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Dear editor,

The uncertain input delay is frequently encountered in engi-

neering control systems. Adaptation is indispensable when

the uncertain input delay is significant. In existing delay-

adaptive controllers [1–6], the actuator state must be mea-

sured to achieve global stability. Recently, a logic-based

switching delay-adaptive state-feedback controller [7] was

proposed to realize global stability without measuring the

actuator state. The idea of this approach is as follows: first,

several controller candidates are designed offline by solving

a set of linear matrix inequalities (LMIs) such that at least

one controls the system satisfactorily; then, a logic-based

switching mechanism is designed to identify the proper con-

troller online.

This study further develops the approach of logic switch-

ing [7] to enable output feedback control. The challenges of

this study are summarized as follows. First, the separation

principle does not hold for linear systems with an unknown

input delay; thus, stability analysis is difficult for output

feedback control. Second, the Lyapunov-Krasovskii func-

tional contains immeasurable states when only the output

is measured; thus, the switching mechanism is difficult to

design.

Problem formulation. Consider the following linear time-

invariant system with an unknown input delay:

ẋ(t) = Ax(t) + Bu(t − d),

y(t) = Cx(t),
(1)

where x ∈ Rn is the state, u ∈ Rm is the control input,

y ∈ R
q is the measured output, and A, B, and C are known

constant matrices with compatible dimensions. Here (A,B)

is stabilizable and (C,A) is detectable. In addition, d is the

uncertain constant input delay, and there are known con-

stants 0 6 d < d such that d 6 d < d. Theoretically, d can

be arbitrarily large because we do not impose restrictions

on the value of d̄.

The objective is to design an output feedback adaptive

control law to asymptotically stabilize the system (1).

Controller structure. We define N + 1 constant numbers

d̂0, d̂1, . . . , d̂N to be determined, which serve as the candi-

date delay estimates. The interval [d, d] is divided into dis-

joint subintervals of [d̂0, d̂1), [d̂1, d̂2), . . . , [d̂N−1, d̂N ) with

d̂0 = d; d̂r = d̂r−1 +∆dr−1 (r = 1, 2, . . . , N); d < d̂N . (2)

Since our controller is a switching type controller, the

switching moments are denoted as 0 = t0 < t1 < · · · < tk <

· · · , where tk is the k-th switching moment. The control

law between any two consecutive switching moments is time-

invariant. Assume there exist i ∈ N and r ∈ {0, 1, . . . , N−1}

such that k = iN+r. Then, for t ∈ [tk, tk+1), we guess that

d ∈ [d̂r , d̂r + ∆dr), where d̂r is the estimate. In addition,

we use Lr and Kr to represent the observer and controller

gain matrices, respectively. Specifically, we give the follow-

ing delay-dependent observer:

˙̂x(t) = Ax̂(t) + Bu(t− d̂r)− Lr(y(t) − Cx̂(t)), (3)

where x̂ ∈ R
n is the observer state. Then, the observation

error x̄ = x− x̂ is governed by

˙̄x(t) = (A+ LrC)x̄(t) +B[u(t − d) − u(t − d̂r)]. (4)

Next, we define the following predictor transformation:

ζ(t, d̂r) = x̂(t) + eA(t−d̂r)

∫ t

t−d̂r

e−AτBu(τ)dτ. (5)

Finally, the following piecewise linear time-invariant con-

troller is applied for every t ∈ [tk , tk+1):

u(t) = Krζ(t, d̂r), tk 6 t < tk+1, (6)

where Kr is designed to render A + e−Ad̂rBKr Hurwitz.

Note that if (A,B) is stabilizable, (A, e−Ad̂rB) is stabiliz-

able [8]. By combining (4), (5), and (6) and utilizing the

transformation ζ(t−d̂r, d̂r)−ζ(t−d, d̂r) =
∫ t−d̂r
t−d

ζ̇(τ, d̂r)dτ ,
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we can obtain the following closed-loop system for t ∈

[tk + d, tk+1):
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˙̄x(t) = (A+ LrC)x̄(t) + BKrLrC

∫ t−d̂r

t−d

x̄(τ)dτ

− BKr(A+ e−Ad̂rBKr)

∫ t−d̂r

t−d

ζ(τ, d̂r)dτ,

ζ̇(t, d̂r) = (A+ e−Ad̂rBKr)ζ(t, d̂r) − LrCx̄(t).

(7)

Note that there exists 0 6 s < N satisfying d ∈ [d̂s,

d̂s +∆ds). We then assume that a switching is triggered at

t = ts, while our switching mechanism ensures that no more

switchings will be triggered prior to t = ps, where ps = ts

+(d̂s + ∆ds) > ts + d. Thus, the closed-loop system takes

the form of (7) for t ∈ [ps, ts+1).

We define the Lyapunov-Krasovskii functional Vs = V1s+

V2s (Appendix A), where Ps, Qs ∈ Rn×n are symmetric

positive definite matrices. We present the following result,

which is the key to obtaining the main result.

Lemma 1. Suppose d ∈ [d̂s, d̂s +∆ds) and a switching is

triggered at t = ts, while our switching mechanism ensures

that no more switchings will be triggered prior to t = ps.

Then, for t ∈ [ps, ts+1), the time derivative of Vs satisfies

V̇s 6 −εsζ
TP−1

s Q−1
s P−1

s ζ (8)

for some εs > 0, if the following LMIs:





Θs (APs + e−Ad̂sBRs)T

(APs + e−Ad̂sBRs)
1

∆ds
Ps



 > 0,

(QsA+ SsC) + (QsA+ SsC)T +M1s + 2M2s 6 0,

[

Qs I

I Ps

]

> 0,







M1s (SsC)T

SsC

(

1

εs
+∆ds

)

−1

Qs






> 0,





M2s Qs

Qs
1

εs
I



 > 0,





εsI BRs

(BRs)T
1

∆ds
Ps



 > 0,

(9)

where εs > 0, ∆ds > 0 are preselected constant numbers

and Θs = −(APs + e−Ad̂sBRs) − (APs + e−Ad̂sBRs)T −

2εsPs, are solvable by symmetric positive definite matri-

ces Ps, Qs and matrices M1s,M2s ∈ R
n×n, Rs ∈ R

m×n,

Ss ∈ Rn×q . In addition, the designed gain matrices are

given by Ks = RsP
−1
s and Ls = Q−1

s Ss. A detailed proof

is provided in Appendix B.

Parameter selection. The controller and observer pa-

rameters include d̂r , ∆dr , εr, Pr, Qr, Kr, Lr for r =

0, 1, . . . , N − 1. Algorithm 1 is an offline algorithm to find

these parameters and ceases after finite iterations [7].

Algorithm 1 Parameter selection (offline)

Require: r = 0, d̂0 = d;

1: while d̂r 6 d̄ do

2: Preselect sufficiently small ∆dr > 0 and εr > 0 such

that the quadruple (Pr, Qr , Rr , Sr) is the solution to the

LMIs (9) with s replaced by r;

3: Compute Kr = RrP
−1

r
and Lr = Q−1

r
Sr ;

4: r ⇐ r + 1;

5: d̂r ⇐ d̂r + ∆dr;

6: N ⇐ r;

7: end while

Tuning mechanism. The purpose of this mechanism is

to tune the uncertain d with a logic-based switching rule.

Here, the Lyapunov-Krasovskii functional Vr(t) is divided

into Vr(t) = Vr,ζ(t) + Vr,x̄(t) (Vr,ζ(t) and Vr,x̄(t) are de-

scribed in Appendix A). Note that Vr,ζ(t) is measurable

while Vr,x̄(t) is not. The following tuning mechanism is

given.

A sequence of strictly increasing numbers {θk, k =

0, 1, . . .} is preselected such that limt→∞ θk = ∞. Here,

consider the general situation where t ∈ [tk , tk+1) with

k = iN + r and pk = tk + (d̂r + ∆dr). The parameters

are set to (d̂r ,∆dr , εr , Pr, Qr,Kr, Lr, Vr) generated by Al-

gorithm 1. If the inequality

Vr,ζ(t) − Vr,ζ(pk)

− λmax(Qr)

(

α2
r +

∫

−d̂r

−(d̂r+∆dr)

∫ pk

pk+θ

β2
r(τ)dτdθ

)

> −εr

∫ t

pk

ζT(τ)(PrQrPr)
−1ζ(τ)dτ (10)

holds at some time t > pk (αr and βr(τ) are described in

Appendix A), then t = tk+1 is set as the new switching

moment.

Theorem 1. The closed-loop system corresponding to the

system (1), observer (3), controller (6), and the tuning mech-

anism is globally and asymptotically stable. In other words,

all closed-loop states are bounded on [0,∞) for any initial

condition, and limt→∞ x(t) = 0 holds.

Proof. See Appendix C for the proof.

Simulations are discussed in Appendix D.
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