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Abstract Deep learning-based intrinsic image decomposition methods rely heavily on large-scale training

data. However, current real-world datasets only contain sparse annotations, leading to textureless reflectance

estimation. Although densely-labeled synthetic datasets are available, the large bias between these two

categories easily incurs noticeable artifacts (e.g., shading residuals) on reflectance. To address this issue,

we introduce reflectance edges that are predicted by a neural network trained on synthetic data with full

supervision. Once trained, this network is able to capture high-frequency details of reflectance while greatly

reducing the bias stemming from the discrepancy between different data distributions. We design another

neural network to remove shading as much as possible from the input image. As this network is trained solely

on real-world datasets, little bias will be introduced but the predicted reflectance will be overly smooth due

to limited annotations. To recover texture details of the reflectance while still suppressing bias, we leverage a

third neural network to progressively fuse feature maps from both reflectance edge maps and coarse-grained

reflectance maps. The well-designed fusion strategy makes the best use of features extracted from the real-

world data and helps to generate texture-rich reflectance with fewer artifacts. Extensive experiments on

multiple benchmark datasets demonstrate the superiority of the proposed method.
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1 Introduction

Intrinsic image decomposition is a classical computer vision problem that aims to extract the illumination-
invariant component, i.e., reflectance, and the illumination-variant component, i.e., shading, from a nat-
ural image. Intrinsic images can serve a variety of high-level vision tasks and computational photography
applications, such as shape from shading [1, 2], re-texturing [3, 4], recoloring [5–7], relighting [8, 9], and
face editing [10,11]. Unfortunately, although being extensively investigated in the past decades, intrinsic
image decomposition remains challenging due to its ill-posedness.

With the development of deep learning, a practical and attractive candidate for solving this ill-posed
problem is to replace the traditional hand-crafted priors with the data-driven, deep convolutional neural
networks (CNN). However, to the best of our knowledge, there are no ground-truth data with dense
labels for the complex real-world scenes because of the difficulties in collection. This incurs the detail-
losing problem that networks trained on these weakly supervised samples always generate textureless
reflectance results [12–15] as highlighted in Figure 1(b). To alleviate the limitation of real-world datasets,
several approaches [16–19] suggest utilizing densely-labeled synthetic datasets for training. However, since
synthetic data are biased, training networks on these data easily incurs sub-optimal convergence to poor
local minima, leading to noticeable shading residuals or inconsistent effects on reflectance when testing
for real-world images as highlighted in Figure 1(c).

To address the gap in data distribution of synthetic and real images, we propose a novel framework for
detail-preserving intrinsic image decomposition that makes full use of reflectance edges. We first develop
a shading removal network (SRNet) trained solely on the real-world dataset (i.e., IIW) to predict the
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Figure 1 (Color online) We proposed a new framework for intrinsic image decomposition that can generate high-quality reflectance

images from coarse-grained (d) to fine-grained (f) with the help of reflectance edges (e). The proposed method is able to preserve

sufficient texture details while removing shading effects, and outperforms state-of-the-arts (b) and (c). The decomposed high-quality

intrinsic images are beneficial for some image editing tasks, e.g., re-texturing (g). (a) Input; (b) Fan et al. [15]; (c) NIID-Net [19];

(d) ours (coarse); (e) reflectance edges; (f) ours (fine); (g) image editing.

coarse-grained reflectance from the input image (Figure 1(d)). To recover texture details that are missing
from the sparsely-labeled real-world data, we resort to synthetic datasets with dense ground truths. In
contrast to prior studies [16–19], which directly apply networks trained on synthetic data to predict
reflectance images for real-world scenes, we propose a reflectance edge generation network (RegNet) to
capture sudden changes along textures. We observe that the data distribution discrepancy between
synthetic and realistic datasets in the edge/gradient domain is far less than that in the image domain.
As a result, although trained on synthetic datasets, RegNet still performs well on real-world data and is
expected to generate a detail-preserving reflectance edge map from the input image (Figure 1(e)). Then,
we recover texture details on the coarse-grained reflectance with the help of the estimated reflectance
edge map by fusing these two types of features with a well-designed multi-scale fusion network (FuseNet),
producing the fine-grained reflectance image with great details and few shading residuals for a real-world
scene (Figure 1(f)). The high-quality intrinsic results facilitate some image editing tasks such as material
modification in which reflectance is altered while shading effects are preserved as shown in Figure 1(g).

Although the edge/gradient information has been adopted in some previous methods, its usage is
significantly different in our pipeline. Previous studies leverage edges/gradients for either loss com-
putation [12, 16, 17, 20] or flattening filters [15] to encourage the predicted reflectance or shading to be
piece-wise smooth. Both ignore the texture cues in edge/gradient maps for detail-preserving. In contrast,
our reflectance edges are predicted by RegNet and are explicitly used to enhance details in the reflectance
map by carefully designing the neural networks, especially the FuseNet which extracts important features
from reflectance edges and enhances their influence on the predicted reflectance with a novel multi-scale
feature fusion strategy.

To summarize, the main contributions of our work are as follows:
• The introduction of reflectance edges to significantly reduce the bias of synthetic data used in

training;
• A multi-scale fusion strategy that is designed to progressively recover details on coarse-grained

reflectance with the estimated reflectance edges; and
• A coarse-to-fine intrinsic image decomposition framework that can produce high-quality reflectance

images with rich textures.

2 Related work

Optimization-based intrinsic image decomposition. Intrinsic image decomposition has been ex-
tensively studied in the past years. Traditional approaches attempted to impose hand-crafted priors to
constrain the space of feasible solutions [21–25]. One of the earliest methods is the classical Retinex algo-
rithm [26] which assumes that large gradients of the image are caused by the changes of reflectance, while
smaller gradients correspond to illumination changes. This algorithm is later extended by some meth-
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ods [27–29] to enable the processing of real images. Since then, many priors have been developed based
on physical geometry and illumination understanding, including reflectance sparsity [30, 31], non-local
texture cues [32, 33], depth cues [34, 35], and constraints for shading [36–38]. However, the hand-crafted
prior assumptions are often violated in complex real-world scenes, especially in the case of cast shadows
or highlights, which limits the application of these methods. The use of multi-view stereo information
has also been explored by several studies [39, 40]. However, these methods need to reconstruct the 3D
points or geometry proxy of the scene for intrinsic image decomposition, which is time-consuming.

Deep intrinsic image decomposition. With the emergence of deep learning, recent methods de-
compose intrinsic images under the framework of deep neural networks [12, 13, 19, 41–44]. However,
real-world datasets with high-quality dense ground truths are extremely hard to acquire and the lack
of training data becomes the biggest problem of the data-driven approaches. The most widely used
real-world datasets IIW [24] and SAW [45] only provide sparse reflectance and shading annotations for a
small collection of pixels, respectively. On the other side, the existing densely-labeled synthetic datasets
like CGI [16] and MPI-Sintel [46] often lack realism and have a large bias to the real-world scenes. Other
datasets like MIT [21] and ShapeNet [47] only provide samples for single objects, which are far not enough
for scene-level predictions. Li and Snavely [16] suggested training on CGI, IIW, and SAW datasets si-
multaneously to improve the performance on real-world images. However, such a simple joint training
strategy may incur unstable training or sub-optimal convergence to local minima due to the discrepancy
of distributions between different kinds of datasets, leading to inconsistent effects across large objects.
Liu et al. [48] proposed an unsupervised framework for intrinsic image decomposition on a single image
but suffered from the problems of noticeable artifacts and shading residuals. Fan et al. [15] proposed a
general network architecture for multiple benchmark datasets by utilizing a guidance map to optimize
the coarse-estimated reflectance with a domain filter, which achieves excellent flattening effects but is not
capable to preserve texture details on the reflectance.

Recently, several approaches [20,49,50] explored the use of multiple time-lapse images for deep intrinsic
image decomposition. These approaches require a collection of images from a fixed viewpoint of a scene
with time-varying environmental parameters. Other approaches tried to incorporate additional informa-
tion to the model for better performance, such as surface normal or illumination [17–19, 51], semantic
segmentation maps [52], and depth maps [53]. Nonetheless, such approaches rely heavily on the quality of
the generated auxiliary features to some extent, so the low-quality predictions would seriously affect the
intrinsic results. On the contrary, we focus on intrinsic image decomposition for a single image without
any additional information.

3 Our method

In this section, we describe the details of the proposed framework. Similar to previous studies [15, 16,
43, 48], we assume that a natural image I is decomposed as the pixel-wise product of the reflectance
image R and the shading image S, i.e., I = R × S. As illustrated in Figure 2, our framework consists
of three functional components. We first estimate a coarse-grained reflectance image Rc with the SRNet
and a reflectance edge map E with the RegNet. Then, Rc, E, and I are passed to a FuseNet, yielding a
fine-grained reflectance image Rf and the corresponding shading image S.

3.1 Shading removal

There are a variety of approaches applied to the IIW dataset which only provides sparse annotations of
pairwise reflectance comparisons. Although dense reflectance estimation on IIW has been achieved by
several recent methods [15, 37, 41], the fine-grained reflectance with great details is still hard to obtain
due to the lack of texture information. Considering this, we first estimate a coarse-grained reflectance
image that aims at removing the shading components caused by illumination effects. It is practical to
do so using the IIW dataset because, on one hand, 2/3 of the annotations are equal judgments, which
is beneficial for the pairwise constant reflectance estimation. On the other hand, with some smoothing
filters, we are able to generate a densely pseudo ground truth, which is textureless but consistent across
large objects like walls and floors, for each example in the IIW dataset. This helps to further remove
shading from the input image and achieve better flattening effects [37, 54].

The proposed SRNet adopts a typical U-Net [55] architecture with skip connections. It produces the
coarse-grained reflectance image Rc with few shading residuals after trained on the IIW dataset. We
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Figure 2 (Color online) Overview of our proposed method. Our shading removal network (SRNet) predicts coarse-grained

reflectance images and our reflectance edge generation network (RegNet) predicts reflectance edge maps. The proposed multi-scale

fusion network (FuseNet) fuses these two types of features, yielding fine-grained reflectance images and the corresponding shading

images.

apply the commonly used weighted human disagreement rate (WHDR) hinge loss [15–17,41] designed on
the sparse reflectance judgment J for weakly supervised training. Furthermore, to achieve stable training
and flattening effects, we utilize the flattening image filter proposed in [37] to obtain the smooth reference
map R̄∗ for each IIW image and regard it as a substitute of the unknown dense ground truth. The total
loss function for the sparsely-labeled IIW dataset is

LSR = LD(Rc, R̄∗) + λgLG(Rc, R̄∗) + λwLW (Rc,J)

= ‖Rc − R̄∗‖1 + λg‖∇Rc − ∇R̄∗‖1 + λwLW (Rc,J), (1)

where ‖ · ‖1 denotes the L1 norm, and λg and λw are the weights of corresponding loss terms. Similar to
prior studies [15–17], in addition to the data loss LD, we apply the gradient loss LG to the reflectance for
piecewise smooth predictions. The detailed form of the WHDR hinge loss LW and more training details
about SRNet are provided in Appendix A.

3.2 Reflectance edge generation

While SRNet succeeds in removing shading from the input image and achieves high numerical performance
after training on the IIW dataset, it fails to produce details on the reflectance image. This is because
neither the sparse reflectance judgment J evaluates the texture details nor the smooth reference map R̄∗

provides enough texture cues. To recover fine-grained details which have been smoothed out by SRNet,
we resort to the reflectance edge map, a gradient map for the surface reflectance that captures sudden
changes along textures. We achieve this with a RegNet which estimates the reflectance edge map of a
natural image, preserving edges of textures while masking out shading edges.

Generating reflectance edge maps by utilizing densely-labeled synthetic datasets is usually straight-
forward and efficient. As dense ground-truth reflectance images are available, it is possible to predict
reflectance edges from the input image in a fully-supervised manner. Furthermore, compared with di-
rectly estimating the reflectance image, the proposed RegNet which is trained on synthetic datasets still
performs well for the real-world scene on predicting reflectance edges. This is because the bias between
the synthetic and realistic data in the edge/gradient domain is far less than that in the image domain. We
demonstrate this by respectively projecting 100 randomly selected color images from the synthetic and
real-world datasets to the 2D space with principal component analysis (PCA). In the upper-left graph
of Figure 3, each blue dot represents a synthetic image while each red dot represents a real-world image.
The discrepancy obviously exists between these two categories. We conduct the same experiment on the
edges of color image I. Here, the edge map E(I) is computed as

E(Ii) =
∑

j∈N (i)

|Ii − Ij |, (2)
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Figure 3 (Color online) Distribution discrepancy between synthetic and realistic datasets in different domains (a). The real-world

image/edge (b) is from IIW and the synthetic image/edge (c) is from CGI. (a) Data distribution; (b) real-world data; (c) synthetic

data.

(a) (b) (c) (d)

Figure 4 (Color online) Visual quality comparisons among the edge map of the natural image E(I) (b), the edge map of the

coarse-grained reflectance E(Rc) (c), and the estimated reflectance edge map E (d). (a) is an input image I.

where N (i) indicates the neighboring pixels in a 3 × 3 region of pixel i. As shown in the bottom-left
graph of Figure 3, the distribution discrepancy of edges between these two categories is much smaller
than that in the image domain. The visual comparison in Figures 3(b) and (c) further shows that edge
maps are harder to be distinguished (synthetic or real) than color images. This indicates that reflectance
edges introduce little bias in our networks.

In practice, we train our RegNet, which has the same network architecture as SRNet, with the CGI
dataset [16] since it provides ground-truth intrinsic images with full supervision. We obtain ground-truth
reflectance edges E(R∗) from the dense reflectance map R∗ with (2). Then, the loss function for RegNet
is defined as

LReg = LE(E, R∗) = ‖E − E(R∗)‖1, (3)

where LE is the L1 norm between two edge maps. After training, we use RegNet to predict reflectance
edge maps for the natural images in IIW. As shown in Figure 4, the estimated reflectance edge map avoids
introducing shading edges like shadow boundaries when compared with the edge map of the natural image
E(I) (see the red boxes in Figures 4(b) and (d)), but contains much more texture details than the edge
map of the coarse-grained reflectance E(Rc) (see the green boxes in Figures 4(c) and (d)).

3.3 Multi-scale fusion

Once we have obtained the coarse-grained reflectance image Rc and the reflectance edge map E for an
input image I, we fuse them in a FuseNet to generate the fine-grained reflectance image Rf with rich
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textures. As shown in Figure 2, the proposed FuseNet contains two autoencoders/branches to generate
intrinsic results and a lightweight subnetwork for texture guidance map transformation, all of which are
trained on IIW and SAW datasets. We first feed E and I into the transformation network and convert
E into a texture guidance map G, which indicates the potential regions of texture details and suppresses
shading effects in further treatment. Then, Rc and I are fed into two autoencoders, respectively. One
autoencoder maps the input image I to the shading image S, while the other autoencoder progressively
recovers texture details when mapping Rc to Rf by using the multi-scale fusion modules. Both autoen-
coders adopt the U-Net architecture with skip connections.

For texture recovery in Rc without introducing shading effects again, we utilize the texture guidance
map G to re-weight the extracted color features at each scale before fusing features from different branches
in the multi-scale fusion modules. Assuming the reflectance and color features from the two branches are
Fr and Fc, respectively, the fusion module (FM) at scale l is formulated as

FM(Fr
l , Fc

l |Gl) = deconv(Fr
l ⊕ (Fc

l ⊗ Gl)), (4)

where ⊕ is the concatenation operation and ⊗ denotes element-wise multiplication. By masking out the
shading areas in the color features with G, we reduce the risk of re-introducing shading residuals at this
stage.

We train FuseNet with a self-supervised loss which assumes that the output fine-grained reflectance
image Rf should be consistent with the coarse-grained input Rc, while E(Rf ) should closely match E

generated by RegNet. Besides, the WHDR hinge loss is also involved as weak supervision. Therefore,
the loss function of the output reflectance is defined as

LR
Fuse = LD(Rf , Rc) + λεLE (Rf , E) + λwLW (Rf ,J)

= ‖Rf − Rc‖1 + λε‖E(Rf ) − E‖1 + λwLW (Rf ,J). (5)

For the estimated shading image, we adopt the same loss in [16, 17] for weakly supervised training:

LS
Fuse = λcsLconstant-shading + Lshadow, (6)

where λcs is the balance factor, and Lconstant-shading and Lshadow correspond to the shading annotations of
constant shading regions and shadow boundaries, respectively. The detailed form of the shading loss terms
Lconstant-shading and Lshadow is provided in Appendix B. Furthermore, a reconstruction loss is applied to
guarantee the consistency between the input natural image and the pixel-wise product of the reflectance
and shading outputs:

LRec
Fuse = ‖I − Rf × S‖1. (7)

Consequently, the total loss function is

LFuse = LR
Fuse + LS

Fuse + LRec
Fuse. (8)

To obtain the texture guidance map G which indicates regions of texture details, a simple solution is to
directly binarize the reflectance edge map E (denoted as Π(E)) with a pre-defined threshold. However,
since E is essentially a gradient map indicating texture boundaries, Π(E) may contain excessive texture
details, which affects FuseNet’s performance on fine-grained reflectance estimation that the recovered
textures on the reflectance are inconsistent with the textures on the input image as pointed out with
green arrows in Figures 5(a) and (b). Note that the edge map of such a reflectance image containing
inconsistent textures still satisfies the edge loss term in (5). Considering this, we learn to predict G

with a lightweight subnetwork. As no ground-truth texture guidance maps are available, we treat the
binary mask of E as a reference. That is, we assume that G should be equal to Π(E) in non-zero regions.
Furthermore, to filter out redundant texture details (fill holes) on Π(E), we apply an edge loss between
E(G) and the binary mask of E(Rc). This is because Rc is textureless and Π(E(Rc)) only contains
significant reflectance boundaries as highlighted by red dotted lines in Figure 5(c). As a result, G will
progressively cover the whole texture regions to (1) minimize its difference with Π(E) in non-zero regions,
and (2) ensure its edge map E(G) to be consistent with Π(E(Rc)). Therefore, the loss function to train
the subnetwork predicting G is given by

LTGM = LD(G, Π(E)) + λεLE(G, Π(Rc))
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(a) (b) (c) (d)

Figure 5 (Color online) Different variants of the texture guidance map and their reflectance results (in closeups). The white

regions indicate the regions of textures that need to be recovered on reflectance. The binary mask of E (b) contains excessive

texture details, generating reflectance with inconsistent textures compared with the input image. The network using the edge map

of Rc (c) tends to produce textureless reflectance. In comparison, our complete method guided by G (d) can produce more plausible

reflectance consistent to the input image. (a) I; (b) Π(E); (c) Π(E(Rc)); (d) G.

= ‖G − Π(E, δ1)‖1 + λε‖E(G) − Π(E(Rc), δ2)‖1, (9)

where δ1 and δ2 are the pre-defined thresholds, and λε is the balance factor. As shown in Figure 5(d), the
high-frequency regions with great texture details are completely covered by G and the network trained
with G can produce reflectance with more plausible texture details (consistent with the input image) in
visual quality comparisons.

4 Experiments

4.1 Implementation details

Network design. We use the U-Net [55] architecture for all the subnetworks. We adopt the first
four convolution blocks of VGG-16 [56] as the back-bone of each encoder (except for the lightweight
subnetwork) but reduce the channel number of the last block from 512 to 256. The subnetwork for
generating texture guidance maps is designed in a lightweight manner. It has 3 convolutional layers with
stride 2, kernel size 3×3, and channel numbers 32, 64, 128 respectively on the encoder side. The decoders
are symmetric to the encoders and are equipped with skip connections. Three fusion modules are used
to fuse feature maps at different scales in FuseNet. Each (de)convolutional layer is followed by a batch
normalization layer and a ReLU activation function except for the last deconvolutional layer, which is
equipped with the sigmoid activation function to ensure that the output values fall in the range of [0,1].

Training details. We implement our networks with PyTorch and train them on four NVIDIA RTX
3090 GPUs. We use RMSprop optimizer with the initial learning rate 1E−3 and the power of 0.95 every
10 epochs. The hyper-parameters {λg, λw, λε, λcs, δ1, δ2} are set to {0.5, 0.3, 1.0, 2.0, 0.4, 0.3} according
to validation on a 5% randomly split training data.

4.2 Evaluation on IIW and SAW

Datasets and evaluation metrics. We evaluate our networks on two widely used real-world datasets,
i.e., IIW [24] and SAW [45]. The IIW dataset contains 5230 real images with total 872161 pairs of human-
annotated relative reflectance judgments, while the SAW dataset comprises 6677 images in total, providing
shading annotations of constant shading regions and shadow boundaries. We follow the train/test split
provided by [57] for IIW and [45] for SAW, which is adopted in many recent studies [15–17,19,48]. Since
the dense ground truths for both datasets are unavailable, we use the WHDR metric proposed by [24]
to evaluate the reflectance on IIW. For the SAW dataset, we adopt the challenge average precision (AP)
metric proposed by [16] to evaluate the estimated shading images.

Comparisons. We first compare the proposed method with two state-of-the-art methods, i.e.,
Fan’s network [15] and Li’s network [16], which also rely on real-world data for training. Table 1 [58]
shows the quantitative analysis for the IIW and SAW datasets. As seen, both methods achieve high
numerical performance on IIW, ranking top two among previous studies since they are customized to
train on real-world datasets. However, Fan’s network tends to predict textureless reflectance images
due to the sparse labels adopted in training, leaving many texture residuals on the shading images as
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Table 1 Reflectance evaluation (WHDR) on IIW and shading evaluation (AP) on SAW

Method Dataset
IIW SAW

WHDR (%) ↓ AP (%) ↑

Grosse [21] – 26.9 85.26

Garces [8] – 24.8 92.39

Zhao [33] – 23.8 89.72

Bi [37] – 17.7 –

Bell [24] – 20.6 92.18

Zhou et al. [13] IIW 19.9 86.34

Liu et al. [48] – 18.7 86.48

Nestmeyer [41] IIW 17.7 88.64

NIID-Net [19] CGI 16.6 98.40

GLoSH [17] SUNCG [58]+IIW+SAW 15.2 95.01

Li et al. [16] CGI+IIW+SAW 14.8 97.93

Fan et al. [15] IIW 14.5 86.19

Ours (SRNet) IIW 14.4 –

Ours (FuseNet) CGI+IIW+SAW 14.6 98.68

(a) (b) (c) (d)

Figure 6 (Color online) Visual quality comparisons with two popular intrinsic image decomposition methods which also rely on

real-world datasets for training. Since sparse annotations are used for supervision, previous methods (Fan et al. and Li et al.) lose

many details on the reflectance (highlighted in red boxes), while our method based on reflectance edges retails these important

details and avoids shading residuals (shown in green boxes). (a) Input; (b) Fan et al. [15]; (c) Li et al. [16]; (d) ours.

shown in Figure 6(b). By incorporating synthetic training samples, Li’s network preserves more texture
details. However, due to the bias introduced by synthetic images, such a simple joint training strategy
makes the predicted reflectance inconsistent across large objects like walls as shown in Figure 6(c). In
comparison, the proposed SRNet achieves the lowest WHDR on IIW, and our complete pipeline achieves
the outstanding performance on IIW (only 0.1% higher than the state-of-the-art). Note that WHDR
is only computed on sparse positions, ignoring texture details. This may be not reliable for evaluating
fine-grained details. As shown in Figure 6(d), the estimated fine-grained reflectance images contain great
texture details (highlighted by red boxes) while still preserving consistency across large objects with few
shading residuals (highlighted by green boxes). For the testing on SAW, Fan’s network fails to achieve a
high AP metric (12.49% lower than ours) since the estimated shading images suffer from severe texture



Li Q W, et al. Sci China Inf Sci February 2023 Vol. 66 122105:9

(a) (b) (c) (d) (e)

Figure 7 (Color online) More comparisons on reflectance with existing intrinsic image decomposition methods. Note that both

NIID-Net and Liu’s network suffer from noticeable shading residuals. (a) Input; (b) NIID-Net [19]; (c) Liu et al. [48]; (d) ours

(Rc); (e) ours (Rf ).

residuals. Though Li’s network generates high quantitative results, their shading images are of low
contrast. In comparison, our complete pipeline achieves the best performance among all the methods on
the AP metric, producing more plausible shading with high contrast and few texture residuals.

In Figure 7, we further compare two additional methods, including NIID-Net [19] which only utilizes
the synthetic CGI dataset [16] for training, and Liu’s network [48] which is trained in an unsupervised
manner. Without utilizing the sparsely-labeled real-world datasets, both NIID-Net and Liu’s network
preserve much more fine-grained details than Fan’s network and Li’s network. However, both methods
suffer from improper shading residuals, as highlighted in Figures 7(b) and (c). Furthermore, without
training on real-world samples, both NIID-Net and Liu’s network tend to generate large bias, yielding
high WHDR scores on IIW as shown in Table 1. Overall, our method achieves the state-of-the-art
performance on both shading removal and texture preserving, and outperforms existing methods both
qualitatively and quantitatively.

4.3 Evaluation on other datasets

Datasets and evaluation metrics. For completeness, we further compare our method on the densely-
labeled datasets, i.e., the MPI-Sintel and MIT intrinsic datasets. The small-scale MIT intrinsic dataset
is also a real-world dataset that only contains 220 images with 20 different objects, each of which has 11
images for different illumination conditions. The MPI-Sintel dataset has a total of 890 synthetic images
from 18 virtual scenes. We fine-tune our networks on these two datasets respectively with the provided
dense ground truths and then evaluate their performance. For the MPI-Sintel dataset, we adopt the
same experiment settings as Fan et al. [15]. Specifically, we use two-fold validation [12] to obtain all 890
MPI-Sintel test results with two kinds of splitting strategies, i.e., scene split and image split, with the
train/test list provided by [15]. We also follow their evaluation metrics, employing the mean square error
(MSE), local MSE (LMSE), and dissimilarity structural similarity index measure (DSSIM) to evaluate the
performance. For the MIT dataset, we use the train/test split provided by [25] and MSE for evaluation.

Comparisons. As shown in Table 2 and Figure 8, our method significantly outperforms previous
methods on the MPI-Sintel dataset (achieves the best result for most columns in Table 2) and produces
sharper and more accurate results compared with Fan’s network [15]. Furthermore, our method achieves
comparable performance with state-of-the-art methods on the MIT intrinsic dataset as shown in Figure 9,
although this dataset only provides very limited examples for training, which is not sufficient for our



Li Q W, et al. Sci China Inf Sci February 2023 Vol. 66 122105:10

Table 2 Quantitative comparisons on the MPI-Sintel dataseta)

MSE LMSE DSSIM

Reflectance Shading Reflectance Shading Reflectance Shading

Grosse [21] 0.0606 0.0727 0.0366 0.0419 0.2270 0.2400

MSCR [12] 0.0100 0.0092 0.0083 0.0085 0.2014 0.1505

Image split Liu et al. [48] 0.0159 0.0148 0.0087 0.0081 0.1797 0.1474

Fan et al. [15] 0.0069 0.0059 0.0044 0.0042 0.1194 0.0822

Ours 0.0053 0.0057 0.0034 0.0052 0.0781 0.0933

MSCR [12] 0.0190 0.0213 0.0129 0.0141 0.2056 0.1596

Scene split Fan et al. [15] 0.0189 0.0171 0.0122 0.0117 0.1645 0.1450

Ours 0.0172 0.0167 0.0112 0.0135 0.1557 0.1363

a) The best results are highlighted in bold.

(a) (b)

(c) (d)

Figure 8 (Color online) Visual quality comparisons of reflectance on the MPI-Sintel dataset. (a) Input; (b) ground truth; (c)

Fan et al. [15]; (d) ours.

pipeline. More comparisons on the MPI-Sintel dataset are provided in Appendix D.

4.4 Ablation study

Effectiveness of reflectance edges. The usage of reflectance edge is very important in the proposed
method. To verify its effectiveness, we remove it from our complete method. Specifically, we train a
model by replacing the texture guidance map (generated from the reflectance edge map) with a mask
containing all ones. It means that we directly pass the color features to the multi-scale fusion modules
without the re-weighting operation in (4). Furthermore, we remove the edge loss LE in (5) from our
complete loss function. As shown in Figure 10, without re-weighting the color features, shading residuals
like highlights or shadows are left on the reflectance predictions. Although the use of data loss LD in
(5) can suppress shading effects to some extent, the shading residuals are still noticeable when compared
with our complete method. Besides, the performance of texture recovery is also degraded due to the
removal of the edge loss LE .

In Figure 11, we present another experiment by replacing the reflectance edge map E with the image
gradient E(I). As pointed out by red arrows, the shading edges are preserved in E(I), leading to noticeable
shading residuals on the estimated reflectance when serving E(I) as a guidance for texture recovery.
Besides, the texture edges in the dark regions (poor illumination) of the scene are darker than other texture
edges, which also raises shading effects on reflectance as highlighted in the green boxes. In comparison,
the reflectance edge E generated by the RegNet avoids introducing shading edges and still contains great
texture details. Furthermore, the intensity of the reflectance edges is consistent for the whole scene
without being affected by illumination variants among different regions. All of these demonstrate that
the estimated reflectance edge map E is more suitable than the image gradient E(I) in our pipeline for
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0.0647 0.0051 0.0049

0.0240 0.0033 0.0035

(a) (b) (c) (d) (e)

Figure 9 (Color online) Comparisons on the MIT dataset. The MSE value is reported in the top right corner of each image.

(a) Input; (b) Li et al. [16]; (c) Fan et al. [15]; (d) ours; (e) ground truth.

Figure 10 (Color online) Visual quality comparisons between the proposed method with (bottom right) and without (bottom

left) reflectance edge maps.

(a) (b) (c)

Figure 11 (Color online) Comparisons between image gradient (b) and our estimated reflectance edge map (c). For each closeup

group, the left image is the edge map and the right image is the corresponding reflectance. (a) Input; (b) E(I); (c) E.

texture recovery on reflectance without introducing shading residuals. Table 3 further validates that our
complete method outperforms these variant models, i.e., the models trained without reflectance edges or
trained with the image gradient. A complete validation of reflectance edges is provided in Appendix C.
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Table 3 Ablation study on the variants of our method trained without reflectance edges, with image gradients, without SRNet,

and with different losses

Method
IIW SAW

WHDR (%) ↓ AP (%) ↑

w/o reflectance edges E 14.86 96.87

Replacing E with E(I) 15.02 96.82

w/o SRNet 18.61 95.24

In SRNet
w/o LW 16.35 –

w/o LD&LG 15.77 –

w/o LW 16.01 93.18

w/o LS
Fuse 14.89 93.38

In FuseNet w/o LD 15.96 92.96

w/o LE 14.38 95.43

w/o LRec
Fuse 14.85 96.00

w/o LTGM 14.75 97.53

Our complete method 14.63 98.68

w/o SRNet

w/o edge loss

(a) (b) (c)

Figure 12 (Color online) Comparing our complete model with two variants: model trained without SRNet or edge loss, respec-

tively. (a) Input; (b) variants; (c) our complete model.

Effectiveness of SRNet. We verify the effectiveness of SRNet by removing it from our complete
method. Specifically, we directly pass the input natural image to the reflectance branch of FuseNet.
As coarse-grained reflectance images are no more available to calculate the data loss in (5), we utilize
the smooth reference map generated by the flattening image filter [37] as a candidate. The first row of
Figure 12 shows that without SRNet, shading effects cannot be well separated from the reflectance com-
ponents although texture details are preserved. As expected, our complete method achieves satisfactory
results on both shading removal and detail-preserving. Table 3 also validates that the performance of our
method shows a significant gap when removing SRNet, especially the WHDR metric. These experiments
imply that the use of SRNet plays an important role in removing shading effects.

Validation of the loss functions. To evaluate the effectiveness of the proposed loss functions, we
remove each loss term in the complete loss functions respectively. As shown in Table 3, the performance
of each variant is decreased compared with our complete method, except for the model trained without
edge loss (denoted as ‘w/o LE ’ in Table 3) which achieves a better WHDR score on the IIW dataset due
to the preference of WHDR. In the second row of Figure 12 we show that both methods perform well on
shading removal while our complete method preserves much more texture details.
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Figure 13 (Color online) Example of re-texturing by altering objects’ materials in the input image (a) with the target textures

(b). Our method (d) achieves more plausible results than previous method of Fan et al. [15] (c) due to the high quality of estimated

intrinsic images. Note that Fan’s network still contains old textures on the carpet while our method avoids this.

5 Image editing

To further validate the effectiveness of the estimated high-quality intrinsic images, we apply these intrinsic
images to some image editing applications. In Figure 13, we show a re-texturing task in which we alter
the texture of the carpet and the color of the wall. Note that the shadows on the carpet and the wall are
unaffected. In comparison with Fan’s method [15], our method produces more plausible image editing
results by achieving better realism without incurring the texture-copy problem. This evidences that our
proposed method preserves more texture details on the reflectance such that less will be copied to the
shading image. Besides, the image editing results for the illumination-varying image sequence in Figure 14
further show that our method decomposes shading and reflectance quite well and is consistent under
different illuminations. We believe our method also facilitates many other image editing or augmented
reality applications by providing high-quality reflectance and shading.

6 Limitations

Although achieving state-of-the-art performance, our method suffers from some limitations. Notably,
the performance of shading removal for our framework relies heavily on SRNet. Once shading effects
cannot be removed on the coarse-grained reflectance, they are likely to be left on the final fine-grained
reflectance. Besides, there is a risk of re-introducing shading effects on the reflectance in the process of
texture recovery since the estimated reflectance edge map may still contain shading edges such as the
strong cast shadow boundaries. We hope these problems would be solved by introducing high-quality
real-world datasets or by incorporating shadows removal models [59] to specifically deal with these issues.
Furthermore, it is also an interesting future work to generate sharper shading image while still preserving
high quality in reflectance.
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(a)

(b)

Figure 14 (Color online) Example of image editing for the illumination-varying image sequence. The image sequence is provided

by [49]. (a) Original illumination-varying image sequence; (b) our editing results.

7 Conclusion

In this study, we introduce the reflectance edge and show its superiority on intrinsic image decompo-
sition. The reflectance edge map, which is estimated by RegNet trained on the synthetic dataset (i.e.,
CGI), is essentially a gradient map capturing sudden changes along textures. This edge map is used to
progressively recover texture details on the coarse-grained reflectance image generated by SRNet with
multi-scale fusion modules. With the coarse-to-fine strategy, the proposed FuseNet finally produces fine-
grained reflectance and the corresponding shading image. Extensive experimental results show that our
method outperforms state-of-the-art methods in producing high-quality reflectance with great details and
few shading residuals. Several image editing applications further validate the effectiveness of the proposed
method. We believe in the future our method can promote practical applications of intrinsic images in
augmented reality and be used for other decomposition problems, such as color palette decomposition and
recoloring. On one hand, it is easier to change the textures or extract color palettes from the high-quality
reflectance than the natural image which contains interference factors such as highlights or shadows. On
the other hand, it is efficient to generate high-fidelity results by multiplying the retextured/recolored
reflectance and the shading images.
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