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Abstract Information exchange between a microgrid central controller and local controllers is supported

by low-bandwidth communication channels, leading to an inevitable delay with time-varying characteristics

that adversely affect the microgrid dynamics and even cause instability. This study addresses the problem of

stability analysis for a load frequency control (LFC) microgrid system with the interval time-varying delay.

First, a modeling approach is proposed for the cyber-physical microgrid, in which the physical interconnection

between the cyber-physical components is established. Given that a quadratic function is often introduced

in stability analysis and the negative determination is crucial to reducing the conservatism, a novel quadratic

convex framework with adjustable free parameters that relaxes the quadratic function negative-determination

conditions is developed. Next, the delay-dependent stability criterion of the cyber-physical LFC microgrid is

obtained on the basis of augmented Lyapunov-Krasovskii functional and Bessel-Legendre inequality together

with mixed convex combination techniques. This reduces the conservatism without requiring extra decision

variables. Finally, two types of case studies demonstrate the merits of the proposed scheme.
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1 Introduction

A microgrid is a group of distributed energy resources, including renewable energy sources (RESs) and
energy storage systems, together with plus loads that operate locally as a single controllable entity [1–3].
A microgrid contains different types of microsources, such as the gas-based microturbine, wind turbine,
solar photovoltaic (PV) panel, fuel cell (FC), and electrolyzer system (ES). The load generally consists of
a residential or small-scale industrial load. With the growing deployment of RESs, the stability analysis
and control of microgrid systems have become increasingly active [4]. Frequency regulation is a major
concern, and the load frequency control (LFC) strategy is effectively used to guarantee a stable operation
of microgrid systems with an expected frequency [5].

To achieve the ultimate goal of stable operation with a desirable frequency, a hierarchical control
structure that includes a micro-grid central controller (MGCC) and local controllers (LCs) is used [6].
Information exchange in such a control structure is performed through an open communication net-
work [7–12]. Such a cyberinfrastructure brings out a considerable time delay in transmission that ad-
versely affects the microgrid dynamics and even causes instability [13–16]. Most of the existing studies
on the implementation of a conventional LFC strategy for microgrids generally ignore the delay mainly
because the characteristic equation of the microgrid system with time delay is exponentially transcendent
with infinite-dimensional characteristics, and difficult to analyze.

At present, few studies have considered the time delay and computed the stability delay margin. They
are classified into two types. One type treats the time delay in the microgrid LFC system as a constant
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value, and analyzes the system performance based on the frequency domain analytical method [17]. Such
an exact approach can be used to obtain the accurate value of the delay margin. However, the delay
is actually time-varying within an interval for a given transmission control protocol/Internet protocol
(TCP/IP)-based communication channel. The other type focuses on proposing a stability condition of
the cyber-physical LFC microgrid with time-varying delay using Lyapunov-Krasovskii functional (LKF)
with the following developments and shortcomings [18–21].

• In terms of the problem considered, most results depend on the known information regarding the
delay derivative, leading to several limitations. When it involves unknown bounds of the delay derivative
or fast-varying delay in the microgrid, the abovementioned results will no longer be applicable. In
addition, all of the abovementioned studies assumed that the lower bound of delay would be 0. In fact,
such an assumption is very peculiar in an actual microgrid.

• In terms of specific implementation technology, the key mainly lies in the development of different
LKFs (e.g., augmented LKF [22], multiintegral-based LKF [23], delay-product-type LKF [24,25], matrix-
refined-function-based LKF [26]) and the inequality techniques for estimating the LKF derivatives (see
Jensen inequality [27], Wirtinger-based inequality [28], auxiliary-based inequality [29], free-weighting-
matrix approach [30], and Bessel-Legendre (B-L)-based inequality [31]). However, for the stability of
a cyber-physical LFC time-delay microgrid system, there is still no perfect way to deal with the time-
varying delay or the obtained stability criteria are more conservative. These two aspects motivate the
current research.

Among the abovementioned approaches, the high-order B-L inequality together with appropriate LKFs
has the potential to reduce conservatism. Sometimes for the constructed functionals to contain more
information regarding the time delay and the coupling matrix, some quadratic terms of the delay are
introduced, which may also appear in the LKF derivatives. The following main technical difficulties arise:
(1) how to determine the negativity conditions of the quadratic function for obtaining the tractable linear
matrix inequality (LMI)-based stability criteria, and (2) if it is possible to relax the quadratic function
negative-determination conditions such that they are conducive to obtaining the stability criteria with
less conservatism for a cyber-physical LFC microgrid system.

In response to the abovementioned motivations and difficulties, the main contributions of this study
are highlighted as follows. (1) The stability analysis of a cyber-physical LFC microgrid with interval
time-varying delay, i.e., d(t) ∈ [d1, d2], where d1 > 0 is the lower bound of the communication delay
and d2 is the admitted maximum delay bound (AMDB) without losing asymptotic stability, is presented.
Notably, no knowledge of the ḋ(t) boundary is acquired here. (2) A parameter-adjustable quadratic convex
framework is developed to relax the quadratic function negative-determination conditions. (3) Using the
augmented LKF and the second-order B-L inequality together with mixed convex combination techniques,
the delay-dependent stability criteria of the cyber-physical LFC microgrid are obtained, which reduces
the conservatism without requiring additional decision variables. Finally, simulations are conducted on
a well-known numerical example and the LFC microgrid example. The relationship between the AMDB
and MGCC gain is explored, which guides the selection of the microgrid controller. In addition, the
superiority of this article’s approach is demonstrated by comparing it with the representative methods.

The remaining paper is organized as follows. The LFC microgrid model is proposed in Section 2, and
the development of a novel quadratic convex framework is presented in Section 3. New stability analysis
criteria are derived in Section 4, and simulation results are provided in Section 5. Finally, the conclusion
is presented in Section 6.

Notations. Rn denotes the n-dimensional Euclidean space and R
m×n, Sn, and S

n
+ are the sets of m×n

real matrices, n×n real symmetric matrices and n×n symmetric positive definite matrices, respectively.
“T” and “−1” represent the transpose and inverse of a matrix, respectively. “∗” represents the term
induced by symmetry in a symmetric matrix. col{·} denotes a block-column matrix. diag{·} denotes a
block-diagonal matrix. I is an identity matrix, and sym{A} stands for A+AT.

2 Cyber-physical LFC microgrid model

A major challenge in the microgrid system is the integration of communication and control, which is
usually called a cyber-physical energy system. The embedded network monitors and controls the physical
process through the feedback loop and the physical process affects the calculation and vice versa. This
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Figure 1 (Color online) The structure of the cyber-physical LFC microgrid model.

Table 1 Notations and descriptions

Notation Description

∆f Deviation of frequency

∆Pes Output of electrolyzer system

∆Pfc Output of fuel cell

∆Pmt Change in output power

∆Pl Disturbance of load

M Moment of inertia of generator

D Damping constant of generator

Res Gain of electrolyzer system

Tes Time constant of electrolyzer system

Rfc Gain of fuel cell

Tfc Time constant of fuel cell

Rmt Drop characteristics of the micro-turbine

Rpl Proportional gain of local controller

Ril Integral gain of local controller

Rpc Proportional gain of central controller

Ric Integral gain of central controller

study proposes a cyber-physical system modeling approach for the microgrid. Figure 1 presents the block
diagram and Table 1 gives the notations.

As shown in Figure 1, the dynamic model of cyber-physical microgrid system is described as follows:

˙
Ric

∫

∆fdt = Ric∆f, (1a)

∆Ṗfc = −
1

Tfc
∆Pfc +

Rfc

Tfc
∆f, (1b)

∆Ṗes = −
1

Tes
∆Pes +

Res

Tes
∆f, (1c)

∆ḟ =
1

M
∆Pmt +

1

M
∆Pfc −

1

M
∆Pes −

D

M
∆f, (1d)

∆Ṗmt =
1

1 +Rpl

{(
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1

MRmt

)

∆Pmt+

(

Rpl

Tfc
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1

MRmt

)
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(
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Rpl

Tes
+Ril +

1
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)
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(

−
RplRfc

Tfc
+

RplRes

Tes
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D
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−RilRic

∫

∆f(t− d(t))dt−
RpcRpl

M
∆Pm(t− d(t))
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−
RpcRpl

M
∆Pfc(t− d(t)) +

RpcRpl

M
∆Pes(t− d(t))

+

(

RpcRplD

M
−RpcRil −RicRpl

)

∆f(t− d(t))

}

. (1e)

Defining the system state vector as x(t) = [Ric

∫

∆fdt, ∆Pmt, ∆Pfc, ∆Pes, ∆f ]T and according to
(1), the state-space model of the cyber-physical LFC microgrid is given below [18, 21]:

{

ẋ(t) = Ax(t) +Adx(t− d(t)) + F∆P ′
l ,

x(t) = φ(t), t ∈ [−d2, 0],
(2)

where
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(
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[
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,

ad,21 = −aRil, ad,22 = ad,23 = −ad,24 = −a
RpcRpl

M
,

ad,25 = a

(

RpcRplD

M
−RpcRil −RicRpl

)

, (3)

and φ(t) denotes the initial condition. The time-varying delay d(t) satisfies 0 6 d1 6 d(t) , τ 6 d2 with
d1, d2 being constants and d12 , d2 − d1. According to [32, 33], external interference does not affect the
internal stability. Therefore, F∆P ′

l can be ignored for the stability analysis of the cyber-physical LFC
microgrid with time-varying delay.

Since the quadratic function is usually introduced in the stability analysis, and the determination of
its negative definite condition is the key to reducing the conservatism, the next goal is to provide a
novel quadratic convex framework for relaxing the quadratic function negative-determination condition.
Furthermore, we will derive new stability criteria for the cyber-physical LFC microgrid system.

3 A quadratic convex framework with bigger freedom

The novel quadratic convex framework is developed to find negativity conditions of quadratic functions
with bigger freedom. It is important to obtain less conservative results in sequel.

Lemma 1. For a2, a1, a0 ∈ R, αMm ∈ [0, 1],m = 1, 2, . . . ,M , where M is a positive integer, a quadratic
function f(τ) = a2τ

2 + a1τ + a0 < 0, ∀τ ∈ [d1, d2] holds true if the following conditions are satisfied:

C1i = f(di) < 0, i = 1, 2, (4)

C13 = −
α2
Mm

M2
d212a2 + f

(

d1 +
m− 1

M
d12

)

< 0, (5)

C14 = −
(1− αMm)2

M2
d212a2 + f

(

d1 +
m

M
d12

)

< 0. (6)

Proof. In the case of a2 > 0, f(τ) is a convex function. It is clear as shown in Figure 2(a) that condition
(4) guarantees f(τ) < 0 for τ ∈ [d1, d2].
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Figure 2 (Color online) Negative definite conditions of the quadratic function. (a) The case of a2 > 0; (b) general case of a2 < 0;

(c) special case of a2 < 0.

In the case of a2 < 0, f(τ) is a concave function. The delay interval [d1, d2] can be divided into M

subintervals [d1 +
m−1
M

d12, d1 +
m
M
d12], m = 1, 2, . . . ,M , i.e.,

[d1, d2] ,

[
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)

∪

[

d1 +
1

M
d12, d1 +

2

M
d12

)

∪ · · · ∪

[

d1 +
M − 1

M
d12, d2

]

, (7)

and then f(τ) can be represented as a piecewise function fm(τ), τ ∈ [d1 +
m−1
M

d12, d1 +
m
M
d12], i.e.,

f(τ) =



























f1(τ), τ ∈
[

d1, d1 +
1
M
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)

,

f2(τ), τ ∈
[
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1
M
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2
M
d12

)

,

...

fM (τ), τ ∈
[

d1 +
M−1
M

d12, d2
]

.

(8)

Let τ0 ∈ [d1+
m−1
M

d12, d1+
m
M
d12] be any constant. The following equation is clearly true from Figures

2(b) and (c):

fm(τ) 6 ḟ(τ0)(τ − τ0) + f(τ0)

= (2a2τ0 + a1)τ − a2τ
2
0 + a0

, gm(τ). (9)

It is found that the tangent line gm(τ) is a linear function. Then fm(τ) 6 gm(τ) < 0 will hold for
τ ∈ [d1 +

m−1
M

d12, d1 +
m
M
d12], i.e., f(τ) 6 g(τ) < 0 will hold for τ ∈ [d1, d2], if the following hold:

gm

(

d1 +
m− 1

M
d12

)

= 2a2τ0d1 + a1d1 + 2a2τ0
m− 1

M
d12

+ a1
m− 1

M
d12 − a2τ

2
0 + a0 < 0, (10)

gm

(

d1 +
m

M
d12

)

= 2a2τ0d1 + a1d1 + 2a2τ0
m

M
d12

+ a1
m

M
d12 − a2τ

2
0 + a0 < 0. (11)

Let τ0 = (d1 +
m−1
M

d12) +
αMm

M
d12 with αMm ∈ [0, 1],m = 1, 2, . . . ,M be any constant. Eqs. (10) and

(11) lead to (5) and (6), respectively, further yielding f(τ) < 0 with a2 < 0.

Remark 1. Existing quadratic convex frameworks are given in Table 2 [34–39]. Specifically, the com-
parisons between Lemma 1 and the previous ones are discussed as follows.

• The conditions in [34, 35] are only applicable to the case of a2 > 0. If a2 < 0, it is not valid.
• If set M = 1, αMm = 1, conditions in Lemma 1 will reduce to those in [36, 37]:



He J, et al. Sci China Inf Sci February 2023 Vol. 66 122202:6

Table 2 Existing quadratic convex frameworks

Refs. Quadratic convex conditions

[34, 35] C1i = f(di) < 0, i = 1, 2

[36, 37] C2i = f(di) < 0, C23 = −d2
12a2 + f(d1) < 0

[38] C3i = f(di) < 0, C33 = − 1

M2 d2
12a2 + f(m−1

M
d12) < 0, C34 = f( m

M
d12) < 0

[39] C4i = f(di) < 0, C43 = −α2d2
12a2 + f(d1) < 0, C44 = −(1 − α)2d2

12a2 + f(d2) < 0

For the case of a2 > 0 in Figure 2(a), conditions of Lemma 1 and [36, 37] are all simplified as C2i =
f(di) < 0 due to C23 6 C21, C13 6 C11 = C21, C14 6 C12 = C22.

For the case of a2 < 0, it follows from Figures 2(b) and (c) that, if the slope of the tangent line at
any point in [d1, d2] (such as GM ) is no greater than zero, the negative definite condition g−M (d1) < 0
in [36, 37] will be more demanding than g−M (d1 +

M−1
M

d12) < 0 in Lemma 1 (specifically, for the case in

Figure 2(c), g−M (d1) < 0 no longer holds, while g−M (d1 +
M−1
M

d12) < 0 in Lemma 1 still guarantees that
f(τ) < 0). A more rigorous explanation is as follows:

E1 = C23 − C13

= [−d212a2 + f(d1)]−

[

−
(αMm)2

M2
d212a2 + f

(

d1 +
m− 1

M
d12

)]

> −d212a2

{

1−

[

αMm + (m− 1)

M

]2
}

> 0, (12)

under the condition of ḟ(τ)|τ0=d1+
m−1
M

d12+
αMm

M
d12

= 2a2(d1 +
m−1
M

d12 +
αMm

M
d12) + a1 6 0, which means

that Eq. (5) is more relaxed than that in [36, 37]. Similarly, if the slope of the tangent line at any point
in [d1, d2] (such as G1) is greater than zero, the negative definite condition g+1 (d2) < 0 in [36, 37] will be
more demanding than g+1 (d1 +

1
M
d12) < 0 in Lemma 1 from Figures 2(b) and (c). Algebraically,

E2 = C23 − C14

= [−d212a2 + f(d1)]−

[

−
(1− αMm)2

M2
d212a2 + f

(

d1 +
m

M
d12

)

]

< −d212a2

{

1−

[

1− αMm −m

M

]2
}

> 0 (13)

under the condition of 2a2(d1 +
m−1
M

d12 +
αMm

M
d12)+ a1 > 0. By choosing suitable αMm and M , one can

obtain C23 > C14, which means that Eq. (6) is also more relaxed than that in [36, 37].
• If set αMm = 1, conditions in Lemma 1 will reduce to those in [38].
• If set M = 1, conditions in Lemma 1 will degenerate to those in [39]; in other words, Lemma 1 also

covers the method in [39] as a special case.

Remark 2. The novel quadratic convex framework in Lemma 1 is with bigger freedom due to the
introduction of adjustable free parameters M and αMm, which are beneficial to reduce conservatism.

• As M increases, the combination of all the straight lines gm(τm),m = 1, 2, . . . ,M gradually ap-

proaches to the curve line f(τ), whereas the values of −
α2

Mm

M2 d212a2, −
(1−αMm)2

M2 d212a2 reduce. Therefore,
the inequality constraints (5) and (6) in Lemma 1 become more relaxed as M increases and the conser-
vatism tends to disappear for sufficiently big M .

• As αMm changes within [0, 1], the sizes of two positive terms −
α2

Mm

M2 d212a2 and − (1−αMm)2

M2 d212a2
associated with f(d1+

m−1
M

d12) and f(d1+
m
M
d12) change for a fixed M . Therefore, taking suitable value

of αMm, the conservatism is further reduced.

Now, we are ready to derive the stability criteria of the cyber-physical microgrid system based on the
abovementioned quadratic convex framework together with some new tools in the subsequent.

4 Stability analysis for LFC microgrid system

First of all, some lemmas are introduced, which are helpful to derive the stability analysis conditions.
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Lemma 2 ([29]). Let c < d,R = RT > 0. Then

−

∫ d

c

ẋ(s)TRẋ(s)ds 6

3
∑

l=1

(2l − 1)ΓT
l RΓl, (14)

where

Γ1 = x(d) − x(c), Γ2 = x(d) + x(c) −
2

d− c

∫ d

c

x(s)ds,

Γ3 = x(d) − x(c) +
6

d− c

∫ d

c

x(s)ds −
12

(d− c)2

∫ d

c

∫ d

θ

x(s)dsdθ. (15)

Lemma 3 ([31]). Let X1, X2 ∈ R
m×m be real symmetric positive definite matrices, ̟2, ̟3 ∈ R

m, and
a scalar β ∈ [0, 1]. Then for any Y1, Y2 ∈ R

m×m, the following inequality holds:

1

β
̟T

2 X1̟2 +
1

1− β
̟T

3 X2̟3 > (2− β)̟T
2 X1̟2 + (1 + β)̟T

3 X2̟3

+ sym{(1− β)̟T
2 Y

T
1 + β̟T

3 Y
T
2 }

− βY1X
−1
1 Y T

1 − (1− β)Y2X
−1
2 Y T

2 . (16)

For simplicity of presentation, the following notations are used:

ρ(a, b, t) =

∫ t−b

t−a

x(s)

a− b
ds,

σ(a, b, t) =

∫ t−b

t−a

∫ t−b

r

x(s)

(a− b)2
dsdr,

η0(t) = col
{

x(t), d1ρ(d1, 0, t), d12ρ(d2, d1, t), d
2
1σ(d1, 0, t), d

2
12σ(d2, d1, t)

}

,

η1(t, s) = col

{

x(s), x(t),

∫ t−d1

s

xT(r)dr,

∫ s

t−d2

xT(r)dr

}

,

ξ1(t) = col{x(t), x(t − d1), x(t− d(t)), x(t − d2)},

ξ2(t) = col{ρ(d1, 0, t), ρ(d(t), d1, t), ρ(d2, d(t), t)},

ξ3(t) = col{σ(d1, 0, t), σ(d(t), d1, t), σ(d2, d(t), t)},

ξ4(t) = col{(d(t)− d1)ρ(d(t), d1, t), (d2 − d(t))ρ(d2, d(t), t)},

ξ(t) = col{ξ1(t), ξ2(t), ξ3(t), ξ4(t)},

ek = [0n×(k−1)n, In, 0n×(12−k)n], k = 1, 2, . . . , 12. (17)

The following delay-dependent stability criterion is stated for the cyber-physical LFC microgrid based
on the augmented LKF together with the relaxed quadratic convex framework, in which the effect of free
parameters M and αMm is described.

Theorem 1. For given constants d1, d2 > 0, the adjustable parameter αMm,m = 1, 2, . . . ,M , and a
positive integerM , the LFC microgrid system with time-varying delay d(t) will be globally asymptotically
stable if there exist real matrices P ∈ S

5n
+ , Q1 ∈ S

n
+, Q2 ∈ S

4n
+ , R1 ∈ S

n
+, R2 ∈ S

n
+, any matrices U1, U2 ∈

R
2n×n and Y1, Y2 ∈ R

12n×3n such that the following inequalities hold:

[

Π(d1) Y2

∗ −R̃2

]

< 0, (18)

[

Π(d2) Y1

∗ −R̃2

]

< 0, (19)
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





































[

−
α2

Mm

M2 d212Π0 +Π(d1) Y2

∗ −R̃2

]

< 0, m = 1,









Π1(m,αMm) Y1 Y2

∗ − M
m−1 R̃2 0

∗ ∗ − M
M−m+1 R̃2









< 0, 2 6 m 6 M,

(20)















































Π2(m,αMm) Y1 Y2

∗ −M
m
R̃2 0

∗ ∗ − M
M−m

R̃2









< 0, 1 6 m < M,

[

− (1−αMm)2

M2 d212Π0 +Π(d2) Y1

∗ −R̃2

]

< 0, m = M,

(21)

where

Π0 =
1

2

∂2Π(τ)

∂2τ2

= sym{col{0, 0, 0, 0, e9 + e10}PH1}+ sym{col{0, 0, e9 + e10, − e9 − e10}Q2H5},

Π(τ) = sym{HT
2 (τ)PH1}

+ eT1 Q1e1 − eT2 Q1e2 +HT
3 Q2H3 −HT

4 Q2H4 + sym{HT
6 (τ)Q2H5}

+AT
c (d

2
1R1 + d212R2)Ac −̟T

1 R̃1̟1

− [(2− β)̟T
2 R̃2̟2 + (1 + β)̟T

3 R̃2̟3 + sym{(1− β)̟T
2 Y

T
1 + β̟T

3 Y
T
2 }]

+ sym{[eT6 , e
T
11]U1[(τ − d1)e6 − e11]}

+ sym{[eT7 , e
T
12]U2[(d2 − τ)e7 − e12]},

Π1(m,αMm) = −
α2
Mm

M2
d212Π0 +Π

(

d1 +
m− 1

M
d12

)

,

Π2(m,αMm) = −
(1− αMm)2

M2
d212Π0 +Π

(

d1 +
m

M
d12

)

,

H1 = col{Ac, e1 − e2, e2 − e4, d1(e1 − e5), d12e2 − e11 − e12},

H2(τ) = col{e1, d1e5, e11 + e12, d21e8, (τ − d1)
2e9 + (d2 − τ)2e10 + (d2 − τ)e11},

H3 = col{e2, e1, 0, e11 + e12},

H4 = col{e4, e1, e11 + e12, 0},

H5 = col{0, Ac, e2, − e4},

H6(τ) = col{e11 + e12, d12e1, (τ − d1)
2e9 + (d2 − τ)2e10 + (d2 − τ)e11,

d12(e11 + e12)− [(τ − d1)
2e9 + (d2 − τ)2e10 + (d2 − τ)e11]},

̟l = col{el − el+1, el + el+1 − 2el+4, el − el+1 + 6el+4 − 12el+7}, l = 1, 2, 3,

R̃i = diag{Ri, 3Ri, 5Ri}, i = 1, 2,

β =
(τ − d1)

d12
, τ , d(t),

Ac = Ae1 +Ade3. (22)

Proof. Construct the following LKF candidate:

V (t, x(t), ẋ(t)) = V1(t, x(t)) + V2(t, x(t)) + V3(t, ẋ(t)), (23)

where

V1(t, x(t)) = ηT0 (t)Pη0(t), (24)

V2(t, x(t)) =

∫ t

t−d1

xT(s)Q1x(s)ds +

∫ t−d1

t−d2

ηT1 (t, s)Q2η1(t, s)ds, (25)
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V3(t, ẋ(t)) = d1

∫ 0

−d1

∫ t

t+r

ẋT(s)R1ẋ(s)dsdr + d12

∫ −d1

−d2

∫ t

t+r

ẋT(s)R2ẋ(s)dsdr. (26)

The time derivative of V (t, xt, ẋt) along the trajectories of LFC microgrid system can be obtained:

V̇ (t, x(t), ẋ(t)) = V̇1(t, x(t)) + V̇2(t, x(t)) + V̇3(t, ẋ(t)), (27)

where

V̇1(t, x(t)) = ξT(t)sym{HT
2 (τ)PH1}ξ(t), (28)

V̇2(t, x(t)) = xT(t)Q1x(t) − xT(t− d1)Q1x(t− d1) + ηT1 (t, t− d1)Q2η1(t, t− d1)

− ηT1 (t, t− d2)Q2η1(t, t− d2) + 2

∫ t−d1

t−d2

ηT1 (t, s)Q2
∂η1(t, s)

∂t
ds, (29)

V̇3(t, ẋ(t)) = ẋT(t)(d21R1 + d212R2)ẋ(t)− J1 − J2. (30)

Based on Lemmas 2 and 3, and letting β = d(t)−d1

d12
, then J1 and J2 are respectively estimated as

follows:

J1 = d1

∫ t

t−d1

ẋT(s)R1ẋ(s)ds > ξT(t)̟T
1 R̃1̟1ξ(t), (31)

J2 = d12

∫ t−d1

t−d(t)

ẋT(s)R2ẋ(s)ds+ d12

∫ t−d(t)

t−d2

ẋT(s)R2ẋ(s)ds

> ξT(t)

[

1

β
̟T

2 R̃2̟2 +
1

1− β
̟T

3 R̃2̟3

]

ξ(t)

> ξT(t)
[

(2 − β)̟T
2 R̃2̟2 + (1 + β)̟T

3 R̃2̟3

+ sym{(1− β)̟T
2 Y

T
1 + β̟T

3 Y
T
2 }

− βY1R̃
−1
2 Y T

1 − (1− β)Y2R̃
−1
2 Y T

2

]

ξ(t). (32)

For any real matrices U1, U2, the following holds obviously:

u1 = 2
[

ρT(d(t), d1, t), (d(t) − d1)ρ(d(t), d1, t)]U1

× [(d(t)− d1)

∫ t−d1

t−d(t)

x(s)

d(t)− d1
ds−

∫ t−d1

t−d(t)

x(s)ds]

= ξT(t)sym{[eT6 , e
T
11]U1[(τ − d1)e6 − e11]}ξ(t) = 0, (33)

u2 = 2
[

ρT(d2, d(t), t), (d2 − d(t))ρ(d2, d(t), t)]U2

× [(d2 − d(t))

∫ t−d(t)

t−d2

x(s)

d2 − d(t)
ds−

∫ t−d(t)

t−d2

x(s)ds]

= ξT(t)sym{[eT7 , e
T
12]U2[(d2 − τ)e7 − e12]}ξ(t) = 0. (34)

According to (23)–(34), one has

V̇ (t, x(t), ẋ(t)) = V̇1(t, x(t)) + V̇2(t, x(t)) + V̇3(t, ẋ(t)) + u1 + u2

6 ξT(t)[Π(τ) + βY1R̃
−1
2 Y T

1 + (1− β)Y2R̃
−1
2 Y T

2 ]ξ(t), (35)

where ξT(t)[Π(τ) + βY1R̃
−1
2 Y T

1 + (1− β)Y2R̃
−1
2 Y T

2 ]ξ(t) , ξT(t)[Π(τ) +Πβ(τ)]ξ(t) satisfies the quadratic

function defined in Lemma 1 with τ , d(t), a2 = ξT(t)Π0ξ(t) defined in (22), and a1, a0 are τ itself
independent symmetric matrices. Thus, applying the novel quadratic convex approach in Lemma 1, the
following inequality:

ξT(t)[Π(τ) + Πβ(τ)]ξ(t) < 0 (36)

holds if the inequalities below for any β ∈ [0, 1] are satisfied:

Π(d1) + Πβ(d1) < 0, (37)
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Π(d2) + Πβ(d2) < 0, (38)

−
α2
Mm

M2
d212Π0 +Π

(

d1 +
m− 1

M
d12

)

+Πβ

(

d1 +
m− 1

M
d12

)

< 0, (39)

−
(1− αMm)2

M2
d212Π0 +Π

(

d1 +
m

M
d12

)

+Πβ

(

d1 +
m

M
d12

)

< 0. (40)

Specifically, it follows from Schur complement that



















(18) ⇔ (37)

(19) ⇔ (38)

(20) ⇔ (39)

(21) ⇔ (40)

⇒ Π(τ) + Πβ(τ) < 0 ⇒ ξT(t)[Π(τ) + Πβ(τ)]ξ(t) < 0 ⇒ V̇ (t, x(t), ẋ(t)) < 0. (41)

Thus, the cyber-physical LFC microgrid system will be globally asymptotically stable if Eqs. (18)–(21)
hold.

Remark 3. Theorem 1 is expected to present the less conservative stability analysis condition for the
cyber-physical LFC microgrids. The novelties are shown from the following two aspects.

• Compared with the LKF construction used for microgrid stability in [19, 20] with a quadratic
term only depending on the instantaneous state vector, V1(t, x(t)) and V2(t, x(t)) in (24) and (25)
are augmented LKF candidates, i.e., ηT0 (t)Pη0(t) with η0(t) including x(t), d1ρ(d1, 0, t), d12ρ(d2, d1, t),
d21σ(d1, 0, t), and d212σ(d2, d1, t). It fully benefits from the second-order Bessel-Legendre inequality.
ηT1 (t, s)Q2η1(t, s) with η1(t, s) also including more system states and integral terms makes the system
state and some delayed states coupled closely, possibly enhancing the feasibility of the related LMIs in
the stability criteria and being helpful to derive less conservative results.

• The result of Theorem 1 contains not only the quadratic terms of d(t), but also its inverse terms.
Hence, the novel quadratic convex framework in Lemma 1, reciprocally convex combination in Lemma 3
are comprehensively used. It is worth mentioning that Eqs. (37)–(40) are parameter dependent, which
are derived by the αMm,M -dependent quadratic convex framework, and β-dependent reciprocally convex
combination with β being usually related to the time-varying delay d(t). Therefore, additional degrees
of freedom are introduced and the conservatism of Theorem 1 is further reduced.

Remark 4. Different from the results in [19, 21] that only apply to the delayed microgrid system with
ḋ(t) < 1, Theorem 1 is suitable for the system with no knowledge of the ḋ(t) constraint. When it comes to
system limitations or uncertainties that make the delay derivative range unavailable, the results in [19,21]
cannot be applicable anymore, but Theorem 1 is still available.

Two special cases are given next. The first one is that if Eq. (36) is handled by using Lemma 1 with
M = 1, then Corollary 1 will be directly obtained; the second is Corollary 2 based on Lemma 1 with
M = 1, αMm = 1.

Corollary 1. For given constants d1, d2 > 0 and fixed α freely selected within [0, 1], the LFC microgrid
system with time-varying delay d(t) will be globally asymptotically stable if there exist real matrices
P ∈ S

5n
+ , Q1 ∈ S

n
+, Q2 ∈ S

4n
+ , R1 ∈ S

n
+, R2 ∈ S

n
+, any matrices U1, U2 ∈ R

2n×n and Y1, Y2 ∈ R
12n×3n such

that the following inequalities hold:
[

Π(d1)− λ2
i d

2
12Π0 Y2

∗ −R̃2

]

< 0, i = 1, 2, (42)

[

Π(d2)− λ2
jd

2
12Π0 Y1

∗ −R̃2

]

< 0, j = 3, 4, (43)

where λ1 = λ3 = 0, λ2 = α, λ4 = 1− α and the other notations are defined the same as in (22).

Corollary 2. For given scalars d1, d2 > 0, the LFC microgrid system with time-varying delay d(t) will be
globally asymptotically stable if there exist real matrices P ∈ S

5n
+ , Q1 ∈ S

n
+, Q2 ∈ S

4n
+ , R1 ∈ S

n
+, R2 ∈ S

n
+,

any matrices U1, U2 ∈ R
2n×n and Y1, Y2 ∈ R

12n×3n such that the following inequalities hold:
[

Π(d1)− λ̄2
i d

2
12Π0 Y2

∗ −R̃2

]

< 0, i = 1, 2, (44)
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Table 3 AMDBs and NVs for different d1,M and α

Method
AMDB

NV M
α (α = α11 or

d1=0 d1=0.3 d1=0.7 d1=1.0 α = α21 = 1 − α22)

[28] 1.59 2.01 2.41 2.62 49 – –

[29] 1.64 2.13 2.70 2.92 96 – –

[30] 1.80 2.19 2.58 2.79 73 – –

[31] 1.86 2.28 2.69 2.89 93 – –

[39] 1.74 2.24 2.84 3.11 371 – 1.0

[39] 1.88 2.50 2.98 3.20 371 – 0.6

[39] 1.97 2.54 2.96 3.18 371 – 0.4

[40] 1.98 2.50 2.95 3.20 424 – –

[40] 2.48 2.84 3.18 3.40 424 1 –

[40] 2.52 2.88 3.22 3.43 424 2 –

Corollary 2 1.86 2.32 2.92 3.18 404 1 1.0

Corollary 1 2.00 2.56 3.03 3.25 404 1 0.6

Corollary 1 2.14 2.73 3.06 3.24 404 1 0.4

Corollary 1 2.17 2.69 3.03 3.19 404 1 0.2

Corollary 1 2.10 2.59 2.98 3.15 404 1 0.0

Theorem 1 2.07 2.69 3.05 3.26 404 2 1.0

Theorem 1 2.21 2.79 3.11 3.29 404 2 0.6

Theorem 1 2.23 2.80 3.12 3.30 404 2 0.4

Theorem 1 2.21 2.78 3.12 3.30 404 2 0.2

Theorem 1 2.17 2.73 3.10 3.28 404 2 0.0

[

Π(d2) Y1

∗ −R̃2

]

< 0, (45)

where λ̄1 = 0, λ̄2 = 1, and the other notations are defined the same as in (22).

The detailed process of calculating delay margins for the microgrid system is given step by step as
follows.

Step 1. The system parameters are chosen to obtain the state space model.

Step 2. A series of values for the PI controller gain and the delay lower bound d1 are selected. This
prepares for the delay margin calculation.

Step 3. The stability margin is calculated by using the LMIs in Theorem 1, Corollary 1 or Corollary 2,
and the admitted maximum delay bounds d2 are obtained. The conservativeness of the proposed method
can be compared.

5 Simulation

In this section, two types of simulations including a typical numerical example and an actual micro-
grid system example are carried out. The effectiveness of the theoretical methods is verified, and the
superiority in the actual engineering is demonstrated.

5.1 A well-known numerical example

Consider the system with the following matrices [28–31,39, 40]:

A =

[

0 1

−10 −1

]

, Ad =

[

0 0.1

0.1 0.2

]

.

The AMDBs d2 and the number of decision variables (NVs) with respect to various d1 and adjustable
parameters αMm,M are listed in Table 3, in which the results by Corollaries 1 and 2, and Theorem 1
with α = 1 respectively represent ones of the quadratic convex framework processing in [36–39] from
Table 2. The following observations are summarized.
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Table 4 AMDBs based on methods in this paper and [21] for different MGCC gains

Ric Method
AMDB

Rpc=1 Rpc=2 Rpc=3 Rpc=4 Rpc=5 Rpc=6 Rpc=7 Rpc=8

0.2

[21] 9.864 12.469 12.653 11.087 9.359 7.959 6.876 6.031

Corollary 2 9.867 12.493 12.785 11.403 9.719 8.321 7.226 6.363

Corollary 1 9.868 12.495 12.786 11.405 9.721 8.323 7.228 6.365

Theorem 1 9.869 12.496 12.789 11.409 9.730 8.336 7.241 6.376

0.4

[21] 5.246 7.105 8.249 8.575 8.159 7.385 6.578 5.861

Corollary 2 5.246 7.117 8.272 8.627 8.304 7.604 6.828 6.124

Corollary 1 5.247 7.118 8.274 8.628 8.305 7.605 6.830 6.125

Theorem 1 5.248 7.119 8.279 8.631 8.310 7.610 6.837 6.132

0.6

[21] 3.656 5.028 6.057 6.678 6.859 6.636 6.173 5.637

Corollary 2 3.656 5.036 6.072 6.700 6.903 6.737 6.332 5.833

Corollary 1 3.656 5.035 6.072 6.702 6.905 6.739 6.333 5.835

Theorem 1 3.657 5.039 6.077 6.706 6.907 6.743 6.336 5.837

0.8

[21] 2.852 3.933 4.811 5.442 5.802 5.876 5.697 5.358

Corollary 2 2.853 3.938 4.820 5.458 5.825 5.920 5.786 5.493

Corollary 1 2.853 3.938 4.821 5.460 5.828 5.922 5.789 5.495

Theorem 1 2.853 3.939 4.822 5.463 5.832 5.926 5.925 5.886

1.0

[21] 2.368 3.257 4.013 4.602 5.007 5.211 5.213 5.043

Corollary 2 2.368 3.261 4.019 4.612 5.023 5.236 5.260 5.129

Corollary 1 2.368 3.260 4.018 4.612 5.026 5.240 5.262 5.132

Theorem 1 2.369 3.261 4.020 4.616 5.029 5.242 5.265 5.133

• The produced AMDBs by Theorem 1, Corollaries 1 and 2 are obviously bigger than those in [28–31,
39] (under the same α settings) for both M = 1 and M = 2, which shows that the results obtained by
our methods are much less conservative than those from the abovementioned literature.

• Theorem 1 provides bigger AMDBs than Corollaries 1 and 2; i.e., the conservatism is further reduced
if M increases and α is appropriate, which verifies the effectiveness of Lemma 1 and the statement of
Remark 2 again. In addition, compared with Corollaries 1 and 2, no additional decision variables are
introduced to reduce the conservativeness in Theorem 1.

• Compared with Corollary 2, Corollary 1 with a specific value of α leads to a more conservative result
(for example, the case that d1 = 1.0 and α = 0.0). It illustrates that there is no requirement for all α
within [0, 1] and the conditions in Lemma 1 are relaxed than those of the traditional quadratic convex
framework.

• The AMDB results in the work of [40] are better than those of Theorem 1 in some cases; however,
they utilize more decision variables than those in this paper, meaning that the computational complexity
in [40] is higher. It is interesting to see that Theorem 1 can be complementary with that in [40].

5.2 LFC microgrid example

The cyber-physical microgrid system parameters taken from [17] are as follows: M = 10, D = 1, Res =
1, Tes = 1, Rfc = 1, Tfc = 4, Rmt = 0.04, Rpl = 1, Ril = 1.

For different MGCC gains, the AMDB comparison results are given in Table 4 according to Theorem 1,
Corollaries 1 and 2 in this paper, and the method in [21], where the delay lower bound d1 = 0, the value
of α in Corollary 1 and Theorem 1 is 0.52, and M in Theorem 1 is selected as 2. Figure 3 shows the
relationship between delay margins by using Theorem 1 and MGCC gains Rpc and Ric.

Based on the results in Table 4 and Figure 3, the following observations can be summarized.

• Theorem 1, Corollaries 1 and 2 in this paper provide bigger AMDB d2 than the method reported
in [21] as shown in Table 4, which means that the contributions of the tighter inequality and the more
general LKF to reduce conservatism are well reflected by using Lemma 1 and its degenerate form to
handle d2(t)-dependent terms.

• For the fixed MGCC proportional gain Rpc, AMDB d2 decreases as Ric increases, implying that the
decrease of the integral gain Ric results in a stable cyber-physical microgrid system. In addition, for a
fixed Ric, with the increase of Rpc, the AMDB d2 increases first and then decreases. It just shows from



He J, et al. Sci China Inf Sci February 2023 Vol. 66 122202:13

1

MGCC proportional gain R
pc

2

4

6

8

10

12

14

D
el

ay
 m

ar
g

in
 d

2
 (

s)

Integral gain R
ic
=0.2

Integral gain R
ic
=0.4

Integral gain R
ic
=0.6

Integral gain R
ic
=0.8

Integral gain R
ic
=1.0

2 3 4 5 6 7 8

Figure 3 (Color online) Relationship between delay margin d2 and MGCC gains Rpc and Ric.

Table 5 AMDB comparison for different MGCC gains

Ric Method
AMDB

Rpc=0.1 Rpc=0.6 Rpc=1.0

0.1

[18] 10.04 11.20 15.86

[20] 11.49 15.67 17.98

Theorem 1 11.58 15.92 18.44

0.2

[18] 4.81 4.95 6.96

[20] 5.89 8.17 9.71

Theorem 1 5.92 8.25 9.86

0.4

[18] 2.38 2.73 3.32

[20] 3.13 4.32 5.19

Theorem 1 3.14 4.34 5.24

0.6

[18] 1.60 1.76 2.19

[20] 2.21 3.02 3.62

Theorem 1 2.22 3.03 3.65

0.8

[18] 1.1 1.38 1.65

[20] 1.76 2.36 2.83

Theorem 1 1.76 2.37 2.84

Figure 3 that the method has certain guiding significance for the determination of delay requirements
and the design of load frequency controller for the cyber-physical microgrid system.

• Compared with Corollaries 1 and 2, Theorem 1 successfully reduces the conservatism by increasing
the number of delay subinterval M and choosing suitable value of α. It verifies the contribution and
advantage of the proposed quadratic convex framework in Lemma 1.

Moreover, the AMDB based on Theorem 1 and the methods in [18, 20] for different Rpc and Ric are
presented in Table 5. It can be seen that larger AMDBs are obtained by Theorem 1 in this paper;
especially in the case that the proportional gain Rpc increases and the integral gain Ric decreases, it is
more obvious and consistent with the trend in Table 4. It again demonstrates the less conservatism of
our approach than the standard tools mentioned above.

To illustrate the rationality of theoretical stability results of the microgrid system, two cases are verified
using the time-domain simulation with initial frequency deviation being 0.

• In the case of Rpc = 5, Ric = 0.2, d(t) ∈ [0, 9.730], randomly set the time-varying delay as d1(t) =
9.730

2 sin( 4
9.730 t) +

9.730
2 and d2(t) =

9.730
2 sin( 1

9.730 t) +
9.730

2 .
• In the case of Rpc = 4, Ric = 0.6, d(t) ∈ [0, 6.706], randomly set the time-varying delay as d3(t) =

6.706
4 sin( 1

6.706 t) +
6.706

4 and d4(t) =
6.706

4 sin( 12
6.706 t) +

6.706
4 .

Figures 4(a) and (b) show the frequency deviations of the microgrid system for the above cases. It
is clear that the cyber-physical microgrid system is asymptotically stable because of the continuous
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Figure 4 (Color online) Frequency deviation of the microgrid system with d(t) ∈ [0, 9.730] (a) and d(t) ∈ [0, 6.706] (b).

convergence of the frequency derivative.

6 Conclusion

The problem of stability analysis for the cyber-physical microgrid system with interval time-varying de-
lay is addressed. The following findings are obtained. (1) By introducing free variables, the proposed
quadratic convex framework achieves a higher degree of freedom, thus relaxing the quadratic function
negative-determination condition. (2) Based on the suitable LKF and the novel quadratic convex condi-
tions, the stability analysis criteria for the cyber-physical LFC microgrids are indeed less conservative.
(3) The obtained delay margin can guide the designing and tuning of the MGCC of the LFC scheme
to achieve a stable operation. In the future work, we plan to extend the quadratic convex framework
with the bigger freedom developed in this study to address the stability problem and design a resilient
distributed control strategy of the microgrid LFC system under cyberattacks.
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