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Appendix A METHODOLOGY

Appendix A.1 Dynamic Movement Primitives (DMPs)

In this paper, two DMPs models are used to encode motion trajectory and force trajectory respectively, namely motion DMPs

and force DMPs. According to the reference motion trajectory and force data obtained from the demonstration, DMPs for motion

trajectories and force trajectories are learned respectively to obtain their respective model parameters. We demonstrate the

effectiveness of the proposed method through an experiment of man-machine coordinated handling of boxes.

Appendix A.1.1 DMPs for motion trajectory planning
The essence of DMPs is a second order nonlinear dynamic system with spring and damper. The motion of a single degree of freedom

can be expressed by the following formula [1]:

τθ̇2 = K(g − θ1)−Dθ2 + h(s;ω) (A1)

τθ̇1 = θ2 (A2)

τṡ = −α1s (A3)

where formula (A1) represents a transformation system with two parts: a second-order spring-damped system and a nonlinear term.

K and D denote the spring constant and damping coefficient of the system respectively, and D is usually set as K = D2/4 [2]. g

is the target value of the motion trajectory. τ represents the time scaling constant. θ1 and θ2 respectively represent the position

and velocity of motion, and the relationship between them is shown in formula (A2). ω is the weight of the Gaussian model. s

represents the phase variable of the system, which is determined by a canonical system, as shown in formula (A3), where α1 is a

positive constant. The nonlinear function is defined as

h(s;ω) =

∑N
i=1 φiωi∑N
i=1 φi

(g − θ0)s (A4)

φi = exp(−di(s− ci)2) (A5)

where ci and di are the center and width of the i-th Gaussian function respectively, θ0 is the initial value of the motion trajectory,

N is the number of Gaussian functions, wi is the weight of the i-th Gaussian function. In general, the initial value of s was taken as

1, which decays over time and eventually goes to zero. Obviously, since the value of s tends to zero, the nonlinear function h(s;ω)

is bounded, and the model becomes a stable second order spring-damped system.

In general, nonlinear regression algorithms such as local weighted regression algorithm (LWR) can be used to determine model

parameters ω [3]. Given the demonstration trajectory θ(t), where t = [1, 2..., T ], g = θ(T ), the objective function can be determined

according to formula (A1):

ftarget = τθ̇2 −K(g − θ1) +Dθ2 (A6)

furthermore, ω can be determined by the following formula:

ω = argmin
ω

∑
(ftarget − h(s;ω))

2
(A7)

According to formula (A1), the original DMPs model are prone to generate large acceleration at the initial moment, which may

cause damage to the robot. In order to avoid this problem, an exponential decay system in literature [1] was used to replace the

moving target, that is, the current target point can be gradually approached from the initial point of the trajectory to the target

point:

τg̃ = −α2(g̃ − g) (A8)

where α2 is a positive constant, g = θ(T ) is a fixed constant, and g̃ starts from the initial value θ0 and converges exponentially to

g. According to formula (A8), the model can be transformed into:

τθ̇1 = θ2 (A9)

τθ̇2 = K(g̃ − θ1)−Dθ2 + h(s;ω) (A10)
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Appendix A.1.2 DMPs for force trajectory planning
Similar to the DMPs for motion trajectory planning, force trajectories of the demonstration are modeled by DMPs. Define the

demonstration force as f(t), where t = [1, 2, ..., T ], g = f(T ):

τḟ2 = M(f̃g − f1)−Nf2 + h(s;β) (A11)

τḟ1 = f2 (A12)

h(s;β) =

∑N
i=1 φiβi∑N
i=1 φi

(fg − f0)s (A13)

where M and N respectively represent the spring constant and damping coefficient of the system, and M is usually set as M = N2/4

[1]; f0 is the initial value of the force trajectory; f1 and f2 respectively represent the magnitude of the force and the speed of force

change, and the relationship between them is shown in formula (A12); fg = f(T ) is a fixed constant, and f̃g starts from the initial

value f0 and converges exponentially to fg ; βi is the weight of the i-th Gaussian function. The two transformation systems are

driven by the same phase variable s, such that they can be synchronized. The estimation process of the model parameters in the

force DMPs are the same as that of the motion DMPs’, as shown in formula (A6) and (A7).

Appendix A.2 Force Control

In the experiment of human-machine joint transportation of objects, the force exerted on the object needs to be constrained. In

order to avoid object falling caused by small force or object distortion because of large force, the force received by the object during

the reproduction process is expected to be maintained around the expected value. In this paper, a force controller is added on the

basis of the position controller to regulate the manipulation force in the transportation process. The inputs of the force controller

are the actual position and force, and the expected position and force, and the output is the desired acceleration. The expected

movement of the robot in the interaction process is:

∆Ẍ = Kp (Xd −X)−KvẊ − (Fd − Fr) (A14)

where,

Kp =


kpx 0 0

0 kpy 0

0 0 kpz

 ,Kv =


kvx 0 0

0 kvy 0

0 0 kvz

 (A15)

represent damping and stiffness respectively. By adjusting these two parameters, the force tracking performance of the robot

end-effector can be changed. Xd = [xd, yd, zd]T ∈ R3×1 and X = [x, y, z]T ∈ R3×1 are the expected trajectory and the actual

trajectory respectively. Fd = [fd,x, fd,y, fd,z ]T ∈ R3×1 and Fr = [fx, fy, fz ]T ∈ R3×1 are the expected force and the actual force

respectively. The output of the force controller is acceleration ∆Ẍ = [∆ẍ,∆ÿ,∆z̈]T ∈ R3×1, and the force can be adjusted by

integrating ∆Ẍ twice and adding to the desired position.

Appendix A.3 Obstacle Avoidance and Recovery

Humans and robots may encounter sudden obstacles in the process of jointly transporting objects. More specifically, obstacle

avoidance needs to be considered, so that the position and orientation of the end-effector of the robot arm can track the expected

trajectory when the robot meets an obstacle, and the redundancy of the robot can be used to avoid the obstacle. The solution of

general inverse kinematics is [4]:

θ̇ = J
†
ẋ+

(
I − J†J

)
f (A16)

where J† = JT
(
JJT

)−1
, f is the vector for obstacle avoidance, and I ∈ R7×7 is the identity matrix, θ̇ ∈ R7×1 is the angular

velocity of each joint, J ∈ R7×7 is the Jacobian matrix, x ∈ R6×1 represents the position and Euler angle of the end-effector.

In order to ensure that the position and orientation of the manipulator can track the expected trajectory, a closed-loop control

policy is added in Cartesian space:

ẋe = ˙̂xd +Keex = ˙̂xd +Ke (x̂d − xe) (A17)

where ẋe is the velocity of the end of the arm, x̂d = xd + ∆x is the desired position input to the position controller, xd =

[x, y, z, wx, wy, wz ]T ∈ R6×1 is the expected trajectory generated from the DMPs, including the position and Euler angle of the

end-effector, ∆x is the output of the force controller, xe ∈ R6×1 represents the actual position and Euler angle of the end-effector.

In this paper, the orientation of the end-effector is expected to be always perpendicular to the surface of the object during the

transportation of the object. Consequently, the orientation of the end-effector is constant during the experiment. Ke is a symmetric

positive definite matrix. When an obstacle approaches close to the arm, the arm’s joints can be moved away from the obstacle.

The velocity of the end-effector must satisfy the motion constraint during obstacle avoidance:

ẋe = Jeθ̇ (A18)

and

ẋo = Joθ̇ (A19)

where Jo ∈ R7×7 is the Jacobian matrix of the collision point, Je ∈ R7×7 is the Jacobian matrix at the end-effector, and ẋo is

obstacle avoidance speed.

In the process of obstacle avoidance, the distance between the obstacle and the robotic arm need to be calculated, and then

whether obstacle avoidance is needed be determined. Here, we refer to the obstacle detection method in literature [5]. Firstly,

the continuous K-means clustering method is applied to segment the point cloud obtained by Kinect into hyperpixels. Then, the

segmented point clouds are used to generate a simplified 3D model of the robot. In the point cloud, points near the 3D model

are recognized as obstacles. The distance between the obstacle and the robot arm can be obtained by calculating the minimum



Zhang Y., et al. Sci China Inf Sci 3

Figure A1 The motion of each joint angle during obstacle avoidance.

distance between the simplified three-dimensional model and the object. Assuming that the coordinates of the obstacle are pobj ,

and the coordinates of the closest point to the obstacle on the mechanical arm are pr , as shown in Figure A1. The distance between

the obstacle and the robotic arm is defined as L = ‖pr − pobj‖. The end-effector moving speed of the robot arm is determined

according to the distance between the obstacle and the robot arm. Besides, the maximum and minimum threshold of obstacle

avoidance distance is set as Lmax and Lmin. When L > Lmax, the obstacle is far away from the robot arm, and thus the obstacle

avoidance is not needed, i.e. ẋo = 0. When Lmin < L < Lmax, the obstacle avoidance speed increases gradually with the decrease

of distance, and we set ẋo = h(d)vmax, where h(d) = (Lmax − L)/(Lmax − Lmin). To keep the arm moving away from obstacles,

we set vmax = vmax(pobj − pr)/L as the maximum speed of obstacle avoidance. When L < Lmin, the manipulator avoids the

obstacle will be the maximum speed vmax [6].

However, when the collision point is too close to the base of the robot arm, the robot may not have enough degrees of freedom

to achieve the obstacle avoidance speed ẋ0, for example, when the rank of J0 is 2, since ẋ0 is three-dimensional, the formula (A19)

has no solution. However, there is always another possible obstacle avoidance velocity ẋ0
′
, such that the vector ẋ0

′
− ẋ0 falls on

the normal plane N of ẋ0, and ẋ0 is the projection of ẋ0
′

on the plane N . Therefore, the obstacle avoidance speed ẋ0
′

will play a

similar role to ẋ0, making the robot arm away from the coming obstacle. And the relation between ẋ0 and ẋ0
′

satisfies the formula:

ẋ
T
o

(
ẋ
′
o − ẋo

)
= 0 (A20)

substitute ẋ′o = Joθ̇ into formula (A20) we can get:

ẋ
T
o ẋo = ẋ

T
o Joθ̇ (A21)

since formula (A21) is a scalar equation, it is solvable even if the rank of J is reduced to 1.

When the obstacle is removed or avoided, the arm needs to return to the expected trajectory. Therefore, a parallel system is

designed in the controller to restore the position of the manipulator when there is no obstacle. As shown in Figure A1, the posture

of the robotic arm is mainly determined by the three joints S1, E1 and W1. When there are no obstacle, the joints must meet the

motion constraints:  Je

Jr

 θ̇ =

 ẋe

ẋr

 (A22)

where Jr =
[
JS1 ,JE1 ,JW1

]T are Jacobian matrices of joint S1, E1,W1 respectively. ẋr =
[
ẋS1 , ẋE1 , ẋW1

]T represents the

speed at the joint S1, E1,W1 returning to the original state.

The arm returns to its original position at a speed of:

ẋr = Kr∆θr (A23)

where Kr is a symmetric positive definite matrix; ∆θr = [∆θS1,∆θE1,∆θW1]T ∈ R3×1 is the error between the actual and

expected joint angles.

By substituting (A19) and (A23) into the general solution of inverse kinematics (A16), we obtain

JoJ
†
e ẋe + Jo

(
I − J

†
eJe

)
fo = ẋo (A24)

JrJ
†
e ẋe + Jr

(
I − J

†
eJe

)
fr = ẋr, (A25)

where J†e = JT
(
JJT

)−1
. based on formulas (A24) and (A25) we can find solutions for fo and fr:

fo = [Jo

(
I − J

†
eJe

)
]
†
(ẋo − JoJ

†
e ẋe) (A26)

fr = [Jr

(
I − J

†
eJe

)
]
†
(ẋr − JrJ

†
e ẋe). (A27)

In order to ensure the smooth transition between obstacle avoidance and recovery, the weighted sum of fo and fr is used to

replace the terms in the general solution (A16) of inverse kinematics. Then, we acquire

θ̇d = J
†
e ẋe +

(
I − J

†
eJe

)
[(1− β)fo + βfr ] (A28)
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where β is a piecewise function:

β =


1 L > Lmax

Lmin−L

Lmax−Lmin
Lmin < L < Lmax.

0 L 6 Lmin

(A29)

Therefore, in obstacle avoidance mode, the desired joint angle of the manipulator can be expressed as:

θd = θe + θ̇d. (A30)

Appendix A.4 Stability Analysis

In the paper, a simple PID controller was used for the position controller, which is stable. A force controller was added to the

original control ring, the addition of the force controller does not affect the stability of the original position controller. Next, we

prove the stability of the obstacle avoidance algorithm. Consider the required velocity θ̇d as defined in (A28). If the joint velocity

θ̇ completely follows θ̇d, then the end-effector position error ex will converge asymptotically to zero. According to [7], we proven

that when joint angular velocity θ̇ completely tracks the expected joint angular velocity θ̇d, and the end-pose error ex = x̂d − xe

will tend to 0. Let the Lyapunov function be:

V =
1

2
e
T
x ex (A31)

then:

V̇ = e
T
x ėx

= e
T
x ( ˙̂xd − ẋe) + (I − J

†
eJe)[(1− β)fo + βfr ]]

= e
T
x

˙̂xd − eTxJe[J
†
e(ẋd + ex) + (I − J†eJe)[(1− β)f0 + βfr ]]

= −eTxJeJ
†
eex − (e

T
xJe − eTxJeJ

†
eJe)[(1− β)fo + βfr ]

= −eTxJeJ
†
eex

(A32)

Since JeJ
†
e = JeJ

T
e

(
JeJ

T
e

)−1
= I, we get V̇ = −eTxJeJ

†
eex 6 0. According to Lyapunov theorem [7], the position and

orientation errors of the manipulator end-effector will converge to 0 as time increases.

Appendix B Experimental Verification
The developed control scheme is verified by the Baxter robot. A force sensor is added at the end-effector of the arm to measure

the force on the object. During the experiment, the sampling interval of the force sensor is 0.02s. The robot manipulator works

together with a Kinect sensor to detect obstacles in the surrounding environment. The experimental process consists of three basic

stages. We demonstrate the effectiveness of the proposed method through an experiment of man-machine coordinated handling of

boxes. The whole experiment is introduced in three parts. The first part is the teaching part, in which the teacher drags the robot

arm to perform the task and records the motion trajectory data and force data at the same time. Then the teaching trajectories

are modeled by DMP model. When the parameters of the task change, DMPs models are used to generalize the trajectory to get

the trajectories of the new task, and the robot can perform the new task through the hybrid control of force and position. The

following is a detailed introduction to each part.

In the built-in kinematics, the teaching mode is provided by the robot manufacturer, and the robot first learns the trajectory

from the initial point to the object, which is defined as the “Move” stage. Then, one person holds an object (box) with the robot

end-effector, and the other person, drags the arm of the Baxter robot. Next, we repeat the carrying box task four times, as shown

in Fiure B1. This is defined as the “Carry” phase. During the demonstration, position data and force data of the end-effector are

recorded.

In order to learn the trajectory characteristics from multiple demonstration data, GMR is used to fit the four motion trajectory

data and four force data recorded in the demonstration, as shown in Figure B2. Then, DMPs models are used to model the motion

trajectory and force trajectory obtained by GMR fitting, and the model parameters are estimated.

In the process of reproducing the above transport task, one person holds the box with the robot end-effector, as shown in Figure

B1. The manipulator moves according to the characteristics of the learned trajectory. At the same time, the proposed force control

method is used during the transportation to maintain the expected manipulation force.

Figure B1 Demonstration and reproduction process.
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(a) (b)

(c) (d)

Figure B2 GMR is used to fit several training trajectories. (a) (b) (c) are respectively the motion trajectories of the end of the

manipulator on the X, Y, Z axes, (d) is the force trajectory of the object. Trajectories (green lines) are generated based on the

demonstration trajectories (gray dots).

(a) (b)

(c)

Figure C1 The results of the experimental comparison show that (a) the force on the object is deviated from the expected force

when the robot only adopts position control. (b) By introducing the contact force information into the robot control, the actual

force can be constrained within a certain range. (c) The manipulator can adapt to human interference with the force controller,

the height of the shaded area is the value of the force.
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Appendix C Results and Discussion
In the reproduction phase, firstly, a set of comparative experiments is designed to verify the effectiveness of the hybrid force/motion

control method. In the first experiment, no force controller is added, only position control is carried out. Four people are randomly

selected to complete the task of carrying objects with the robot. In the second experiment, a force controller is added, such that the

robotic arm can adjust the force received by the object during the process of transporting the object. The experimental results are

shown in Figure C1 (a) and Figure C1 (b). It can be seen that in the four experiments, when the force controller is not added, the

error between the actual force and the expected force reaches 10N, which is very unfavorable for transporting the fragile objects.

While after the application of the force controller, the error between the actual and the expected forces can be controlled within 3N,

which ensures that robot end-effector do not cause damages to the object during transportation. Besides, with the force controller,

the users can conduct online intervention on the movement of the robot arm during transportation, and fine-tune the movement

trajectory of the robot by changing the magnitude of the force applied on the object. Figure C1 (c) shows that the robotic arm can

adapt to human changes when human interference is exerted on objects during transportation. As shown in Figure C1 (c), when

operators increase the force exerted on the object, the mechanical arm will move away from the object, and the force exerted on

the object will reduce. On the contrary, when people decrease the force exerted on the object, the mechanical arm will move in the

direction of the object, and the force on the object will increase close to the expected value.

(a) (b)

Figure C2 (a) New task situation: starting point, ending point and the weight of objects are changed. (b) Avoid obstacles in

the process of man-machine cooperative object transportation.

(a) (b) (c)

(d) (e) (f)

Figure C3 DMPs are used to generalize the demonstration trajectories. (a) and (b) are respectively the generalization of X and

Y axes’ trajectories in the “Move” stage, while the trajectories in the Z axis remain constant. (c), (d) and (e) are respectively the

generalization of X, Y and Z axes’ trajectories in the “Carry” stage. And (f) is the generalization of the force on the object at the

“Carry” stage

In the generalization phase, a new example is designed to verify the generalization of proposed method. Specifically, the initial

and target positions of the box are changed to the new locations, and the weight of the object is also different with the previous

example, as shown in Figure C2 (a). In the “Move” phase, seven DMPs are used. While in the “Carry” stage, four DMPs are used

to model the end position of the manipulator and the detected force. All the DMPs models parameters are set as: D = N = 25,

K = M = 252/4, τ = 1, N = 40. The experimental results are shown in Figure C3. It can be seen in Figure C4 (a) that after

the mentioned elements are changed, the human and robot can still complete the task, and the error between actual and expected

forces in the process of transporting the object can be still controlled within 3N.
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(a) (b)

Figure C4 (a) The force exerted on an object during transport when the initial and target points of the transport trajectory,

and the weight of the object are changed. (b) The force exerted on the object in the presence of an obstacle.

In addition, another experiment of a human-robot transportation task in the presence of obstacles is provided to verify the

proposed strategy. When an obstacle occurs near the robot arm, the robot arm needs to change the joint angles to implement a

avoidance behavior. Meanwhile, the end position and orientation should track the desired states to ensure the smooth completion

of the task. In the process of cooperative object handling, obstacles were randomly placed near the robot arm to verify the obstacle

avoidance function, as shown in Figure C2 (b). In this experiment, in order to ensure that the robot can still complete the task

smoothly in the case of obstacles, robot redundancy is used to change the joint angle so that the robot arm can stay away from

obstacles. When the obstacle is close to the manipulator randomly, the manipulator can avoid the obstacle and complete the

task smoothly without deviating from the desired trajectory. Experimental results demonstrate the effectiveness of the proposed

framework. At the same time, force constraints are also satisfied in the process of obstacle avoidance. The changes of actual and

expected forces during obstacle avoidance are shown in Figure C4 (b). The obstacle starts to approach the manipulator arm at 4s

and then leaves the manipulator arm. During the approach of the obstacle, the manipulator uses redundancy to change joint angles

to avoid the obstacle. It can be seen from Figure C4 (b) that the end-effector makes slight changes during obstacle avoidance which

leads to an error increase between the force exerted on the object and the expected value. We can find that the error between

actual and expected forces can be controlled within 5N during obstacle avoidance, which is acceptable for the transported objects.
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