
SCIENCE CHINA
Information Sciences

. Supplementary File .

Global output feedback adaptive stabilization for
systems with long uncertain input delay

Zhuping WANG1, Jingcheng LIU1, Chao HUANG1*, Hao ZHANG1 & Huaicheng YAN2

1School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China;
2Key Laboratory of Advanced Control and Optimization for Chemical Process of Ministry of Education,

East China University of Science and Technology, Shanghai 200237, China

Appendix A Some Definitions
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Appendix B Proof of Lemma 1

Proof. The proof is divided into two parts. In the first part, it is showed that (8) holds if the inequalities
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have symmetric positive definite solutions Ps, Qs.

Part I: Denote δd = d − d̂s. The inequality 0 6 d̂s 6 d < d̂s + ∆ds implies 0 6 δd < ∆ds. Taking the time derivative of V1s
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resulting in
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Taking the time derivative of V2s gives
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Note again that d̂s 6 d < d̂s + ∆ds, then we have
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for ps 6 t < ts+1. With reference to (B1) and (B2), the inequality (8) is proved.

In the second part, it is proved that (B1) and (B2) have solutions if the LMIs (9) have, which completes the proof.

Part II: For ease of presentation, we divide (9) into the following inequalities:
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Then let KsPs = Rs, QsLs = Ss. Multiplying the left and the right side of the inequality (B1) by Ps from both left and right,

the inequalities (B1) and (B2) are respectively transformed into
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In the following, we show (B7)-(B12) imply (B13)-(B14). According to Schur’s complement, the LMIs (B7) and (B9) are equivalent

to the following inequalities,
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The similar procedure can be utilized again, then we have εsI BRs
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Combining (B12), (B16), (B17) and using Schur’s complement, it’s clear that the LMI (B14) has a solution if there are solutions

to the inequalities (B8-B12).

Appendix C Proof of Theorem 1
The proof is divided into two parts. In the first part, it is showed that, if there only exists a finite number of switching times,

global asymptotic stability is reached. In the second one, it is showed that there exists a finite number of switching times, which

ends the proof.

Part I: Suppose tf is the final switching moment and f = iN + q for some integer i and q ∈ {0, 1, 2, ..., N − 1}. Since tf is the

final switching moment, one has the following (otherwise, one would have another switching moment):
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max−ĥr6θ60

∥∥∥eAθ∥∥∥) ‖B‖ ‖Kr‖ ‖ζt‖c
for t ∈ [pf ,∞), where ‖ζt‖c denotes the supreme norm of continuous functions over [t−d, t). Since d̂r is bounded from above, x̂(t)

is also bounded and we have x̂(t)→ 0 as t→∞. From (4) one further has x̄(t)→ 0 as t→∞, so we have the result that x(t)→ 0

as t→∞.

Part II: Seeking a contradiction. Suppose on the contrary that there are infinite numbers of switching times. Then according

to (2), there must exist a switching moment tk satisfying θk > ‖x̄(0)‖, and k = iN + s with the parameters d̂s, ∆ds, εs, Ps, Qs,

Ks, Ls,Vs, where delay estimate d̂s satisfies d ∈ [d̂s, d̂s + ∆ds). By Lemma 1, we have
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From the definition of Vs,x̄(t), we can obtain
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and by integrating the inequality (4) from t = 0 to t = pk, and from t = 0 to t = τ , respectively, we have ‖x̄(pk)‖ 6 αs and
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As a result, substituting (C2) into (C1) and rearranging the terms, one will find that (10) cannot be satisfied for all pk 6 t < tk+1,

i.e., tk+1 =∞. A contradiction arises. To conclude, the total number of switching times is finite.
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Appendix D Numerical example

In this part, in order to validate the effectiveness of the theoretical results, some simulations to the problem of regulating a missile

roll angle have been done. The plant is described by

ẋ1 = u(t− d),

ẋ2 = εαx1 − αx2,

ẋ3 = x2,

y = x3,

(D1)

where x1 = δ is the angle of tail mobile fins generating the control torque u, x2 = ω is the roll angular velocity, x3 = φ is the

missile roll angle. ε is the mobile fins efficiency, τ = 1
α is the roll time constant. According to [1], the following parameters values

have been used: τ = 1s−1, ε = 10s, d = 0.6, d = 0, d = 1.0. Rewritting plant (D1), the corresponding matrices are given by

A =


0 0 0

10 −1 0

0 1 0

 , B =


1

0

0

 , C =
[
0 0 1

]
. (D2)

In Subsection Appendix D.1, one compares the proposed logic switching-based delay estimator and the existing delay estimator

mentioned in [2]. In Subsection Appendix D.2, one shows that the proposed scheme is robust to model uncertainties.

Appendix D.1 Comparison with the delay estimator in [2]

Suppose that the system (D1) is subject to an unknown input delay d = 0.6 that is upper bounded by d = 1.0. The initial state

is given by x(0) = [1; 0.2; 10] and x̂(0) = [1.2; 0.1; 0]. Set d̂0 = 0,∆dr = 0.05, εr = 0.1, r = 0, 1, 2, . . . , 20. Then one can apply

algorithm to find out Kr, Lr, Pr, Qr, Vr for every r. At the same time, the observer, controller and delay estimator in [2] are also

applied into the same simulation. The results in Figure D1 and Figure D2 show the evolution of x(t), u(t) and the difference

between the method in this note and that in [2]. It’s clear that our adaptive controller is effective and the system is stabilised in

both cases. Furthermore, Figure D3 shows that time delay estimates updated by two different strategies.

Appendix D.2 Simulation with model uncertainties

In this subsection, one shows that the proposed control scheme is robust with respect to the model uncertainties. Considers the

system (D1) with model uncertainties:

ẋ(t) = (A+ ∆A)x(t) + (B + ∆B)u(t− d),

y(t) = (C + ∆C)x(t),
(D3)

with

∆A =


−0.1 0 0

0 0 0.1

0 0 −0.1

 ,∆B =


0.1

0.1

0.1

 ,∆C =
[
0.1 0.1 0

]
.

where ∆A, ∆B and ∆C are unknown. All of the parameters are the same as the ones given in subsection A and all the parameters

are calculated by using A and B.

The simulation results are presented in Figures D4–D6, the uncertain system (D3) is stabilised in spite of model uncertainties

∆A, ∆B and ∆C. This simulation highlights the robustness of the proposed method.
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Figure D1 Evolution of x(t) for system (D1).
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Figure D2 Evolution of u(t) for system (D1).
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Figure D3 Evolution of d̂(t) for system (D1).
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Figure D4 Evolution of x(t) for system (D3).
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Figure D5 Evolution of u(t) for system (D3).
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Figure D6 Evolution of d̂(t) for system (D3).

References

1 Tibaldi M. Note introduttive a Matlab e Control System Toolbox. Progetto Leonardo, 1993
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