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Abstract Breast tumor segmentation is vital to tumor detection at the early stages. Deep learning methods

are typically used in automatic tumor segmentation tasks. However, in existing methods, the difference

between pixels is disregarded, and the union network architecture is used to segment all pixels; these methods

involve a tradeoff between accuracy and efficiency. A novel, difficulty-aware, prior-guided hierarchical network

for the adaptive segmentation of breast tumors is presented herein. A difficulty prior learning module is

proposed to learn the pixel’s difficulty prior to guild adaptive segmentation in the proposed network. To

achieve a more accurate segmentation of hard pixels, a hard pixel processing unit is presented to learn more

discriminative features for hard pixels. Experiments are conducted based on three datasets. The experimental

results show that the proposed methods outperform traditional deep learning methods and achieve a balance

between accuracy and efficiency.
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1 Introduction

Breast cancer is the second-highest cause of death among women worldwide [1]. It is reported that in
2020, approximately one in eight women (approximately 12%) will likely be diagnosed with breast cancer.
Early detection and classification of tumors can save lives [2, 3].

Ultrasonography is a well-known tool to diagnose breast cancer. Compared with mammography, it
offers advantages such as usability, inexpensiveness, and non-ionizing nature [4, 5].

Breast tumor segmentation is vital to the diagnosis of breast cancer. Recently, deep learning has been
widely used in medical image segmentation [6–8]. Typical deep networks [9–13] are constructed based
on the encoder-decoder architecture. An encoder is used for feature learning, which is significant for
performance improvement.

However, the pixel characteristics in an image are different, and existing models process all pixels based
on the union network architecture, where the tradeoff between accuracy and efficiency is disregarded. In
reality, hard pixels (complex regions) may be caused by variations in tumor intensity, size, density, texture,
and contrast. Figure 1 shows an example of an image with hard pixels. The image in Figure 1(c) highlights
hard pixel regions that are difficult to identify owing to their significant ambiguity. These regions result
in the incorrect segmentation of tumors, as shown in Figure 1(d). The network is trained on the entire
image and typically fails to accurately segment tumor regions with ambiguous surfaces surrounded by
thick tissues; these pixels can be regarded as hard pixels. A more complex network architecture needs to be
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(a) (b) (c) (d)

Figure 1 (Color online) (a) Original ultrasound image; (b) ground truth; (c) highlighted hard pixel regions; (d) segmentation

result.

developed to process hard pixels. However, the computational complexity increases with the complexity
of the network architecture.

A novel, difficulty-aware, prior-guided hierarchical network (DHN) for breast ultrasound image seg-
mentation is proposed herein. Generally, the incorporation of a prior is observed to acquire more precise
results [14]. Therefore, we first developed a difficulty prior learning module (DPLM) to learn the difficulty
prior, which can be used to classify easy and hard pixels. In this study, pixels correctly segmented with
probability scores exceeding 95% were regarded as easy, whereas the remaining were regarded as hard.

Furthermore, a novel hierarchical network is proposed for the adaptive segmentation of pixels using
the learned prior guidance. It detects easy pixels in shallow layers and integrates a complex hard pixel
processing unit (HPPU) at deep layers to recognize a small group of hard pixels. The HPPU is developed
to learn high-level discriminative features of hard pixels. It can learn more effective features of hard pixels
and improve the segmentation accuracy of hard pixels. Traditional networks learn the features of all pixels
using the same feature extractor. Therefore, the balance between the segmentation accuracy and efficiency
is difficult to guarantee. The proposed network can adaptively learn easy and hard pixels with different
feature extractors, unlike conventional methods. Therefore, it improves the segmentation accuracy of
hard pixels and the efficiency of easy pixels. In this study, the proposed method was evaluated using
three breast ultrasound datasets. The experimental results show that the proposed method outperformed
state-of-the-art methods.

The main contributions of this study are as follows:
(1) A novel, difficulty-aware, prior-guided hierarchical network is proposed for the adaptive segmenta-

tion of breast tumors. It can improve the segmentation accuracy of hard pixels and the efficiency of easy
pixels.

(2) A DPLM is proposed to learn the difficulty prior of pixels. It can guide the network to segment
images with different feature extractors.

(3) An HPPU is introduced to learn the discriminative features of hard pixels. A more complex
feature extractor is developed for the HPPU to learn discriminative features. It overcomes the inadequate
prediction of hard pixels for breast tumor segmentation and achieves high-quality image segmentation.

The remainder of this paper is organized as follows. Section 2 provides a brief overview of related
studies. Section 3 presents the proposed network architecture. Section 4 explains the experiments and
provides the findings, Section 5 gives a detailed discussion of the findings, and Section 6 summarizes the
findings of this study.

2 Related work

Breast tumor segmentation methods can be categorized into conventional and deep learning methods [15].
Conventional methods such as threshold [16], watershed [17], region growing [18, 19], active contour
model [20, 21], and clustering [22] techniques are typically used for image segmentation. Ilhan et al. [16]
recommended a morphological approach based on a median filter and a threshold to segment tumors.
Nayak et al. [17] proposed breast tumor segmentation and breast density extraction using a watershed
algorithm. However, the accuracy deteriorated in fatty and dense regions. Fang et al. [20] used a local
bias correction function and a probability score to segment complex ultrasound images with a minimized
energy function. Chowdhary et al. [22] presented an intuitionistic possibilistic fuzzy c-mean clustering
method based on the hybridization of fuzzy c-mean and possibilistic fuzzy c-mean algorithms to segment
and classify breast tumors. The algorithm conserves the positive points of the possibilistic fuzzy c-mean
to address the issue of coincidence clusters. However, feature extraction from breast ultrasound images
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is difficult because of artifacts such as noise, intensity inhomogeneity, and indistinct boundaries. The
sensitivity of the traditional method to noise and inferior scalability affects the robustness of the methods.

Deep learning methods [7, 10, 23–26] have demonstrated significant performance improvements.
DeepLab [24] outperformed the state-of-the-art methods for semantic segmentation. DeepLab uses atrous
convolution to expand the receptive field and embed contextual information at multiple scales without
increasing the computation time. Ronneberger et al. [7] presented an encoder-decoder structure with skip
connections for medical image segmentation. The encoder in the network exploits contextual features,
and the decoder obtains spatial resolution, whereas the skip connections conserve high-frequency details
to ensure better object detection. Neural network performance and design have improved considerably in
recent years, owing to the use of AlexNet [27], VGG [28], ResNet [11], ResNetXt [29], and Xception [30].
Researchers are developing new methods by adopting such networks as the backbone or utilizing the
encoder-decoder network to capture contextual information while maintaining spatial learning. Yap et
al. [31] performed breast ultrasound tumor segmentation on two different datasets using the patch-based
LeNet [32], UNet [7], and a transfer learning strategy based on a pretrained FCN-AlexNet. Huang et
al. [33] proposed information extension by training a fully convolutional network (FCN) with the addi-
tion of wavelength features to the original image. Conditional random fields with prior breast structure
knowledge were utilized to improve the segmentation performance. Zhang et al. [34] developed a hier-
archical mask-guided learning framework using a two-stage FCN model for coarse-to-fine breast tumor
segmentation. Lei et al. [2] proposed a mask scoring region-based convolutional neural network (R-CNN)
to perform automatic breast tumor segmentation. The network was composed of five subnetworks. A
network block was used to establish a direct relation between mask quality and region class; subsequently,
it was incorporated into the mask scoring R-CNN to segment images containing unclear regions of inter-
est. The network yielded outstanding results, although it was limited by the image quality and tumor
size. Chiang et al. [35] proposed an automated tumor detection technique based on a three-dimensional
(3D) convolutional neural network and a prioritized candidate aggregation that extracts the volume of
interest for tumor regions to prioritize tumors based on the computed probability. The model achieved
high sensitivities, thereby demonstrating the system’s potential; however, false positives with 100% sen-
sitivity generated should be further decreased. Al-antari et al. [36] designed a computer aided diagnosis
(CAD) system based on a full-resolution convolutional network and a deep convolutional neural network
to segment and classify breast tumors. However, the model indicated limited accuracy and precision
in localizing small objects. Zhou et al. [37] used a multitasking learning mechanism for joint classifica-
tion and segmentation tasks. The framework utilizes an encoder-decoder structure to segment images
and a lightweight multiscale network to classify images. Ho et al. [38] devised a multi-magnification
network with multi-encoder, multi-decoder, and multi-concatenation operations to perform patch-wise
image segmentation for breast tumors. In certain scenarios, the application of the multi-magnification
network was beneficial. However, when the number of training examples is low and the context of the
global tissue microenvironment cannot be integrated, its performance is deteriorated. Ahmed et al. [39]
designed a hybrid methodology for breast tumor classification and segmentation based on two well-known
deep learning methods, i.e., the mask-R-CNN [40] and DeepLab v3 [41]. However, despite their success,
these techniques are deficient in segmenting minor tumor regions. Deep convolutional networks that
utilize regularization methods and large network depths [1, 42] have demonstrated outstanding perfor-
mances. Although these networks improved classification performance, significant computational time
and memory requirements were incurred [43].

By contrast, prior knowledge learning has achieved considerably better performance in terms of tumor
segmentation [37]. However, it is difficult to learn an effective prior using the shallow model.

Although the abovementioned methods can achieve a certain degree of performance, the difficulty of
pixels was disregarded without considering the segmentation accuracy and efficiency. Recently, different
importance-aware or difficulty-aware methods have been proposed to perform semantic segmentation.
For example, Shareef et al. [44] presented a small tumor-aware network with two encoders and applied
multiple kernels to segment small tumors. These encoders use receptive fields of different sizes to obtain
contextual information at multiple scales and then fuse them. The architecture improves the overall
performance for small tumor detection but yields high false positives for images with few small tumors.
Nie et al. [45] used a fully convolutional adversarial network to perform the confidence learning of voxels
and regions for a segmentation network and a difficult-aware attention mechanism to understand the
structural information of hard regions. The proposed method yielded satisfactory dice similarity for
prostrate, bladder, and rectum segmentation. However, the efficiency of the method was not analyzed



Hussain S, et al. Sci China Inf Sci February 2023 Vol. 66 122104:4

E
1

E
2

E
3

E
4

D
4

D
3

D
2

D
1

E
5

Forward propagation Conv2D(3×3) Conv2D(1×1)MaxPool2D(2×2) UpSampling2D(2×2)

DPLM

HPPU

Figure 2 (Color online) Overall architecture of difficulty-aware prior-guided hierarchical network (best viewed in color with 150%

zoom).

based on false positives. Xie et al. [46] designed a segmentation network with two branches, i.e., a common
segmentation and a semantic difficulty branch. The former branch segments common pixels, whereas the
latter uses the probability attention module to estimate the error mask and uses it to learn the semantic
difficulty. The proposed method is used to segment objects in the environment and effectively improve
hard-area segmentation. However, the current studies do not use a specific difficult-aware network to
manage hard pixels in breast ultrasound (BUS) images. Therefore, we propose a difficult framework to
segment easy/hard pixels in BUS images based on the estimated difficulty.

3 Methodology

3.1 Framework overview

The DHN was constructed based on the encoder-decoder architecture. It comprises fully convolutional
encoder and decoder networks linked via skip connections. The encoder comprises four consecutive blocks
E (as shown in Figure 2), which are composed of two convolutional layers with a kernel size 3 × 3, a
rectified linear unit (ReLU) as an activation function, followed by a 2 × 2 max-pooling layer. Unlike
traditional networks, the DPLM is introduced after the third layer to identify easy or hard pixels in
our encoder. Based on the results of the DPLM, easy pixels are processed via shallow layers, whereas
more discriminative high-level features of hard pixels are learned via the HPPU. To restore the spatial
resolution of the extracted feature map to the same size as the input image, a decoder is constructed. It
comprises four consecutive blocks (D1–D4 as shown in Figure 2) composed of a 2 × 2 upsampling layer,
followed by two convolution layers with a kernel size 3 × 3 and a ReLU as an activation function. The
encoder and decoder are connected via skip connections to transmit feature maps from the encoder to



Hussain S, et al. Sci China Inf Sci February 2023 Vol. 66 122104:5

Image Ground truth Easy/hard pixels UNet segmentation

result

Figure 3 (Color online) Easy pixels vs. hard pixels.

the corresponding decoder to refine the segmentation [37,47]. The final segmentation result is generated
through a convolutional layer with a kernel size 1 × 1 and a sigmoid function based on the feature maps
output via the encoder-decoder.

3.2 DPLM

In our model, difficulty learning is vital for learning features and segmenting images. Figure 3 shows
some images whose easy pixels (green regions) are predicted accurately, and areas with hard pixels (red
regions) that exhibit erroneous segmentation results. Therefore, we aim to identify the difficulty level of
the pixels in the image.

In this study, a DPLM was constructed using two convolutional layers with a kernel size of 3 × 3 to
realize more effective feature learning. Subsequently, the softmax layer was used to generate a 2 × 32 ×
32 × 1 pixel-wise probability map L0. The vector column L0

i ∈ R
(N×W×H×C) for each N × C column

denotes the i-th pixel’s probability of belonging to the tumor/object in an image, where N represents the
number of classes, W and H are the width and height of an image, respectively, and C represents the
channels. If the maximum value of the i-th pixel, i.e., L max0i = MAX(L0

i ) and L max0i ∈ {L0
ij|j = 0, 1

for tumor/background} is greater than a threshold value p (L max0i > p), then we assume that it is
correctly predicted and hence forwarded to the symmetric layer of the decoder network.

The DPLM (as shown in Figure 4) classifies pixels with a probability higher than the threshold value as
easy pixels. By contrast, pixels that cannot satisfy the condition are classified as hard pixels. The thresh-
old value p generally exceeded 0.95. Pixels with probability (L max0i > 0.95) constituted approximately
40% of an image region that contained plenty of easy pixels and relatively few challenging hard pixels
that were at high risk of being misclassified. In particular, p denotes the number of accepted easy pixels
and exceptionally hard pixels rejected at that level. The increase or decrease in the value of p determines
the number of easy pixels to be processed in the early layers, and hard pixels are managed in the later
layers. Figure 5 presents a graph showing the percentage of easy pixels accepted at different threshold
values. The result shows that the pixels were evaluated more strictly as the value of p increased, where
challenging hard pixels were prioritized. The performance of the DPLM was affected by the small values
of p and resulted in early decisions that did not provide a satisfactory awareness of the hard pixels. To
select a threshold value more precisely, we measured the IoU for selected pixels over different threshold
values. The best performance was achieved when a threshold value of 95% was used. However, the value
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Figure 5 (Color online) Easy pixel classification at different threshold values.

of p can be tentatively selected using the validation results.

3.3 HPPU

To manage hard pixels by learning more discriminative features, an HPPU (shown in Figure 6) was
developed. The HPPU was composed of five parallel convolutional layers and a global average pooling
layer. The traditional convolution layer uses several filters to extract visual elements, thereby increasing
the computational cost. Dilated convolutions permit the receptive field of the filters to be expanded at any
convolution layer without additional parameters or computational cost [24]. Because dilated convolutions
can accumulate more spatial information specifically to indistinctly recognizable boundaries [48], we
applied dilation rates to the HPPU convolution layers. The variation in the dilation rates resulted in
additional useful receptive fields that enable the image context to be obtained at various scales. Dilated
convolutions with dilation rate d insert d − 1 zeros between consecutive filter values. The kernel filter
with a size k× k with dilation rate d is altered to ki = k+ 〈k−1〉〈d−1〉 with a zero increase in the number
of parameters and computations. This technique allows the module to control the receptive field, thereby
channelizing the surrounding distinct information to indistinct object regions, as well as to establish the
finest balance between precise localization and context inculcation.

Unlike traditional convolutions, the HPPU performs convolution only on hard pixels. In the proposed
HPPU, multiscale features are learned using multiple parallel convolutional layers with different dilation
rates. The final feature map confining intensely highlighted tumor regions is generated by concatenating
multiscale features from four different dilated convolutions via a 1× 1 convolution to reduce and restore
the dimensions; additionally, a global average pool layer is used to obtain an image’s global context. The
HPPU improves hard pixel learning by expanding the receptive field, thereby allowing hard pixels to
achieve refinement based on knowledge acquired regarding the surrounding well-defined regions. Hence,
high-level learning at multiple scales produces more distinct contextual knowledge and localization for
hard pixels. Consequently, the hard pixels are discoverable and easily captured by the network. Eq. (1)
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shows a mathematical representation of the HPPU.

HPPU = convk(I)⊕ convk,d(I)⊕ convk,d(I)

⊕ convk,d(I)⊕ convk,d(I)⊕GAP(I, 1),
(1)

where convk,d shows the convolution operation over image I with kernel size k × k where k = 3 for a
dilated convolution; otherwise, the value k will be 1 and dilation rate d = 6, 12, 18, 24, respectively. GAP
denotes the global average pooling layer over I with dimension 1, and ⊕ represents the concatenation
operation.

4 Experimental results

To validate our model, we conducted a series of experiments on three datasets: QHSP (private), UDIAT
(public), and BHAYE (public).

4.1 Datasets

QHSP. This dataset was obtained from the Qianfoshan Hospital of Shandong Province. It contains 186
breast ultrasound grayscale images with a tumor that belongs to one of two categories: benign (135) and
malignant (51). The images were captured from four devices, i.e., ALOKA α 10, AplioXG, GE LOGIQ
E7, and SIEMENS Sequoia 512.

UDIAT. This dataset is obtained from the UDIAT Diagnostic Center of the Parc Tauli Corporation,
Sabadell, Spain [31]. It contains 163 images classified into benign (110) and malignant (53) images. The
image resolution is 760 × 570 pixels (with a nominal pixel size of 0.084 mm). A Siemens ACUSON
Sequoia C512 system 17L5 HD linear array transducer (8.5 MHz) was used to construct the ultrasound
images.

BHAYE. The dataset contains 780 images from the Bhaye Hospital for Early Detection and Treatment
of Women’s Cancer, Cairo (Egypt) [49], captured using the LOGIQ E9 ultrasound system and LOGIQ
E9 Agile ultrasound system. The dataset is classified into normal (133), benign (437), and malignant
(210) images with a standardized image size of 500 × 500 pixels.

4.2 Implementation details

We used PyTorch and NVIDIA TITAN XP 12 G, and an Intel Xeon Gold 5115 2.4 G GPU for training
and validation, respectively. We performed a five-fold cross-validation on the QHSP dataset, where three
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folds (60% of the images) were used for training, one fold (20% of images) for validation, and one fold
(20% of images) for testing. In each fold, images were selected randomly for training, validation, and
testing. The UDIAT and BHAYE datasets were fully utilized for testing. All images in the dataset were
first resized to a 256 × 256 pixel resolution; subsequently, they were normalized and then transformed
into grayscale images. Data augmentation was performed to facilitate small-sized datasets, which were
randomly rotated, sheared, zoomed, cropped, and flipped horizontally with real-time data augmentation
for each batch, thereby generating more than 90000 images to improve the model’s performance and
robustness. The model was trained on 1000 epochs using the Adam optimizer with a learning rate of
5× 10−7, a batch size of 8, and a weight decay rate of 0.08.

4.3 Evaluation metrics

We used six metrics to evaluate the performance of the proposed method. The metrics were accuracy
(Acc), sensitivity or true-positive rate (TP), specificity or true-negative rate (TN), false-positive rate
(FP), intersection over union (IoU), and the Dice coefficient. These metrics are expressed as follows:

Acc =
|(Tg ∩ Tp) ∪ (Bg ∩Bp)|

|Tg ∪Bg|
, (2)

TP =
|Tg ∩ Tp|

|Tg|
, (3)

TN =
|Bg ∩Bp|

|Bg|
, (4)

FP =
|Tg ∪ Tp − Tg|

|Tg|
, (5)

IoU =
|Tg ∩ Tp|

|Tg ∪ Tp|
, (6)

Dice =
2|Tg ∩ Tp|

|Tg|+ |Tp|
. (7)

In the equations above, Tg and Bg denote the pixels of the tumor and background regions in the
ground-truth image, respectively. Similarly, Tp and Bp indicate the pixels of the tumor and background
regions in the predicted image, respectively. Additionally, a receiver-operating curve (ROC) was used for
the performance analysis.

4.4 Effectiveness of difficulty prior

The effectiveness of the difficulty of prior guidance on breast tumor segmentation was investigated. The
DPLM estimates the difficulty prior, whereas the HPPU segments the hard pixels. In our experiment,
we compared the performances of a convolutional encoder-decoder network with and without difficulty
prior guidance. Table 1 presents a detailed analysis of the effect of our network architecture on multiple
datasets. The DPLM separates the easy and hard pixels by evaluating the probability of the pixel. The
pixels that cannot satisfy the threshold value p are forwarded to the HPPU for further processing. Table 1
shows the effects of the DPLM on the final segmentation results and the accuracy of the model.

We observed that the convolutional encoder-decoder network without a DPLM exhibited performance
discrepancies on the datasets with varying pixel difficulties. A network without DPLM considers all pixels
equally, which affects the performance of the network. By contrast, a convolutional encoder-decoder
network with a DPLM, which can estimate pixel difficulty and train accordingly, achieves outstanding
performance. Our approach yielded high values across all metrics. The encoder network with a DPLM
managed hard pixels better than an encoder network without a DPLM. The findings indicate that the
proposed method effectively addressed images with different difficulties.

As mentioned in Section 3, we proposed a mechanism to differentiate easy/hard pixels and introduced
an HPPU to learn hard pixels. The network can focus on hard pixel segmentation without complicating
the network and wasting resources on easy pixels. We used UNet as the backbone for our model; the HPPU
visualization results and their effect on the final prediction surpassed the UNet results. Figure 7 shows
a comparison between the results of the proposed model with those of the UNet. The HPPU refines the
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Table 1 Experimental results of DPLM and HPPU in a convolutional encoder-decoder network on three datasets

QHSP UDIAT BHAYE

Accuracy 0.960 0.982 0.979

UNet IoU 0.706 0.601 0.836

Dice 0.814 0.752 0.877

UNet+
Accuracy 0.963 0.983 0.980

DPLM (HPPU)
IoU 0.728 0.652 0.847

Dice 0.828 0.762 0.887

Image

Ground truth

Easy/hard pixels

UNet

DHN

Figure 7 (Color online) UNet vs. DHN.

features of the hard pixels by performing multiple parallel convolution operations. Dilated convolutions
capture more contextual information than normal convolutions. The fusion of these convolutions provides
better access to hard pixel regions because convolutions with different dilation rates generate feature maps
with semantic knowledge at multiple levels. The concatenation of explicit location and the contextual
information of hard pixels attained at multiple scales progressively improve the network’s learning and
result in accurate segmentation. Figure 7 shows images highlighting easy (green) and hard (red) pixels.
The UNet segments the hard pixels incorrectly, whereas the DHN segments the easy and hard pixels
accurately. The incorporation of the HPPU in the DHN resulted in a more accurate display of the
edges of a tumor, along with a significant increase in segmentation performance, thereby validating the
effectiveness of our model.

4.5 Comparison with state-of-the-art methods

To demonstrate the effectiveness of our model, we compared our proposed method, i.e., the DHN, with
the following five state-of-the-art methods: FCN32 [9], UNet [7], SegNet [10], DeepLab v3 [41], and
PSPNET [25] on three different datasets. Table 2 shows the quantitative results comprehensively. The
DHN surpasses the other five methods with a clear margin in terms of different metrics for the three
datasets. Our method achieved a better IoU and Dice coefficient than the other techniques, particularly
for hard pixels that are more difficult to segment. The DHN increased the accuracy significantly as
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Table 2 Performance evaluation of our model compared with state-of-the-art methods on different datasets

QHSP UDIAT BHAYE
Methods

TP TN FP Acc Dice IoU TP TN FP Acc Dice IoU TP TN FP Acc Dice IoU

B
e
n
ig
n

FCN32 0.403 0.506 0.395 0.912 0.378 0.262 0.245 0.707 0.193 0.968 0.230 0.164 0.161 0.890 0.110 0.942 0.166 0.117

UNet 0.733 0.506 0.486 0.928 0.621 0.497 0.746 0.736 0.255 0.974 0.680 0.583 0.894 0.931 0.069 0.985 0.885 0.848

PSPNET 0.709 0.576 0.416 0.929 0.627 0.520 0.674 0.827 0.273 0.982 0.664 0.571 0.863 0.936 0.064 0.985 0.883 0.829

SegNet 0.743 0.217 0.774 0.895 0.569 0.359 0.773 0.045 0.954 0.822 0.589 0.142 0.906 0.927 0.073 0.985 0.896 0.854

DeepLab v3 0.735 0.608 0.383 0.936 0.646 0.526 0.790 0.756 0.244 0.984 0.713 0.620 0.880 0.939 0.057 0.986 0.891 0.846

DHN 0.746 0.561 0.389 0.936 0.666 0.562 0.798 0.751 0.248 0.984 0.772 0.657 0.907 0.943 0.057 0.987 0.901 0.862

M
a
li
g
n
a
n
t FCN32 0.587 0.560 0.399 0.872 0.549 0.388 0.350 0.845 0.155 0.955 0.372 0.279 0.289 0.853 0.142 0.886 0.332 0.239

UNet 0.785 0.558 0.441 0.882 0.682 0.520 0.810 0.824 0.176 0.979 0.783 0.692 0.856 0.912 0.082 0.965 0.861 0.813

PSPNET 0.779 0.580 0.420 0.881 0.683 0.522 0.690 0.922 0.178 0.977 0.713 0.634 0.821 0.908 0.088 0.960 0.842 0.783

SegNet 0.766 0.353 0.646 0.850 0.615 0.407 0.800 0.042 0.957 0.830 0.628 0.244 0.836 0.912 0.080 0.963 0.848 0.804

DeepLab v3 0.767 0.636 0.364 0.882 0.682 0.522 0.764 0.907 0.193 0.981 0.781 0.702 0.820 0.898 0.093 0.956 0.840 0.786

DHN 0.782 0.569 0.365 0.883 0.697 0.554 0.814 0.862 0.137 0.984 0.788 0.708 0.862 0.913 0.080 0.968 0.862 0.818

Table 3 Overall segmentation performance of DHN

UDIAT BHAYE
Methods

TP FP IoU Dice TP FP IoU Dice

STAN 0.80 0.27 0.70 0.78 0.76 0.42 0.66 0.75

ESTAN 0.84 0.22 0.74 0.82 0.80 0.36 0.70 0.78

DSAG 0.77 0.19 0.62 0.73 0.86 0.07 0.82 0.87

DHN 0.83 0.21 0.76 0.82 0.87 0.04 0.85 0.88

compared with the UNet, demonstrating the effectiveness of multiscale cascade layers in learning the
hard pixels’ information, thereby validating the efficiency of our model.

We conducted another quantitative comparison with two of the latest available tumor-aware networks
for breast ultrasound image segmentation, i.e., the STAN [50] and ESTAN [44], for publicly available
datasets. In addition, we used another difficulty-aware method to segment tumors in breast ultrasound
images, i.e., DSAG [51]. As shown in Table 3, the IoU and Dice rates of the DHN were higher than those
of the STAN, ESTAN, and DSAG. In addition, the FP rate of our approach was lower than that of the
other methods. Our approach achieved the highest positive rate for the BHAYE dataset. However, for
the UDIAT dataset, its TP was higher than those of the STAN and DSAG, whereas it differed by one
point as compared with that of the ESTAN. Both the STAN and ESTAN used two encoders with different
receptive fields to capture more contextual information for tumor regions and fuse them subsequently.
By contrast, the DSAG used a difficulty grading module to identify the difficulty of images and then used
a bi-network to segment images adaptively on different branches. Meanwhile, the DHN uses difficulty
measures to classify pixels and capture more discriminative information through an HPPU based on
convolution layers with receptive fields, thereby yielding the best results for tumor segmentation on both
datasets.

PSPNET and DeepLab v3 demonstrated high specificity for the QHSP and UDIAT datasets, which
are smaller than the BHAYE dataset. The specificity of the BHAYE dataset was relatively high in our
model. FCN32 indicated a higher FP rate in benign and malignant tumors, although the DHN indicated
a significantly higher FP rate than the other methods. In benign tumors, the accuracy of the DHN was
similar to the highest accuracy achieved among the other models; however, in malignant tumors, the
DHN demonstrated the highest accuracy among all the methods. Figure 8 presents a visual example of a
qualitative comparison between the DHN and other benchmark methods. As shown, DHN surpassed the
other methodologies with consistent results. Figures 9(a)–(c) show a comparison of the ROC between
our method and state-of-the-art methods on different datasets to verify the performance of our method.
The results show that our model is superior to the other state-of-the-art methods, thereby proving the
effectiveness of the DHN model. Figure 10 shows the outputs of different layers and provides sufficient
evidence that the DPLM-HPPU integration improves breast ultrasound image segmentation results. The
segmentation results of the DHN and ground truth for the input images were 99% similar, confirming
that the difficulty-aware mechanism aided the network in emphasizing hard pixels.

4.6 Performance analysis

To demonstrate the tradeoff between speed and accuracy, we compared the speed (frames per second, fps)
and accuracy (IoU) of the proposed model with those of other state-of-the-art models. We evaluated the
performances of all the methods on the validation and test sets of the UDIAT dataset. The fps for each
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Image Ground truth UNet PSPNET SegNet DeepLab v3 DHN

Figure 8 Qualitative evaluation of DHN compared with other benchmark methods.

model was measured on a TITAN XP GPU. All the models were evaluated without any pre-processing or
post-processing to ensure a fair assessment. In general, the DHN achieved the best performance among
the methods evaluated, as shown in Figure 11.

PSPNET and FCN32 achieved higher fps rates owing to their small sizes but a lower mIoU than
the DHN. Meanwhile, DeepLab v3 uses ResNet as the backbone network, which increased its accuracy.
However, its inference speed was comparatively slow, i.e., 10.81 fps. The DPLM allows the network to
focus only on hard pixels in the HPPU and manage easy pixels in the early layers. The proposed model
achieves the best tradeoff between speed and accuracy, with 86% mIoU and 12.94 fps.

5 Discussion

Herein, a mechanism was proposed that distinguished between easy and hard pixels in a breast ultra-
sound image by estimating the probability of each pixel in a probability map generated at a certain layer.
Subsequently, each pixel probability was compared against a threshold value and categorized as correctly
predicted or rejected. The best threshold value was finalized by monitoring the increase in IoU observed
for correctly predicted pixels at different threshold values. A further integration of the hard pixel process-
ing unit resulted in the better localization and contextual information of hard pixels captured through
the different receptive fields across different convolutional layers. The gain of the network’s overall per-
formance confirmed the effectiveness of the DPLM and HPPU in better understanding the easy and hard
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Figure 9 (Color online) ROC curves of (a) QHSP dataset, (b) UDIAT dataset, and (c) BHAYE dataset.
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Figure 10 Visualization of outputs of different layers.

pixels. Furthermore, the network’s ability to focus on difficult and complex regions in an image instead
of using a unified model for all pixels resulted in the accurate and swift segmentation of tumors without
any additional cost.

We compared the proposed method with several state-of-the-art methods, specifically tumor-aware
breast tumor segmentation methods, in terms of image segmentation. As shown by the performance
evaluation presented in Tables 2 and 3, and Figure 8, the UNet, PSPNET, and DeepLab v3 demonstrated
better feature extraction and segmentation ability for breast ultrasound images than the other models.
The UNet uses a contractive and expansive path with multiple convolution layers to extract the semantic
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Figure 11 (Color online) Accuracy (IoU) and speed (fps) of various networks.

features of an image. In addition, it utilizes upsampling layers to restore the original image resolution.
The most significant benefit of the network is that it employs skip connections to link the contractive and
expansive convolution layers at each level; consequently, the grained details from the compression path are
merged into the expansive path that is lost owing to pooling, and the segmentation quality is enhanced.
However, the fusion of semantic and spatial features results in objects captured at different scales; as
such, it does not benefit the relationship between objects globally and yields limited performance when
the object changes in size and shape. The PSPNET utilizes spatial pooling at multiple scales to obtain a
contextual prior that demonstrates effective performance in semantic segmentation. Although the feature
map contains abundant semantic information, it lacks detailed boundary information regarding the object,
thereby resulting in performance deterioration when complex objects with ambiguous boundaries are
encountered. DeepLab v3 establishes an atrous spatial pyramid pooling (ASPP) module with global
pooling to improve contextual awareness. DeepLab v3 demonstrates improved performance by recovering
dense encoder features from the ASPP and detailed object boundaries through the decoder. However,
high spatial resolution is crucial in dense image prediction, and an inconsistent increase in the dilation
rate can result in an ineffective model. The deficiencies of these methods result in improper segmentation
results for ultrasound images with complex regions.

DSAG presents a difficulty-aware mechanism in a network with two separate branches to manage
hard and easy images. A difficulty grading module is adapted to determine the difficulty of images;
subsequently, a bi-network is used to segment images adaptively on different branches. In DSAG, the
complex branch employs a spatial attention module and graph-based energy incorporating a spatial
attention constraint after an SE-UNET to learn the complex features of hard images. The STAN and
ESTAN involve a tumor-aware strategy for segmenting tumor regions of different sizes. Both models use
a two-encoder architecture with multiple kernels to learn multiscale features to improve performance.

For our model, we used the encoder-decoder structure of the UNet to retrieve semantic information
for tumors in BUS images. The DHN employs a DPLM to estimate the difficulty of a pixel at a certain
level of the encoder, where most of the easy features are already captured. Pixel discrimination allows
the network to separate all correctly predicted pixels and forward them to the symmetric decoder for
further use. Hence, the unnecessary wastage of resources is reduced, and the network will only focus on
the feature retrieval of hard pixels. The HPPU is designed to function based on the principle of dense
image segmentation with dilated convolutions. It enlarges the receptive field, thereby enabling a wide-
range context utilization with better pixel localization, and global average pooling allows us to obtain the
global context of an image. The fusion of these features provides a better understanding of hard pixels
in an image. The decoder with skip connections restores the resolution size of the image and utilizes the
contextual and spatial knowledge of the features to predict the nature of a tumor in an ultrasound image.

Among these comparison methods, DSAG is an image-level, difficulty-aware network that cannot
accurately obtain the prior of the local hard pixels easily. Unlike DSAG, the proposed method can learn
the prior of the pixel-level difficulty, which facilitates the identification of prior hard pixels. In addition,
the proposed method can segment an image using a network. However, a graph cut is used for additional
post-processing in DSAG. Therefore, the proposed method outperforms DSAG in terms of segmentation
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accuracy and efficiency. The STAN and ESTAN use two encoders with different receptive fields to capture
more contextual information for tumor regions. However, every pixel is considered equally. Therefore, it
is difficult to acquire sufficient useful information regarding the hard pixels. By contrast, the proposed
method can focus on hard pixels, and an HPPU is constructed specifically for the feature extraction of
hard pixels. Consequently, it can learn more discriminative information regarding hard pixels, improve
the segmentation accuracy of hard pixels, and eventually improve the performance.

In future studies, the method can be generalized to multiple tumor segmentation in an image. In
addition, the proposed method can be evaluated on two-dimensional ultrasound images. Furthermore, it
can be used on 3D ultrasound images as well as extended to applications involving the segmentation of
tumors in other body regions.

6 Conclusion

A difficulty-aware prior-guided adaptive segmentation method was proposed herein. In contrast to tra-
ditional methods that use union network architectures to segment all pixels, the proposed method can
segment breast ultrasound images adaptively. A DPLM is used to learn the prior difficulty. Based on the
difficulty prior, the features of easy pixels are learned using a simple feature extractor, whereas those of
hard pixels are learned using an HPPU. The HPPU is a complex feature extractor composed of several
parallel dilated convolutional layers and a global average pooling layer. It can learn more discriminative
features of the hard pixels. Compared with other methods, the proposed method uses a different archi-
tecture that can achieve a balance between accuracy and efficiency when managing easy and hard pixels.
Experiments on three datasets demonstrated the effectiveness and efficiency of the proposed method.

In the future, we will apply our model to segment tumors in other regions of the human body, such as
the brain, liver, lymph nodes, and uterus.
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