant No. 22ZR1403500), and Young Scientist Project of MOE Innovation Platform.

References

1 Kuhn K. Variability in nanoscale CMOS technology. Sci China Inf Sci, 2011, 54: 936–945

2 Wang J, Kim Y H, Ryu J, et al. Artificial neural network-based compact modeling methodology for advanced transistors.

IEEE Trans Electron Devices, 2021, 68: 1318–1325

3 Yang Q H, Qi G D, Gan W Z, et al. Transistor compact model based on multigradient neural network and its application in

SPICE circuit simulations for gate-all-around Si cold source FETs. IEEE Trans Electron Devices, 2021, 68: 4181–4188

4 Xu J J, Yagoub M C E, Ding R T, et al. Exact adjoint sensitivity analysis for neural-based microwave modeling and design.

IEEE Trans Microwave Theor Techn, 2003, 51: 226–237

5 Abo-Elhadeed A F. Modeling ballistic double gate MOSFETs using neural networks approach. In: Proceedings of the 8th

Spanish Conference on Electron Devices, 2011. 1–4

6 Fang M, He J, Zhang X K, et al. Neural network method to model nanoscale MOSFET characteristics. J Comput Theor

Nanosci, 2012, 9: 2037–2041

7 Lamamra K, Berrah S. Modeling of MOSFET transistor by MLP Neural Networks. In: Proceedings of International Conference

on Electrical Engineering and Control Applications, 2017. 407–415

8 Martinie S, Le Carval G, Munteanu D, et al. Impact of ballistic and quasi-ballistic transport on performances of double-gate

MOSFET-based circuits. IEEE Trans Electron Dev, 2008, 55: 2443–2453

9 Natori K. Ballistic metal-oxide-semiconductor field effect transistor. J Appl Phys, 1994, 76: 4879–4890

10 Agarwal H, Gupta C, Dey S, et al. Anomalous transconductance in long channel halo implanted MOSFETs: analysis and

modeling. IEEE Trans Electron Dev, 2017, 64: 376–383

11 Aikawa H, Sanuki T, Sakata A, et al. Compact model for layout dependent variability. In: Proceedings of IEEE International

Electron Devices Meeting, 2009. 1–4

12 Choi Y S, Lian G, Vartuli C, et al. Layout variation effects in advanced MOSFETs: STI-induced embedded SiGe strain

relaxation and dual-stress-liner boundary proximity effect. IEEE Trans Electron Dev, 2010, 57: 2886–2891

13 Frank D J, Laux S E, Fischetti M V. Monte Carlo simulation of a 30 nm dual-gate MOSFET: how short can Si go?

In: Proceedings of International Technical Digest on Electron Devices Meeting, 1992. 553–556

14 Chow J C L, Leung M K K. Monte Carlo simulation of MOSFET dosimeter for electron backscatter using the GEANT4 code.

Med Phys, 2008, 35: 2383–2390

15 Desai S B, Madhvapathy S R, Sachid A B, et al. MoS2 transistors with 1-nanometer gate lengths. Science, 2016, 354: 99–102

16 Theis T N, Solomon P M. It’s time to reinvent the transistor! Science, 2010, 327: 1600–1601

17 Franklin A D. Nanomaterials in transistors: from high-performance to thin-film applications. Science, 2015, 349: 2750

https://doi.org/10.1007/s11432-011-4219-6
https://doi.org/10.1109/TED.2020.3048918
https://doi.org/10.1109/TED.2021.3093376
https://doi.org/10.1109/TMTT.2002.806910
https://doi.org/10.1166/jctn.2012.2611
https://doi.org/10.1109/TED.2008.927656
https://doi.org/10.1063/1.357263
https://doi.org/10.1109/TED.2016.2640279
https://doi.org/10.1109/TED.2010.2066567
https://doi.org/10.1118/1.2924221
https://doi.org/10.1126/science.aah4698
https://doi.org/10.1126/science.1187597
https://doi.org/10.1126/science.aab2750


Qi G D, et al. Sci China Inf Sci February 2023 Vol. 66 122405:10

18 Lundstrom M. Moore’s law forever? Science, 2003, 299: 210–211

19 Yu L, El-Damak D, Radhakrishna U, et al. Design, modeling, and fabrication of chemical vapor deposition grown MoS2

circuits with E-mode FETs for large-area electronics. Nano Lett, 2016, 16: 6349–6356

20 Chen X Y, Xie Y F, Sheng Y C, et al. Wafer-scale functional circuits based on two dimensional semiconductors with fabrication

optimized by machine learning. Nat Commun, 2021, 12: 5953

21 Ma S L, Wu T X, Chen X Y, et al. An artificial neural network chip based on two-dimensional semiconductor. Sci Bull, 2022,

67: 270–277

22 Li X F, Gao T T, Wu Y Q. Development of two-dimensional materials for electronic applications. Sci China Inf Sci, 2016, 59:

061405

23 Tang H W, Zhang H M, Chen X Y, et al. Recent progress in devices and circuits based on wafer-scale transition metal

dichalcogenides. Sci China Inf Sci, 2019, 62: 220401

24 Wang R S, Yu T, Huang R, et al. Impacts of short-channel effects on the random threshold voltage variation in nanoscale

transistors. Sci China Inf Sci, 2013, 56: 062403

25 Takeuchi K, Fukai T, Tsunomura T, et al. Understanding random threshold voltage fluctuation by comparing multiple fabs

and technologies. In: Proceedings of IEEE International Electron Devices Meeting, 2007. 467–470

26 Chen J R, Odenthal P M, Swartz A G, et al. Control of Schottky barriers in single layer MoS2 transistors with ferromagnetic

contacts. Nano Lett, 2013, 13: 3106–3110

27 Kaushik N, Nipane A, Basheer F, et al. Schottky barrier heights for Au and Pd contacts to MoS2. Appl Phys Lett, 2014,

105: 113505

https://doi.org/10.1126/science.1079567
https://doi.org/10.1021/acs.nanolett.6b02739
https://doi.org/10.1038/s41467-021-26230-x
https://doi.org/10.1016/j.scib.2021.10.005
https://doi.org/10.1007/s11432-016-5559-z
https://doi.org/10.1007/s11432-019-2651-x
https://doi.org/10.1007/s11432-013-4814-9
https://doi.org/10.1021/nl4010157
https://doi.org/10.1063/1.4895767

	Introduction
	Proposed modeling method and device fabrication
	KNN modeling method
	MoS2 device fabrication

	Results and discussion
	Model verification with the traditional MOSFET
	Long-channel MOSFETs
	Short-channel MOSFETs
	Benchmark in circuit simulation

	Application of the model in MoS2 FETs and circuits

	Conclusion

