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Abstract As the main topic in modern scientific computing and machine learning tasks, matrix equation

solving is suffering high computational latency and tremendous power consumption due to the frequent data

movement in traditional von Neumann computers. Although the in-memory computing paradigms have

shown the potential to accelerate the execution of solving matrix equations, the existing memristive matrix

equation solvers are still limited by the low system versatility and low computation precision of the memristor

arrays. In this work, we demonstrate a hybrid architecture for accurate, as well as efficient, matrix equation

solving problems, where the memristive crossbar arrays are used for the parallel vector-matrix multiplication

and the digital computer for accuracy. The linear neural-network solving (NNS) method is adopted here

and its versatility for various types of matrix equations is proved. The weight-slice computation method

is developed to perform the analog matrix multiplication with high efficiency and high robustness in the

array. The solution results confirmed that typical matrix equations can be solved by this memristive matrix

equation solver with high accuracy. Further performance benchmarking demonstrates that the generalized

memristive matrix equation solver has low solving time-complexity while outperforming the state-of-the-art

CMOS and in-memory processors.
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1 Introduction

Matrix equation solving has become a fundamental problem in the mathematical field and plays an
essential role in various modern data-intensive computation applications including machine learning,
scientific computing [1]. Matrix equations in these real-world workloads involve two types according to
the shape of the coefficient matrix A (m × n). For example, the coefficient matrices in the scientific
computing problems are usually squared and non-singular ones (m = n) while they are non-squared ones
(m 6= n) in other tasks like machine learning and compress sensing. The shape of the coefficient matrix
affects the solution process greatly, thus various mathematical solving algorithms have been developed.
Typically, these matrix equations solving methods rely on performing matrix factorizations or iterative
matrix multiplications in traditional von Neumann computers [2,3]. However, the performance of the von-
Neumann computer is challenged by the high-power consumption and high latency of data communication
between the memory and computing unit. This makes the solutions of matrix equations computationally
expensive in energy efficiency as the matrix dimension increases dramatically.

In-memory computing with emerging memristors has shown a remarkable potential to break through
the communication bottleneck in von Neumann architecture. In the crossbar architecture, a memristor
array can naturally execute a one-step multiple-and-accumulate (MAC) operation with high parallelism
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based on Ohm’s law and Kirchhoff’s law [4–6]. Previous studies have revealed the great acceleration
for matrix equation solving in memristor crossbar arrays, including the mixed-precision solver [7], the
generalized partial differential equation solver [8], and the one-step analog solver [9]. However, these
memristive matrix equation solvers are still facing the limitation of low system versatility for diverse
scenes as they are specifically designed for the matrix equations with non-singular coefficient matrices
and the situation of non-squared coefficient matrices is less considered. Besides, solving matrix equations
typically requires high MAC precision (at least 7-bit) [7, 8]. The memristor array, despite that, can only
perform low-precision MAC (typically < 5 bit) [6,7] due to the existence of device non-ideal factors, and
the existing precision improvement methods always lead to a significant reduction in energy efficiency [7,8].
Thus, the design of a generalized matrix equation solving method which provides high precision and energy
efficiency is in demand.

In this work, we proposed a generalized memristive matrix equation solver (GMMS), which utilizes
the linear neural network solving (NNS) method to efficiently obtain the solution for the typical types
of matrix equations. A hybrid system architecture is designed based on the mixed-precision strategy
and the quantization techniques to get the acceleration of NNS. Moreover, a weight-slicing computation
(WSC) is developed to perform the analog matrix-multiplication with high accuracy and high robustness.
It is confirmed in simulation that the solution of typical matrix equations (including the non-singular
matrix equation, rank-deficient problem, overdetermined problem, and underdetermined problem) can
approach the analytical results automatically in our GMMS. Further evaluations exhibit low computation
complexity and high matrix-multiplication efficiency of the solver, which indicates that the GMMS can
be effectively used to process matrix equation intensive workloads in hardware.

2 Solving method and system architecture

A generalized matrix equation can be described as follows:

A ·X = B, (1)

where A is an m× n coefficient matrix, and B is the known result matrix with the shape of m× k. The
X is an n× k matrix to be solved. The solution of the matrix equation is determined by the size of the
coefficient matrix A: (1) m = n, if A is a non-singular matrix, this matrix has a unique solution. On the
contrary, if A is a rank-deficient matrix, we need to find the optimal solution for the matrix equation.
(2) m 6= n, we need to find the optimal solution for both overdetermined (m > n) and underdetermined
(m < n) problems. Different matrix equations generally have their special mathematical methods to
obtain better solutions, for instance, the iteration method like the Jacobi method is typically used for
non-singular problems, while the pseudo-inverse method is employed for the overdetermined ones. These
methods ensure the effectiveness of understanding but reduce the solving versatility in the hardware
system. Generalized matrix equation solvers are eagerly required to handle various applications. In this
work, an NNS method reported in [10] is discussed in detail to investigate its general ability for various
types of matrix equations. The main theory of NNS is that an approximate solution of the matrix
equations can be obtained by optimizing the residual error ε0 = ‖AX − B‖F, where ‖ · ‖F denotes the
Frobenius-norm of the matrix [3]. The neural network is considered to be a well-performing optimizer
and the optimization of the residual error can be performed by the training process of the neural network
where A is the training input and B is the target (Figure 1(a)). To match the pattern of the training,
Eq. (1) is rewritten as

[A1, A2, . . . , Am]TX = [B1, B2, . . . , Bm]T, (2)

where Ai and Bi indicate the row vectors of matrix A and B, respectively. Ai (i = 1, 2, . . . , n) will be
put in the network continuously before the solution being updated. The updating rule is determined by
the gradient descent method and shown as follows:

Xn+1 = Xn + lr · AT · (B − a ·Xn), (3)

where lr is the pre-set update rate. Notably, matrix solving only involves the linear transformation such
that the nonlinear activation function is not required.

Furthermore, to accelerate the solving process, a hybrid system is developed for the hardware im-
plementation of NNS which combines the high accuracy digital computer and the parallel memristor
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Figure 1 (Color online) Generalized memristive matrix equation solver (GMMS). (a) The solver utilizes the neural network to

provide the approximate solution of matrix equations; (b) the designed hybrid architecture to implement the great acceleration of

the NNS; (c) the weight-slice computation method for MAC with high accuracy and high efficiency.

arrays [11]. The computational intensive VMM operations are performed efficiently in the fixed-point
precision crossbar arrays in parallel. The other operations, which require high precision like solution
update, are achieved by the floating-point digital processor. This hybrid system, as well as the solving
method, is named GMMS. Thus, this hybrid system gets compromise between high accuracy and high
efficiency to solve the typical matrix equations. To solve the matrix equation AX = B in the GMMS,
the coefficient matrix A is quantized and transferred to the MAC unit, and the matrix multiplication
result B̂n will be feedback to the digital computer. The digital computer determines whether the itera-
tion should be terminated by pre-set tolerance ε. Then the updating matrix is calculated by the digital
computer and transferred to the memristor array. The device conductance will be reprogrammed by the
voltage pulses using the fast programming method [12]. When the iteration ends, the solution matrix X

is obtained and in situ stored in the array (Figure 1(b)).

In order to obtain more accurate results in the crossbar array, the bit-slice method is adopted and
developed here. Multiple states storage in the memristor array brings higher computation efficiency
while reducing the accuracy of the stored data due to the non-ideal factors of the memristor. It is
noticeable that the partial error of the most significant bit (MSB) data will lead to a more serious overall
error during the computing when compared with the least significant bit (LSB) one. Taking the accuracy
and efficiency into consideration at the same time, a WSC method is proposed to improve the MAC
precision with high computation efficiency. The p-bit signed number is mapped to m-bit memristors
(p > m) by the given MSB of the (p − 1)-bit effective data using the binary code, as the binary code
is commonly considered can provide higher accuracy. The LSB data ((p− 2)-bit) are mapped by giving
each memristor an l-bit data (l < m, l can divide (p − 1)) to promise the computing efficiency (Figure
1(c)). Every two columns of memristors are connected and take the difference between two elements by
G = G+−G− to map the sign-bit. Notably, the effective-bit of input An is mapped to voltage in the same
way and the signed-bit is presented by the voltage polarity. For MAC operation, the input data will be
converted to the voltage values by a digital-to-analog converter (DAC) array and the analog computation
results will be converted to the digital values by the analog-to-digital converter (ADC) array. The final
MAC results will be provided by the shift-and-add operation based on the binary arithmetic rule.

3 Matrix equation solving with squared coefficient matrix

Squared coefficient matrices, which have the highest solution requirements, are employed to estimate
the performance of GMMS. The squared coefficient matrices (m = n) have two types according to their
ranks: (1) full rank squared coefficient matrices and their solution can be derived by X = A−1 ·B, where
A−1 is the inverse matrix of A; (2) rank-deficient matrices, which do not have unique solutions, and need
to find the optimal solution that meets the conditions in the solution space.
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Figure 2 (Color online) (a) Recorded iteration operations under different MAC precision for solving approximate inverse of the

covariance problem; (b) comparison of the computing error to calculate the inner dot product of the template vector under different

MAC precision; (c) the result of element-by-element multiplication ûn · un against the exact value un · un; (d) impact of reducing

the ADC resolution for the LSB chip; (e) solution of the covariance matrix inverse problem, also with the absolute error to the

analytical value; (f) absolute error distribution of the predicated identity matrix to the analytical identity matrix.

3.1 Non-singular matrix equation

The performance of the GMMS to solve the matrix equation with a non-singular coefficient matrix is
evaluated by solving the inverse matrix equation AX = I. Here A is an m×m non-singular matrix and I

is an identity matrix with the same shape as A. The solution matrix X is equivalent to the inverse matrix
A−1, which is unique for a certain non-singular matrix A. Here, we considered a 32 × 32 second-order
model covariance matrix as the matrix A to present the real-world problems [13], where

Ai,j =





1

|i− j|2 , if i 6= j,

1 +
√
i, if i = j.

(4)

The main influential factors which will affect the solutions of GMMS, including the WSC precision,
the write noise of the data storage, and the conditional number of matrix A, are discussed in detail.

3.1.1 WSC precision

We first estimate the solver performance under different fixed-point MAC precision. In our simulation,
the computation precision of the LSB array is set to 3-bit, and the fixed-point computation precision
is extended to INT 5 and INT 8 by the cooperation of the MSB array with one or two LSB arrays,
respectively. Here, the resolution of the DAC and the device conductance-states are both 3-bit which is
commonly seen in memristive analog computing units [6,14]. The memristive device on/off ratio was set
to 103 to guarantee the binary computation accuracy [15]. Figure 2(a) shows that the solution under INT
8 can achieve lower residual error compared with the solution under INT 5. Moreover, the convergence of
the solution under INT 8 MAC can be approximated to the situation under full precision MAC. Figure
2(b) presents the computation error to calculate ‖A‖F with different MAC precision when compared with
the full-precision MAC. It turns out that the MAC error for INT 5 is 50 times higher than INT 8. Here,

the error is defined as Error = ‖A‖F − ‖̂A‖F where ‖A‖F is the full-precision result and the ‖̂A‖F is the
WSC result. Figure 2(c) shows the result of element-by-element multiplication ûn · un plotted against the
exact value un ·un, where un is the matrix element of A . These results illustrate that when quantization
accuracy cannot fit the data effectively, the MAC error will increase significantly, and makes it difficult
for GMMS to converge. Moreover, the required ADC resolution for analog-to-digital conversion was also
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Figure 3 (Color online) (a) Matrix multiplication accuracy comparison between the proposed WSC and the conventional

MAC method; (b) comparison of the proposed WSC method with the conventional MAC method to solve the matrix equation;

(c) accuracy comparison of the INT 5 WSC method with the INT 8 WSC to solve the matrix equation; (d) accuracy comparison

of INT 5 WSC to solve the matrix equation under different lr.

estimated. The simulation result shows that the required ADC resolution should not be 2-bit lower than
the full-precision conversion resolution for the LSB array (Figure 2(d)) and should be equivalent to the
full-precision conversion resolution for the MSB array. The full-precision analog-to-digital conversion of
a memristor-based MAC unit is [8]

bADC = bDAC + bM + log2 j, (5)

where bDAC is the bit-resolution of the DAC, bM is the bit-resolution of the memristor (device conductance
states), and j is the column number of the device array. Thus, in our simulation, the ADC resolution

should not be lower than 10-bit. Figure 2(e) shows the solution Â−1 obtained by GMMS and the absolute
error to the analytical A−1 value of the model covariance inverse problem. The absolute error between
the predicated Î = Â−1A and the analytical I is shown in Figure 2(f).

3.1.2 Write-noise

Next, the impact of the conductance write noise, which is considered to be a major issue to reduce the
MAC accuracy is discussed. Here, we used the WSC and the conventional MAC method [6, 14, 16] to
calculate the ‖A‖F under INT 5 precision. The absolute error distribution under 10% write noise within
100 testing cycles demonstrates that the impact of the write-noise has been strongly reduced by the WSC
method (Figure 3(a)). The system robustness has been estimated in the covariance matrix inverse solving
test, and the simulation result indicates that introducing WSC enables the GMMS to better converge
under larger write-noise (Figure 3(b)). Further simulations show that the WSC method can also be
effective when applied to higher computation precision (Figure 3(c)). Moreover, we provide two methods
to further reduce the impact of the conductance write-noise: (1) using the binary-code to map the front
q-bit (q < p − 2) of the LSB data is capable to improve the GMMS robustness, but it will reduce the



Li J C, et al. Sci China Inf Sci February 2023 Vol. 66 122402:6

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

N
u
m

er
ic

al
 v

al
u
e

Analytical value

Gauss-Jordan elimination

MMS 

Condition number: 3.27

Precision: INT 8

Write noise: 10%

Residual error: 0.01

−0.4 0.0 0.4 0.8 1.2

−0.4

0.0

0.4

0.8

1.2

N
u
m

er
ic

al
 v

al
u
e

Analytical value

Gauss-Jordan elimination

MMS

Condition number: 10.02

Precision: INT 8

Write noise: 10%

Residual error: 0.15

−1.0 −0.5 0.0 0.5 1.0 1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

N
u
m

er
ic

al
 v

al
u
e

Analytical value

Gauss-Jordan elimination

MMS

Condition number: 28.6

Precision: INT 8

Write noise: 10%

Residual error: 0.65

−4 −2 0 2 4

−4

−2

0

2

4

N
u
m

er
ic

al
 v

al
u
e

Analytical value

Gauss-Jordan elimination

MMS

Condition number: 39.48

Precision: INT 8

Write noise: 10%

Residual error: 0.80

(a) (b)

(c) (d)

Figure 4 (Color online) The impact of the matrix condition number for solving matrix inverse. For 3 × 3 matrices composed of

discrete values with different condition numbers of (a) k = 3.27, (b) k = 10.03, (c) k = 28.60, and (d) k = 39.48.

MAC efficiency; (2) the MAC error can be described by e = A ·Xn − Â ·Xn, where Â ·Xn is the MAC
result of the crossbar array. Thus, appropriately reducing the learning rate can make the system achieve
better convergence since the solution update error lr · e will be smaller during the iterations. Notably,
reducing the lr will increase the iteration cost.

3.1.3 Matrix condition number

Moreover, the matrix condition which is regarded as a critical issue that affects the solution accuracy
was also discussed [17]. Suppose that the INT 8 WSC is used to guarantee the MAC precision, while the
conductance write noise is set to 10%. It must be noted that the same settings of WSC precision and
write noise will be used in the subsequent solving tests. Here, the maximum iteration numbers are set
to 250. Figure 4 shows the results for solving matrix inverse using the GMMS with different condition
numbers (see Appendix B). The solution error significantly increased and the simulated digital value was
crucially offset from the analytical value obtained by the Gauss-Jordan elimination. The simulation result
points out that a matrix with a large condition number substantially reduces system robustness against
the device write noise. For a matrix with an extremely high condition number (known as ill-conditioned
matrix), additional strategies such as increasing the iteration cycles, using higher-precision WSC, and
utilizing the iterative refinement method should be introduced [7], which can help GMMS to be used as
the approximate matrix inverse preconditioner [18].

3.2 Rank-deficient matrix equation

Typically, it is difficult to solve rank-deficient problems which have an infinitude of solutions. Mathemat-
ically, the minimum-norm least-square (MNLS) solution of the problem is commonly required [19]. To
solve the optimal solution of the rank-deficient problems, not only the optimization of the residual error
is required, but also the minimum norm solution stands in need. Here, a matrix equation contains a 3×3
rank-deficient matrix is used as a benchmark (see Appendix B). Simulation results indicate that the resid-
ual error will be optimized by the GMMS in the iterative process and eventually converge (Figure 5(a)).
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Figure 5 (Color online) Solving rank-deficient problems. (a) Recorded convergence of the residual error for solving the proposed

rank-deficient problem; (b) comparison of the GMMS solution with the MNLS solution of the proposed rank-deficient problem.

The average relative error between the analytical MNLS solution and the GMMS solution is 0.7%, which
demonstrates that the GMMS can also optimize the matrix norm during the iterations and provide a
reliable approximate MNLS solution (Figure 5(b)).

4 Matrix equation solving with non-squared coefficient matrix

The previous simulation has analyzed the effectiveness of using GMMS to solve the matrix equations with
square coefficient matrices. Here, we prefer to discuss the effectiveness of GMMS for the matrix equations
with non-squared coefficient matrices. According to the shape of matrix A, the matrix equations can be
divided as (1) the overdetermined problem for m > n, and (2) the underdetermined problem for m < n.

4.1 Overdetermined problem

For the overdetermined problems, it is often required to find the least-square (LSQ) solution of the
problem, which can be derived by X = AT ·A−1 · AT · B [20]. Here, an overdetermined matrix equation
obtained from a polynomial curve fitting problem is used for a toy test. The polynomial function can be
illustrated as

y(c, w) = w0 + w1X + · · ·+ wMXM =

M∑

j=0

wjX
j , (6)

where M is the order of the polynomial, and xj denotes x raised to the power of j. Note that, although
(6) is a nonlinear model, the polynomial coefficients W = (w0, . . . , wM )T can be obtained by solving
linear matrix equations with nonlinear factors. A 5-point dataset (see Appendix B) is used for a 3-order
polynomial curve fitting demonstration. Figure 6(a) shows that the average absolute error between the
analytical parameter and the GMMS based one is 0.0017, and the residual error has been optimized
to 0.015 within 500 cycles (Figure 6(b)). This demonstration represents the capability of the GMMS
to perform higher-precision solutions of the overdetermined matrix equation applications. Thus, the
GMMS can further be used to implement the overdetermined matrix equation-based machine learning
workloads including the linear-regression, classification, and even to training the output layers of a neural
network [21] since these tasks commonly have a higher tolerance for solution errors.

4.2 Underdetermined problem

The underdetermined problems require finding the MNLS solution while the equation is a consistent linear
system. Here, a matrix equation AX = B with the 4 × 2 coefficient matrix is used for solving test (see
Appendix B). Figure 6(c) shows the iterations of GMMS to solve these underdetermined problems, where
the residual error has been reduced to less than 0.5. The solution obtained by GMMS has approached
the analytical MNLS value and the average absolute error has been reduced to 0.055 (Figure 6(d)). The
simulation results show that, for the consistent underdetermined problems, the GMMS solution can only
approach the analytical MNLS solution when the residual error approximates zero, this is the reason to
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problem; (d) comparison of the GMMS solution with the MNLS solution of the proposed underdetermined problem.
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Figure 7 (Color online) Solution time-complexity estimation. (a) Recorded convergence of the residual error for solving matrix

inverse under different matrix dimensions; (b) the fitting curve for the number of iteration steps y and the matrix dimension x.

require higher iterations for solving underdetermined problems. Moreover, the conductance write noise
has been shown to influence the accuracy of the underdetermined problems. Thus, according to the
previous analysis, we suggest using higher precision WSC to reduce the influence of conductance write
noise. It has to be mentioned that, although GMMS is capable to process the real-world underdetermined
workloads such as the combinational optimization [22]. For some underdetermined matrix equation
workloads, such as compress sensing, it is required to optimize the l1-norm of the solution matrix to find
the sparse solution of the equation [23]. The usage of GMMS was limited in these applications, as GMMS
optimized the Frobenius-norm during the solution process.
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Figure 8 (Color online) Performance benchmarking. (a) Illustration of the SPICE simulation circuit utilized to simulate the

read current errors. The line resistance is set to 0.2 Ω (considered a prospected implementation in 65 nm CMOS technology and a

device pitch of 600 nm) and N is the crossbar size [28]; (b) the relationship between the read current error with the crossbar size;

(c) the performance of the single memristor array under different ADC sampling frequencies; (d) robustness comparison of the

WSC method and 2-based bit-slice method, the conductance variation is 10%; (e) performance comparison.

5 Performance benchmark and discussion

Here, the overall performance of GMMS is further estimated. Figure 7(a) shows the convergence of the
residual error when solving the matrix inverse with different dimensions. The testing matrices are obtained
from a one-dimensional heat equation (see Appendix B) [24]. Figure 6(b) presents the fitting curve for
the number of iteration steps y and the matrix dimension x which obeys y ≈ 4.95 lnx + 6.90. Time
complexity to execute the matrix-multiplication is approximate O(n) in the crossbar array [25]. Thus,
the time-complexity for solving matrix inverse by GMMS is approximate to O(n lnn). For comparison,
the time-complexity for solving matrix inverse in a digital computer is approximate to O(n3). This
result indicates the great acceleration of GMMS for solving matrix equations. Notably, the iteration cost
corresponds to the ε, lr, WSC precision, and the matrix condition number. Thus, for situations requiring
a large number of iterations, device endurance might be a critical issue for the practical use of GMMS.
Further simulation for the solution updating during the solving process indicates that introducing the
mixed-precision strategy can strongly reduce the frequency of the reprogrammed operation for devices,
which relieves the pressure of the solution operation on the endurance of the device (see Appendix A).
Moreover, according to the mixed-precision techniques [26], we suggest the MAC precision of WSC is
INT 8, which is capable to guaranteed both the solution accuracy and computation efficiency for typical
equations. For the matrix equations that are hard to converge such as the ill-conditioned problems and
the overdetermined problems, we suggest the solution should be performed under INT 16 MAC precision.
Besides that, to take the advantages of parallel computing, we suggest using GMMS for the equations
AX = B while B are matrices.

Furthermore, the performance of the WSC MAC unit was estimated. The supposed memristors model
is from [27]. We use the SPICE simulation to estimate the impact of the line resistance to the read-out
current error. Figure 8(a) shows the SPICE circuit utilized to simulate the read current errors. The
simulation result indicates that the relative error of the read current will be higher than 1%, while the
crossbar size larger than 64×64 (Figure 8(b)). Thus, we supposed the crossbar size is 64×64. Therefore,
the power consumption of the memristive devices is 0.052 mW in an operations cycle (considering the
influence of the line resistance and the line parasitic capacitance [28]). 64 of 22 nm DACs are needed
to activate an array and the power consumption of DACs is 0.76 pJ [8]. The utilized transimpedance
amplifier (TIA) has fGBW = 28.6 MHz and consumes 36 µW [28]. To make a single crossbar array
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unit achieve the best performance, the sampling frequency of the ADCs is chosen to be 10 MHz, where
the overall energy efficiency of a single MAC core is 13.6 TOPS/W (Figure 8(c)). The performance of
WSC to calculate the MAC with INT 5 and INT 8 precision is evaluated to be 7.65 and 2.43 TOPS/W.
For comparison, the energy efficiency of the most advanced CMOS processor (Google TPU) to perform
8-bit computation is 2.3 TOPS/W [29]. Moreover, the evaluation points out the 2.25× performance
improvement of WSC over bit-slice in-memory MAC method [8] to execute the same precision MAC,
while the systems robustness to conductance write noise is similar (Figure 8(d) and (e)). Notably, we
used a stand-alone ADC at each column of the memristor array in our estimation, using the shared ADCs
or array ADCs [30, 31] can further improve the performance of the memristor-based system and reduce
the area consumption.

6 Conclusion

In summary, a GMMS using analog memristors is demonstrated in simulation to provide an efficient
solution for the typical matrix-equation-based workloads. The mixed-precision method and a robustness-
motivated fixed-point computation method are introduced to overcome the precision-limitation and the
computation variability of the analog MAC unit. Our results elucidate that the solver can provide an ac-
curate solution with high versatility, high robustness, low time-complexity, and high matrix-multiplication
efficiency for solving matrix equations. We believe this method is promising for memristor-based analog
computing to accelerate real-world matrix equation-intensive tasks.
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