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Appendix A Six-dof dynamics model

To establish the dynamics of a rigid spacecraft, the following coordinate frames are needed:

• Inertial (earth) frame FI = {OIxIyIzI}: origin OI is located at the earth center, axis xI points to the vernal equinox, axis

zI points to the north pole, and axis yI is determined by Right-Hand-Rule (RHR).

• Body frame FB = {OBxByBzB}: origin OB coincides with the spacecraft center of mass, and three axes coincide with three

inertial principal axes, respectively.

• Local vertical local horizontal (i.e., LVLH) frame FL = {OLxLyLzL}: origin OL is situated at the center of the desired

target, axis xL points from the earth center to OL, axis zL is perpendicular to the orbit plane, and yL axis is in the orbit plane

and is determined by RHR.

The spacecraft attitude with respect to the inertial frame is represented by modified Rodrigues parameters (MRPs) σ = n̂ tan( γ
4 ),

where n̂ ∈ S2
1) and γ ∈ (−2π, 2π) are the principal rotation axis and angle [1]. According to [1], σ satisfies the following kinematics:

σ̇ = G(σ)ω, (A1)

where G(σ) = 1
4

[

(1 − ‖σ‖2)I3 + 2σ× + 2σσT
]

2), and ω ∈ R
3 is the angular velocity. Moreover, given a desired attitude σd

governed by

σ̇d = G(σd)ωd, (A2)

with ωd being the desired angular velocity, the error MRPs σ̃ between σ and σd is defined by

σ̃ =
σd(‖σ‖

2 − 1) + σ(1 − ‖σd‖
2) − 2σ×

d
σ

1 + ‖σd‖2‖σ‖2 + 2σT
d
σ

. (A3)

As derived in [1], the kinematics of σ̃ satisfies
˙̃σ = G(σ̃)ω̃, (A4)

where ω̃ = ω − R̃ωd is the angular velocity error. The rotation matrix R̃ = R̃(σ̃) can be represented by

R̃(σ̃) = I3 −
4(1 − ‖σ̃‖2)

(1 + ‖σ̃‖2)2
σ̃

× +
8(σ̃×)2

(1 + ‖σ̃‖2)2
. (A5)

Next, according to [1], ω̃ satisfies the following dynamics:

J ˙̃ω = −ω
×
Jω +Arτ + τd + J(ω̃

×
R̃ωd − R̃ω̇d), (A6)

where J ∈ R
3×3 is the inertia matrix of the spacecraft, τ ∈ R

N is the control torque stack, Ar ∈ R
3×N with rank(Ar) = 3 is the

distribution matrix of N(N > 3) torque actuators, and τd ∈ R
3 is the disturbed torque.

Define r and v as the position and velocity of the spacecraft in frame FL. Given a time-varying desired offset δ, we further

define the position and velocity errors as r̃ = r − δ and ṽ = v − δ̇. According to [2, 3], they satisfy the following dynamics:

˙̃r =ṽ, (A7)

m ˙̃v = − mCtv − mnt +R
B
LAtf + fd − mδ̈, (A8)

*Corresponding author (email: zouyao@ustb.edu.cn)

1) S2 = {x ∈ R
3|‖x‖ = 1}

2) For x = [x1, x2, x3]
T , x× = [0,−x3, x2;x3, 0,−x1;−x2, x1, 0]
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where m is the spacecraft mass,

Ct = 2ν̇


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−ν̈ry − ν̇2rx +
µ(r0+rx)

((r0+rx)2+r2y+r2z)
3
2

− µ

r2
0

ν̈rx − ν̇2ry +
µry

((r0+rx)2+r2y+r2z)
3
2

µrz
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3
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















,

r0 =
a(1−e2)
1+e cos ν

is the radial distance between the desired target and the earth, a is the semimajor axis, e is the eccentricity, ν is

the true anomaly, RB
L = RLR

T (σ) is the rotation matrix from frame FB to frame FL, RL is the rotation matrix from frame FI

to frame FL, f ∈ R
M is the control force stack, At ∈ R

3×M with rank(At) = 3 is the distribution matrix of M(M > 3) force

actuators, and fd ∈ R
3 is the disturbed force. Moreover, the rotation matrix RL is expressed by

RL =









c(Ω0)c(θ0) − s(Ω0)s(θ0)c(i0) s(Ω0)c(θ0) + c(Ω0)s(θ0)c(i0) s(θ0)s(i0)

−c(Ω0)s(θ0) − s(Ω0)c(θ0)c(i0) −s(Ω0)s(θ0) + c(Ω0)c(θ0)c(i0) c(θ0)s(i0)

s(Ω0)s(i0) −c(Ω0)s(i0) c(i0)









,

where c(·) , cos(·), s(·) , sin(·), Ω0 is the right ascension of ascending node, θ0 = ωp + ν is the argument of latitude, ωp is the

argument of perigee, and i0 is the orbit inclination.

Consider the torque and force that steer the spacecraft being generated by N momentum wheels and M pairs of thrusters,

respectively. In particular, each momentum wheel generates a torque around a specified rotation axis through the origin OB

of frame FB, while two thrusters assembled symmetrically with respect to OB generate the positive and opposite forces along

their assembling axis. In practice, due to long-term friction, aging and mechanical damage, the actuator is sometimes subject to

undesirable fault. In spatial circumstance, it is difficult to repair the actuator manually. Hence, it is favorable to improve the

robust performance against the actuator fault from the perspective of the control algorithm. In particular, by taking a general form

of actuator fault with both additive and multiplicative fault effects, the resulting torque and force are formulated by

τ = Υrpr + φr , f = Υtpt + φt, (A9)

where pr ∈ R
N and pt ∈ R

M are the command torque and force to be designed, Υr = diag(υr1, υr2, · · · , υtN ) and Υt =

diag(υt1, υt2, · · · , υtM ) are the fault coefficient matrices with each entry belonging to [0, 1], φr = [φr1, φr2, · · · , φrN ]T and φt =

[φt1, φt2, · · · , φtM ]T are the additive fault vectors. Note that the normal actuator state without fault corresponds to the case of

Υr = IN , φr = 0N and Υt = IM , φt = 0M .

Since each control force component fj , j = 1, 2, · · · ,M is generated by a pair of symmetrical thrusters, we next make clear how

they work together to generate the corresponding control force. In particular, along the assembling axis, one thruster generates a

forward force Tj while the other generates a backward force Hj . Note that these two thrusters operate asynchronously in a normal

case. Thus, when the actuator fault is concerned, the force component is expressed by

fj = Tj − Hj j = 1, 2, · · · ,M, (A10)

where
{

Tj = υt
tjT

c
j + φt

tj , Hj = 0, if ptj > 0,

Hj = −υh
tjH

c
j + φh

tj , Tj = 0, if ptj < 0,
(A11)

T c
j , H

c
j are the command forces, υt

tj ∈ [0, 1], υh
tj ∈ [0, 1] are the fault coefficients, and φt

tj , φ
h
tj are the additive faults. By comparing

(A9) and (A10), we know that

{

T c
j = ptj , Hc

j = 0, if ptj > 0,

Hc
j = −ptj , T c

j = 0, if ptj < 0,
(A12)

and

υtj =

{

υt
tj , if ptj > 0,

υh
tj , if ptj < 0,

φtj =

{

φt
tj , if ptj > 0,

φh
tj , if ptj < 0,

(A13)

which implies that the potential faults of a pair of thrusters are not identical. Moreover, (A11) also indicates that only one thruster

in each pair works at a moment depending on the sign of the corresponding command force.

Remark 1. In this paper, we consider the actual physical actuators that are commonly used in spacecraft. In particular,

momentum wheels and pairs of thrusters generate the control torque and force, respectively. Also, the faulted torque and force

herein are specified directly with respect to these actual physical actuators. Moreover, according to (A12) and (A13), it can be

verified that υtjptj is continuous since lim
ptj→0+ (υt

tjptj) = lim
ptj→0− (υh

tjptj) = 0.

Define x = [σ̃T , r̃T ]T and z = [ω̃T , ṽT ]T . In terms of (A4) and (A6)–(A9), the six-dof error dynamics can be derived as

ẋ =Γz, (A14)

Mż =ς +AΥp+ d, (A15)

where Γ = diag(G(σ̃), I3),M = diag(J ,mI3), ς = [ςTr , ςTt ]T with ςr = −ω×Jω+J(ω̃×R̃ωd−R̃ω̇d) and ςt = −mCtv−mnt−mδ̈,

A = diag(Ar,R
B
LAt), Υ = diag(Υr,Υt), p = [pT

r ,pT
t ]T , and d = [dT

r ,dT
t ]T with dr = Arφr + τd and dt = Bφt + fd.

Remark 2. In practical applications, the spatial disturbances usually arise from gravitation, solar radiation pressure, and other

environmental factors which are always bounded in aerospace. Due to the fuel consumption of spacecraft, the inertia parameters are

time-varying with limited changing rates. Thus, Assumption 1 is reasonable. Moreover, based on the full row rank of distribution

matrix Ai and semi-positive definiteness of fault coefficient matrix Υi, inf{λmin(AiΥiA
T
i )} > 0, i = r, t could guarantee the

full-actuated condition of the control system. This implies that there are no more than N − 3 torque and M − 3 force actuators

that totally fail at the same time. Zero eigenvalue of (AiΥiA
T
i ) existing indicates that there is no actual control generated by

actuators in the corresponding control axis. Therefore, Assumption 2 is also reasonable.
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Appendix B Proof of Theorem 1

Define the estimate errors ζ̃i = ζ̂i − ζi and ϑ̃i = ϑ̂i − ϑi, i = r, t. Choose the following Lyapunov function

V =
1

2
ξ
T
ξ +

1

2
s
T
Ms+

∑

i=r,t

( 1

2βi1

ζ̃2
i +

1

2βi2

ηiϑ̃
2
i

)

. (B1)

Its time derivative along the closed-loop trajectories can be given by

V̇ =ξT ξ̇ + sT (Mṡ+
1

2
Ṁs)+

∑

i=r,t

( 1

βi1

ζ̃i
˙̃
ζi +

1

βi2

ηiϑ̃i
˙̃
ϑi

)

= − ξTK1ξ + ξTΘΓs + sT
(

ς + d−Mα̇ +
1

2
Ṁs

)

−AΥK2A
T
s+

∑

i=r,t

(

1

βi1

ζ̃i
˙̂
ζi +

1

βi2

ηiϑ̃i
˙̂
ϑi

)

= − ξTK1ξ + ξTr ΘrG(σ̃)sr + ξTt Θtst + sT
(

ς + d−Mα̇+
1

2
Ṁs

)

− (κr + χr)ϑ̂rs
T
r ArΥrA

T
r sr

− (κt + χt)ϑ̂ts
T
t R

B
LAtΥtA

T
t (RB

L )T st +
∑

i=r,t

( 1

βi1

ζ̃i
˙̂
ζi +

1

βi2

ηiϑ̃i
˙̂
ϑi

)

(B2)

According to Assumptions 1 and 2, it follows that

∥

∥

∥
ξ
T
r ΘrG(σ̃)sr + ξTt Θtst + sT (ς + d−Mα̇ +

1

2
Ṁs)

∥

∥

∥
6

∑

i=r,t

ζi‖ψi‖‖si‖. (B3)

Thus, V̇ can be further derived as

V̇ 6 −κ1ξ
T
r ξr − κ2ξ

T
t ξt +

∑

i=r,t

(

ζi‖ψi‖‖si‖ − (κi + χi)ϑ̂iηi‖si‖
2 +

1

βi1

ζ̃i
˙̂
ζi +

1

βi2

ηiϑ̃i
˙̂
ϑi

)

. (B4)

By virtue of the fact that ϑ̂iηi = (ϑi + ϑ̃i)ηi = 1 + ϑ̃iηi, it further follows that

V̇ 6 − κ1ξ
T
r ξr − κ2ξ

T
t ξt − κrs

T
r sr − κts

T
t st +

∑

i=r,t

ζ̃i
( 1

βi1

˙̂
ζi −

‖ψi‖
2‖si‖

2

√

‖ψi‖2‖si‖2 + εi(t)2

)

+
∑

i=r,t

ηiϑ̃i

( 1

βi2

˙̂
ϑi − (κi + χi)‖si‖

2
)

+
∑

i=r,t

ζiεi(t).

(B5)

Next, substituting adaptation laws yields

V̇ 6 − κ1ξ
T
r ξr − κ2ξ

T
t ξt − κrs

T
r sr − κts

T
t st

+
∑

i=r,t

(

ζiεi(t) − ζ̃i(ζ̂i − ζi0)ϕi1(t) − ηiϑ̃i(ϑ̂i − ϑi0)ϕi2(t)
)

.
(B6)

It follows from Young’s inequality that −ζ̃i(ζ̂i − ζi0)ϕi1(t) 6 −
ϕi1(t)

2 ζ̃2
i +

ϕi1(t)

2 (ζi − ζi0)
2 and −ηiϑ̃i(ϑ̂i − ϑi0)ϕi2(t) 6

−
ϕi2(t)

2 ηiϑ̃
2
i +

ϕi2(t)

2 ηi(ϑi − ϑi0)
2. Thus, V̇ further satisfies

V̇ 6 − κ1ξ
T
r ξr − κ2ξ

T
t ξt − κrs

T
r sr − κts

T
t st

+
∑

i=r,t

(

ǫi(t) + ζiεi(t) +
ϕi1(t)

2
(ζi − ζi0)

2
+

ϕi2(t)

2
ηi(ϑi − ϑi0)

2
)

.
(B7)

By integrating both sides of (B7), it follows that

V (t) + κ1

∫

t

0

‖ξr(τ)‖
2
dτ + κ2

∫

t

0

‖ξt(τ)‖
2
dτ + κr

∫

t

0

‖sr(τ)‖
2
dτ + κt

∫

t

0

‖st(τ)‖
2
dτ

6V (0) +
∑

i=r,t

(

ζiε̄i +
ϕ̄i1

2
(ζi − ζi0)

2 +
ϕ̄i2

2
ηi(ϑi − ϑi0)

2
)

< ∞, ∀t > 0. (B8)

This implies that V, ζ̃i, ϑ̃i ∈ L∞
3) and ξ = [ξTr , ξTt ]T , s = [sTr , sTt ]T ∈ L∞ ∩ L2

4). According to the definition of transformation

function, it thus follows that −kj(t) < xj(t) < k̄j(t), ∀t > 0 given that ξ ∈ L∞ and −kj(0) < xj(0) < k̄j(0), j = 1, 2, · · · , 6.

This indicates that the concerned transient performance maintenance is achieved. On the other hand, by virtue of the closed-loop

dynamics, it is trivial to show that ξ̇, ṡ ∈ L∞. According to Barbalat’s Lemma [4], it can be concluded that limt→∞ ξ(t) = 0 and

limt→∞ s(t) = 0. From the definition of ξ and s, it finally follows that limt→∞ x(t) = 0 and limt→∞ z(t) = 0.

Remark 3. It is interesting to note that the closed-loop performance can be tuned by adjusting the designed parameters in both

performance function and control law. Careful analysis indicates that faster convergence time and convergence rate can be provided

by smaller ts and larger b, respectively. The smaller set of steady state error can be guaranteed by a smaller k∞. Besides, larger

control parametersK1 and K2 contribute to a faster convergence performance but larger control energy. To this end, a reasonable

compromise should be made among practical requirements.

3) L∞={f(t)|ess sup
t∈R+ ‖f(t)‖<∞}

4) L2={f(t)|
∫ ∞
0

‖f(t)‖2dt<∞}
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Remark 4. Note from the virtual control α that it is intricate to determine the analytical expression of the derivative of α.

Instead, the Levant differentiator introduced in [5] is used to approximate α̇:







ẏ0 = −l1diag
(

|y0 − α|
1
2

)

sign(y0 − α) + y1,

ẏ1 = −l2sign(y1 − ̺),
(B9)

where y0, y1 are the approximations of α and α̇, and l1, l2 are positive constants. According to [5], sufficiently large l1 and l2
guarantee high approximation accuracy in finite time.

Appendix C Numerical simulations

A specific scenario of a six-dof spacecraft tracking maneuver on an elliptical orbit is simulated in this section. The orbit parameters

are supposed as follows: eccentricity e = 0.001, perigee altitude rpa = 400km, orbit inclination i0 = π
4 , argument of perigee

ω0 = π
6 , right ascension of ascending node Ω0 = 5π

18 , earth radius RE = 6371km, semimajor axis a =
rpa+RE

1−e
, and initial

true anomaly ν(0) = π
2 . The desired angular velocity is ωd(t) = 1.8

π

[

cos
(

t
40

)

,− sin
(

t
50

)

, cos
(

t
30

)]T
deg/s with initial attitude

σd(0) = [0.1, 0.1, 0]T , and the desired trajectory is δ(t) =
[

200 cos
(

πt
600

)

, 200 sin
(

πt
600

)

, 0
]T

m. Moreover, suppose that the

spacecraft carries 4 momentum wheels with inertia momentum 0.0818kgm2 and 4 pairs of thrusters. They are assembled with the

distribution matrices Ar = At =
[

1, 0, 0,
√

3
3 ; 0, 1, 0,

√
3

3 ; 0, 0, 1,
√

3
3

]

. The faults of momentum wheels and thrusters are specified

as follows

υr1 =0.6 + 0.1e−0.5t + 0.1 sin(0.05t) + 0.01rand(0, 1), υr2 = 0.7 + 0.1e−0.5t + 0.12 cos(0.05t) + 0.02rand(0, 1),

υr3 =0, υr4 = 0.7 + 0.1e−0.5t + 0.15 cos(0.05t) + 0.015rand(0, 1),

υt
t1 =0.65 + 0.12e−0.5t + 0.01rand(0, 1), υt

t2 = 0,

υt
t3 =0.7 + 0.15e−0.5t + 0.01rand(0, 1), υt

t4 = 0.8 + 0.1e−0.5t + 0.01rand(0, 1),

υh
t1 =0.7 + 0.1e−0.5t + 0.01rand(0, 1), υh

t2 = 0.45 + 0.12e−0.5t + 0.01rand(0, 1),

υ
h
t3 =0.6 + 0.1e

−0.5t
+ 0.01rand(0, 1), υ

h
t4 = 0.6 + 0.15e

−0.5t
+ 0.01rand(0, 1),

φr =0.005
(

1 + e
−0.5t

+ 0.7 sin
( πt

150

)

+ 0.6 cos
( πt

150

)

+ 0.02rand(0, 1)
)

× [1, 1, 0, 1]
T
,

φ
t
t =0.09

(

0.9 + e−0.5t + 0.6 sin
(πt

75

)

+ 0.4 cos
(πt

75

)

+ 0.01rand(0, 1)
)

× [1, 0, 1, 1]T ,

φ
h
t =0.075

(

1 + e−0.5t + 0.4 sin
(πt

75

)

+ 0.5 cos
(πt

75

)

+ 0.01rand(0, 1)
)

× [1, 0, 1, 1]T ,

where rand(0, 1) is defined as a random function satisfying the norm distribution with mean deviation 0 and standard deviation 1.

Moreover, the inertia parameters of the spacecraft are chosen as J = diag(4 + 0.35e−0.01t + 0.012rand(0, 0.5), 4 + 0.337e−0.01t +

0.01rand(0, 0.5), 3.84+0.5568e−0.01t +0.018rand(0, 0.5))kgm2 and m = 20+2e−0.02t +0.1rand(0, 0.5)kg. The spatial disturbances

are supposed to be

τd = 0.001 ×









6+ 5 sin( πt
150 )+ 3.5 cos( πt

150 )+ 1.5rand(0, 1)

5+ 4 sin( πt
150 )+ 4 cos( πt

150 )+ 1.2rand(0, 1)

5+ 6 sin( πt
150 )+ 5 cos( πt

150 )+ 1.8rand(0, 1)









Nm, fd = 0.01 ×









6+ 5 sin( πt
150 )+ 3.5 cos( πt

150 )+ 1.5rand(0, 1)

5+ 4 sin( πt
150 )+ 4 cos( πt

150 )+ 1.2rand(0, 1)

5+ 6 sin( πt
150 )+ 5 cos( πt

150 )+ 1.8rand(0, 1)









N.

The system states and estimates are initialized as σ(0) = [0.25,−0.3, 0.15]T , ω(0) = [0, 0, 0]T deg/s, r(0) = [400; 100; 22]Tm,

v(0) = [0, 0, 0]Tm/s, ζ̂r(0) = 0.2, ζ̂t(0) = 0.01, ϑ̂r(0) = 9 and ϑ̂t(0) = 9. The performance function parameters are designed as

ρ01 = 0.3, ρ02 = 0.45, ρ03 = 0.35, ρ04 = 230, ρ05 = 130, ρ06 = 30, ρ∞1 = ρ∞2 = ρ∞3 = 0.005, ρ∞4 = ρ∞5 = ρ∞6 = 0.5,

ι1 = ι2 = ι3 = 0.4, ι4 = ι5 = ι6 = 0.5, b1 = b2 = b3 = 0.08, b4 = b5 = b6 = 0.005, t1 = t2 = t3 = 60s, t4 = t5 = t6 = 360s,

and n = 2. In addition, the control parameters are selected as κ1 = 0.08, κ2 = 0.08, κ3 = 0.01, κ4 = 0.01, β1 = 0.1, β2 = 0.1,

β3 = 0.001, β4 = 0.1, εr = 0.01e−0.0001t, εt = 0.05e−0.001t, ϕ1 = 0.01e−0.01t, ϕ2 = 0.01e−0.01t, ϕ3 = 0.01e−0.01t and

ϕ4 = 0.01e−0.01t. Furthermore, to evaluate the performance of the proposed control strategy (labeled by Proposed), a comparison

with an adaptive controller [6] (labeled by AD) with fault compensating algorithm [7] is also given. The simulation results are

illustrated in Figures C1-C5.
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Figure C1 Trajectory in the LVLH frame.
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Figure C2 Attitude and position tracking errors.
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Figure C3 Energy index E(u).
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Figure C4 The estimates of parameter.
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Figure C5 Actual control of thruster.

Figure C1 illustrates the trajectories of spacecrafts in the LVLH frame under different controllers. Figure C2 shows the snapshots

of the attitude and position tracking errors. It can be observed from these figures that all the control strategies are able to achieve

the tracking objective with good performance. It is clearly shown that the tracking errors converge to the preassigned sets with

settling times 60s and 360s by using the proposed strategy, respectively. However, in contrast to the adaptive control strategy

in [6] with fault compensating method [7] which violates the transient performance constraint, the proposed one realizes the six-dof

spacecraft tracking while preserving the attitude and orbit errors within the prescribed constraints. By comparison, the proposed

control strategy is more capable of maintaining the transient performance than the adaptive fault-tolerant control strategy [6, 7].

In addition, for a more illustrative comparison, some performance parameters resulting from two control strategies are given in

Figure C3, where the control energy index E(u) is defined as E(u) =
√

∫

T

0
‖u(t)‖2dt. The comparison results indicate that the

proposed control strategy achieves the designated tracking objective with smaller control energy and smaller convergence errors in

spite of disturbances, uncertain inertia parameters and actuator faults. On the other hand, it can be seen from Figure C4 that the

parameter estimates are bounded. Finally, Figure C5 collects all the actual control signals of the torque and force actuators. In

particular, T2 of the thruster pair 2 is totally failed while H2 is partially failed. It can be observed that there are no controls for

T2 and H2 by using the fault compensating method [7] and H2 still works by using the proposed strategy. Since there is no control

command for H2 under the method in [7], H4 has to provide much more control to achieve the tracking maneuver. By comparison,

the proposed strategy could contribute to a better working efficiency with less energy consumption.
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