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Appendix A Related work
Remote sensing image SR aims to recover detailed HR images from LR images. Generally, the HR images IHR are degraded to LR

images ILR by a degradation model:

I
LR

= (I
HR ⊗ k) ↓ s + n, (A1)

where k is a blur kernel, and ⊗ is the convolution operation, and ↓ s is downsampling operation with a scale factor of s, and n is

the additional noise. For remote sensing images, the degradation model is unknown so that the SR is an ill-posed problem with

infinite solutions. The difficulty of SR is to limit the solution space to obtain better SR results.

Appendix A.1 CNN-based remote sensing image SR

With the rapid development of deep learning methods, CNN-based remote sensing image SR methods [1] have achieved good

performance. These methods aim to learn the mapping function F (·) from the paired HR and LR data sets:

I
SR

= F (I
LR

), (A2)

where ISR represents a reconstructed SR image and ILR is downsampled from HR images IHR by bicubic interpolation. The loss

function of CNN-based SR generally uses the mean absolute error (MAE) to measure the difference between ISR and IHR:

LMAE(F, I
HR

, I
LR

) =
∥∥∥F (I

LR
) − I

HR
∥∥∥
1
, (A3)

where LMAE represents the MAE loss function to optimize the CNN network parameters.

Recently, CNN-based methods have been applied for the remote sensing images SR. In [2], Lei et al. proposed a local-global-

combined network (LGCNet) to learn the multi-level representations of remote sensing images including both local details and

global environmental priors. A deep distillation recursive network (DDRN) [3] was introduced for video satellite image SR with

ultra-dense residual blocks and a recursive strategy to mitigate memory consumption. Lu et al. [4] presented a multi-scale residual

neural network (MRNN) by adopting the multi-scale nature of satellite images to reconstruct high-frequency information. Pan et

al. [5] proposed a residual dense back-projection network (RDBPN) to enhance the resolution of RGB remote sensing images with

dense back-projection blocks, which utilized residual learning in both global and local manners. In [6], Zhang et. al. proposed a

mixed high-order attention network improved by a high-order attention module to restore the missing details. Driven by the dense

connections [7], Dong et. al developed a dense-sampling SR network [8] named DSSR to achieve the large-scale SR reconstruction

by using the dense-sampling mechanism and wide feature attention block. However, these CNN-based methods need paired data

sets to train the SR network. The typical way for synthesizing the paired data is the utilization of the bicubic model that is quite

different from the real-world remote sensing degradation model. Therefore, these CNN-based methods achieve poor performance

when applied to real LR remote sensing images.

Appendix A.2 GAN-based remote sensing image SR

Recently, benefiting from the adversarial learning strategy, the GAN-based SR methods have achieved impressive results with more

detailed information and visual effect in natural image SR [9] [10] [11] and remote sensing image SR. The GAN-based methods

are typically composed of a generator and a discriminator. For SR tasks, the generator is used to reconstruct SR images and the

discriminator aims to distinguish SR images from HR images. The loss function of GAN-based SR methods is as follows:

Ladv(G,D, I
HR

, I
LR

) = log(D(I
HR

)) + log(1 − D(G(I
LR

))), (A4)
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Figure A1 Comparison of airplanes in a natural image (a) and a remote sensing image (b). Image (c) is the SR reconstructed

remote sensing image for (b) without content-preserving constraints. Airplanes are marked by red rectangles.

where G is the generator to learn the SR mapping function, and D is the discriminator. The min-max two-player game between

the generator and the discriminator makes the generated data be indistinguishable from the real ones.

For remote sensing SR, most of the researchers improve the performance from two aspects: 1. the structure of the generator; 2.

the judgment ability of the discriminator. Specifically, Kui et al. [12] proposed a GAN-based edge-enhancement network (EEGAN),

where the generator was improved by an ultra-dense subnetwork and an edge-enhancement subnetwork to increase the robustness of

satellite image SR reconstruction. In [13], Lei et al. proposed a coupled-discriminated GANs (CDGAN), in which the discriminator

was specifically designed to take SR and HR images as inputs to improve the discrimination ability of the discriminator. Though

GAN-based methods reconstruct SR results with fine texture and details, they still need paired data sets to training, which limits

the generalization ability of the model. In addition, these methods are more sensitive to noise which results in the compensated

high-frequency details (e.g., image edges) of SR results may be inconsistent with the ground truth images.

Appendix A.3 Image domain translation

Image domain translation aims to transform an input image (source domain) into a specific target image (target domain), e.g.,

mapping aerial images to map images [14]. Inspired by the GANs, the image domain translation methods have gained fruitful

progress. In [15], the CycleGAN proposed by Zhu et al. can learn the translation between two different domains X and Y . The

CycleGAN has two generators, G1 : X → Y and G2 : Y → X accompanied by two discriminators DX and DY . In addition, the

CycleGAN adopts the cycle consistency loss to reduce the space of possible mapping functions. For each image x ∈ X and y ∈ Y ,

the cycle consistency loss can be expressed as:

Lcyc(G1, G2, x, y) = ∥G2(G1(x)) − x∥1 + ∥G1(G2(y)) − y∥1, (A5)

where Lcyc describes the cycle consistency loss. The identity loss Lidt is applied to preserve color composition between input and

output images and avoid the color variation issue, which is expressed as:

Lidt(G1, G2) =
∥∥∥ILR

real,G1
− I

LR
real

∥∥∥
1
+

∥∥∥ILR
bic,G2

− I
LR
bic

∥∥∥
1
. (A6)

Appendix B Training loss function
The full loss functions of image domain translation are shown as follows:

Lpseudo−LR = Ladv(G1, Dreal, I
LR
real, I

LR
bic ) + Ladv(G2, Dbic, I

LR
bic , I

LR
real)+

λ1Lcyc(G1, G2, I
LR
bic , I

LR
real) + λ2Lidt(G1, G2) + λ3Lper(G1, G2),

(B1)
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where λ1, λ2, λ3 are hyperparameters to weight the contributions of each loss function. Ladv is the adversarial loss function

described in Eq. (A4). Lcyc is the cycle consistency loss described in Eq. (A5). The identity loss is estimated by Eq. (A6). The

perceptual loss is described as:

Lper(G1, G2) =
∥∥∥ϕm,n(I

LR
pseudo) − ϕm,n(I

LR
bic )

∥∥∥
1
+∥∥∥ϕm,n(I

LR
real,G2

) − ϕm,n(I
LR
real)

∥∥∥
1
, (B2)

where ϕm,n denotes the feature map extracted by the n-th convolutional layer before m-th max pooling layer of the VGG19

extractor.

The full loss function of the SR reconstruction is composed of the MAE loss LMAE , the edge retention loss Ledge, the degradation

consistency loss Lde, and the adversarial loss Ladv :

LSR = ω1 · LMAE(GSR, I
HR
real, I

LR
pseudo) + ω2 · Ledge(Gedge, Dedge)+

ω3 · Lde(Gde, Dde) + ω4 · Ladv(GSR, Dhr, I
HR
real, I

LR
real),

(B3)

where ω1, ω2, ω3 , ω4 are weights of each loss. LMAE and Ladv are estimated by Eq. (A3) and Eq. (A4), respectively. Ledge is

defined as:

Ledge(Gedge) = −[I
LR
real,BIC◦Gedge

log(I
SR
real,Gedge

) +

(1 − I
LR
real,BIC◦Gedge

) log(1 − I
SR
real,Gedge

)], (B4)

where Gedge is the DexiNed edge detection network, and BIC represents the bicubic interpolation to upscale ILR
real to the size of

ISR
real. ILR

real,BIC◦Gedge
represents the edge information extracted by the edge detection network from the bicubic upsampled ILR

real.

ISR
real,Gedge

stands for the edge information of ISR
real. Lde is described as:

Lde(Gde, Dde) = log(Dde(I
LR
real)) +

log(1 − Dde(I
LR
de )) + a ·

∥∥∥ILR
real − I

LR
de

∥∥∥
1
, (B5)

where Dde (utilizing the same structure as the PathGAN [14]) is a discriminator to distinguish ILR
de from ILR

real, and a is a weight

hyperparameter.

Figure B1 The network structure of Gde network.

Appendix C Experimental results

Appendix C.1 Evaluation dataset

Our method can be trained on unpaired data sets with different spatial resolutions captured by different satellites. To verify the

effectiveness of the proposed method, we construct two datasets: a synthetic unpaired SR dataset and a real unpaired SR dataset.

More details of these datasets are described as follows.

Synthetic unpaired SR dataset: The experiments of synthetic unpaired SR are conducted based on the RRSSRD [16] dataset.

The HR images of the RRSSRD dataset are acquired from WorldView-2 and GaoFen-2, with the spatial resolution of 0.5m/pixel

and 0.8m/pixel. In the training phase, to acquire the synthetic LR dataset, we degrade the real HR images to LR images by adding

noise and downsampling. The noise degradation is the additive white gaussian noise (AWGN) with the noise level σ = 7.65 and

the downsampling is the nearest interpolation with scale factor 4. To train our method in an unpaired way, we randomly select

about half of the HR images (2021 images) from the RRSSRD training data set as the real HR images. The remaining half of the

HR images (2022 images) are degraded to noisy LR images that are used as real LR images. In the testing phase, we conduct

experiments on the RRSSRD test set. The test LR images are degraded from test HR images using the same degradation used for

the training phase. We denote the test sets as synthetic test sets.
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Real unpaired SR dataset: In the training phase, we train our model on the unpaired real HR data and real LR data. For

real HR data, we select images with a spatial resolution of 0.1−0.15m/pixel from the DOTA dataset [17] collected from the Google

Earth, GF-2, and JL-1 satellites. For real LR data, we choose the Google Ref data with the spatial resolution of 0.6m/pixel from

the RRSSRD dataset [16] captured from Google Earth. The real HR data has 544 images of various sizes, while the real LR data

has 4045 images with the size of 480×480. To balance of the amount of training data, we randomly crop the HR image into 4500

patches with the size of 960×960. Examples of real HR and LR data sets can be seen in Figure C1. In the testing phase, we adopt

the Google Ref data from the RRSSRD test set as our real LR test set. In the RRSSRD test set, the Google Ref images in #1 test

set and #2 test set are the same, and the Google Ref images in #3 test set and #4 test set are the same as well. Therefore, we

choose the #1 test set and #3 test set as our test data sets and denote them as Real #1 test set and Real #2 test set, respectively.

Figure C1 Examples of real HR and LR images.

Appendix C.2 Evaluation metrics

To evaluate the proposed method, a blind image quality analyzer called as the natural image quality evaluator (NIQE) [18] is first

used as the evaluation metric on both synthetic and real unpaired SR dataset. The NIQE does not require the ground truth and

only calculates the measurable deviations from statistical regularities, without being trained on human-rated distorted images. The

lower score of the reconstructed image represents better visual result. In the synthetic SR dataset, we adopt the peak signal-to-

noise ratio (PSNR) [19], structural similarity (SSIM) [19], learned perceptual image patch similarity (LPIPS) [20], and NIQE for

evaluation. The PSNR and SSIM are the most commonly used evaluation metrics in image SR. Given the ground truth image I

with N pixels and reconstructed image Î , the PSNR is expressed as follows,

PSNR = 10 · log10

L2

1
N

N−1∑
i=0

∥∥∥I(i) − Î(i)
∥∥∥2

, (C1)

where L represents the maximum pixel value of the image. The SSIM is used to measure the structural similarity between images:

SSIM =
(2µIµÎ + C1)(σIÎ + C2)

(µI
2 + µÎ

2 + C1)(σI
2 + σÎ

2 + C2)
, (C2)

where µ and σ represent the mean and standard deviation of the image intensity, C1 = (k1L)2 and C2 = (k2L)2 are constants to

avoid the denominator being 0 and maintain stability (k1 << 1, k2 << 1). The higher the scores of PSNR and SSIM, the better

the reconstruction performance can be achieved. The LPIPS is a learned metric to measure the perceptual similarity between

recovered and ground truth images using a pretrained deep network:

LPIPS =
∑
l

1

HlWl

∑
h,w

∥∥∥wl ⊙ (f
l
h,w − f̂

l
h,w)

∥∥∥2

2
, (C3)

where Hl and Wl are the height and width of the features of l-th layer, f l
h,w and f̂ l

h,w represent the features of the corresponding

I and Î of the l-th layer at location (h, w). The reconstruction images with lower scores of LPIPS mean better image quality.

Appendix C.3 Implementation details

In our experiments, we adopt data augmentation on training samples, including the rotation of 90°, 180°, 270°, and horizontally

flipping. In the training process of the domain translation, both the real LR images and bicubic downsampled images are cropped

to the size of 64×64. In Eq. (1), the parameters m and n are set to 5 and 4, respectively. The parameters of Eq. (B1) are set to

λ1 = λ2 = 10, λ3 = 1. For the training of SR process, the patch sizes of pseudo-LR images and real LR images are set as 48×48

and the patch size of real HR images is 192×192. We set the parameters of Eq. (3) as a = 1 and the parameters of Eq. (B3) are set

as ω1 = 10, ω2 = 0.5, ω3 = 1, ω4 = 0.1. All experiments are conducted based on Pytorch with two GTX-1080 Ti graphics processing
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Figure C2 Experimental results on synthetic test sets. The results of the PSNR/SSIM/LPIPS of each SR image are presented.

The best result is in bold. The second-best result is underlined.

units. For both domain translation and SR process, the training stops when the epoch is 500. The learning rate is chosen to be

1×10e-4 and the batch size is set as 16. The Adam optimization [21] is used to optimize the model parameters, where β1 is 0.9

and β2 is 0.999. Since the spatial resolution of real HR images is about four times higher than that of real LR images, the SR scale

factor is selected to be 4 in our experiments.

Appendix C.4 Experiments on synthetic unpaired remote sensing images

In the synthetic unpaired remote sensing images, we adopt the PSNR, SSIM, NIQE, and LPIPS metrics on different SR methods.

The compared CNN-based methods include the SRCNN [1], EDSR [22], our baseline model RRDBNet [10] and RCAN [23]. In



Wu J, et al. Sci China Inf Sci 6

Table C1 Quantitative comparison with different methods on the synthetic test sets, where the degradation is AWGN with the

noise level σ = 7.65. For PSNR and SSIM, a higher score indicates a better result. Whereas for NIQE and LPIPS, a lower score

indicates a better result. In each row, the best result is labeled in bold and the second-best result is underlined.

Dataset Metric SRCNN EDSR RRDBNet ESRGAN ZSSR RCAN CinCGAN BSRGAN DASR CPWSNN

Synthetic #1 Test

PSNR 24.69 26.81 26.83 24.65 26.45 25.88 26.74 26.78 27.22 28.09

SSIM 0.628 0.696 0.682 0.556 0.657 0.629 0.735 0.710 0.641 0.739

NIQE 9.770 8.487 8.939 5.528 9.007 8.671 6.744 4.879 3.761 3.720

LPIPS 0.522 0.546 0.542 0.503 0.674 0.583 0.433 0.321 0.337 0.254

Synthetic #2 Test

PSNR 25.56 26.19 25.70 22.88 26.05 24.94 26.62 26.48 26.34 27.83

SSIM 0.624 0.661 0.636 0.504 0.629 0.573 0.715 0.661 0.584 0.700

NIQE 11.85 8.671 8.728 6.364 9.354 9.204 6.801 4.830 4.179 3.647

LPIPS 0.754 0.625 0.619 0.584 0.746 0.666 0.456 0.407 0.374 0.295

Synthetic #3 Test

PSNR 23.48 25.10 24.71 23.34 25.04 24.36 25.39 25.54 25.52 26.12

SSIM 0.568 0.633 0.609 0.499 0.607 0.575 0.658 0.649 0.581 0.664

NIQE 9.798 9.082 9.148 5.778 8.886 9.135 6.791 4.238 3.587 3.610

LPIPS 0.637 0.654 0.639 0.497 0.766 0.661 0.494 0.340 0.335 0.274

Synthetic #4 Test

PSNR 24.96 26.62 26.18 22.75 26.36 25.26 26.15 26.64 26.41 28.11

SSIM 0.593 0.652 0.631 0.487 0.623 0.562 0.689 0.649 0.564 0.697

NIQE 9.820 9.492 9.470 7.129 9.720 10.218 7.055 4.820 4.530 3.983

LPIPS 0.605 0.635 0.627 0.596 0.747 0.664 0.459 0.425 0.407 0.311

addition, we choose the ESRGAN [10] as the typical GAN-based method for the comparison. One blind SR method, named 
BSRGAN [24], and an unsupervised SR method, named as ZSSR [25] are also included in the comparison. Furthermore, we select 
two unpaired natural image SR methods for the comparison, named as the CinCGAN [26] and DASR [27]. The HR images of 
training data used by the compared methods are the same. The degradation of CNN-based SR method and GAN-based method is 
bicubic. The blind SR method BSRGAN is trained with multiple degradation in the same experimental setting of BSRGAN. The 
unpaired SR methods are optimized on the synthetic unpaired dataset as mentioned in subsection Appendix C.1. All methods are 
evaluated on the synthetic test sets.

As shown in Table C1, we quantitatively evaluated the SR results using four metrics, including PSNR, SSIM, NIQE, and LPIPS, 
where the best result is labeled in bold and the second best result is underlined. As can be seen, our CPWSNN achieves the 
highest scores on almost all metrics. Besides this, there are visual and quantitative comparisons in Figure C2. The CNN-based 
methods including the SRCNN, EDSR, RRDBNet, and RCAN cannot reconstruct the rich details in the images and caused many 
artifacts. The GAN-based method ESRGAN mistakenly treats noise as high-frequency detail information and amplifies t he noise 
and artifacts. The results of the ZSSR method suffer f rom s erious n oise. T he r esults o f t he B SRGAN a re b lurry a nd structural 
details are not well preserved. CinCGAN and DASR have relatively good visual effects, b ut c ause c olor d istortion. T he visual 
results of our CPWSNN are the closest to HR images and have the highest scores in the quantitative metrics.

To further validate the robustness of our CPWSNN, we conduct experiments under mixed degradations. Specifically, we degrade 
the synthetic test sets by Gaussian blur (kernel size is 3), AWGN (noise level σ = 7.65), and nearest downsampling with the scale of 4 
[28, 29]. We directly test the synthetic mixed degradations test sets on the above-mentioned methods without finetuning. The 
quantitative results are shown in Table C2. Our CPWNN has comparable results on the synthetic test sets under mixed degradations, 
demonstrating that our proposed method has high robustness.

Table C2 Quantitative comparison with different methods on the synthetic test sets under mixed degradations, where the degra-
dations are Gaussian blur with kernel size = 3, and AWGN with the noise level σ = 7.65, and nearest downsampling with the scale of 4.

Dataset Metric SRCNN EDSR RRDBNet ESRGAN ZSSR RCAN CinCGAN BSRGAN DASR CPWSNN

Synthetic #2 Test
PSNR 27.38 27.20 27.10 24.86 26.55 27.07 26.11 26.29 27.21 27.12

SSIM 0.682 0.636 0.626 0.523 0.612 0.625 0.666 0.680 0.654 0.690

Synthetic #3 Test
PSNR 27.46 27.18 26.95 23.74 26.56 27.08 26.47 26.37 27.26 27.50

SSIM 0.657 0.613 0.602 0.496 0.591 0.605 0.651 0.642 0.629 0.668

Synthetic #4 Test
PSNR 26.51 26.33 26.24 24.14 25.83 26.23 25.28 25.36 26.37 26.19

SSIM 0.637 0.593 0.584 0.488 0.579 0.584 0.627 0.624 0.611 0.639

Synthetic #1 Test
PSNR 28.07 27.62 27.35 23.69 27.02 27.53 26.84 26.79 27.87 28.10

SSIM 0.659 0.607 0.597 0.485 0.590 0.601 0.653 0.639 0.631 0.667

Appendix C.5 Experiments on real unpaired remote sensing images

In these experiments, all the compared methods are trained on the same dataset. To test the above CNN-based methods (SRCNN [1],

EDSR [22], RRDBNet [10], RCAN [23]) and GAN-based method (ESRGAN [10]), we utilize the bicubic method to degrade the

real HR data to the LR data. The blind SR method, named as BSRGAN [24], is trained with multiple degradation in the same

experimental setting of BSRGAN. The unpaired SR methods (CinCGAN [26] and DASR [27]) are all trained on the real unpaired

dataset mentioned in Appendix C.1. Since the real LR images have no corresponding ground truth images, we only utilize the

NIQE metric to evaluate the SR performance, where the results are shown in Table C3. As can be observed, our CPWSNN is
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Table C3 NIQE metric comparison of different methods on real test sets. A lower score indicates a better result. The best results

are in bold and the sencond-best results are underlined.

DATASET SRCNN EDSR RRDBNet ESRGAN ZSSR RCAN CinCGAN BSRGAN DASR CPWSNN

Real #1 Test 8.047 4.792 7.075 5.278 7.396 5.290 6.034 4.290 6.447 3.895

Real #2 Test 9.206 5.691 7.775 5.128 7.434 6.161 8.075 5.483 6.943 4.114

superior to all the other methods on the NIQE metric. Visual comparisons of different methods are illustrated in Figure C3. As can

be seen, the SR results of the CNN-based methods, which are SRCNN, EDSR, RRDBNet, and RCAN, cannot produce much detail

and suffer from blur. The GAN-based method ESRGAN has a better visual result but amplifies blocky artifacts. The results of the

unsupervised method ZSSR has certain suppression effects on blocky artifacts, while the textures and details of the SR results are

not obvious. CinCGAN has similar results with the CNN-based methods both in visual effects and the NIQE metric. The results

of the BSRGAN are overly smooth. The artifacts in DASR results is more serious. Compared with other methods, the proposed

CPWSNN has the best visual effects. For example, the edges and textures information are richer and the objects can be seen more

clearly in CPWSNN SR results.

Figure C3 Experimental results on Real test sets consist of real LR remote sensing images. The results of the NIQE of each SR

image are presented. A lower score indicates better results.
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Appendix C.6 Ablation studies

To further verify the effects of each loss to our method, we conducted ablation studies, including the perceptual loss in domain

translation, the degradation consistency loss, and edge retention loss in SR training process.

Appendix C.6.1 Studies of perceptual loss in domain translation
We conduct experiments with and without perceptual loss in the domain translation training process to validate the content-

preserving effectiveness of the perceptual loss. Visual results are shown in Figure C4. It is obvious that the objects and color

information of pseudo-LR images generated by domain translation without perceptual loss is heavily changed. We can figure out

that the perceptual loss has the strong ability to prevent objects deformation and color variation. Table C4 and Table C5 show

the quantitative comparison on SR results with respect to the use of the perceptual loss in domain translation based on synthetic

LR images and real LR images, respectively. As can be seen in Table C4 and Table C5, the performance is improved by adding the

perceptual loss.

Figure C4 Visual effect of the perceptual loss in domain translation. (a) Real HR images (zoom in for best view). (b) Pseudo-LR

images generated by domain translation without perceptual loss. (c) Pseudo-LR images generated by domain translation with the

perceptual loss.

Table C4 Quantitative comparison on SR results with respect to the use of the perceptual loss in domain translation based on

synthetic test sets. The best results are in bold.

Method
Synthetic #1 Test Synthetic #2 Test Synthetic #3 Test Synthetic #4 Test

PSNR/SSIM/LPIPS PSNR/SSIM/LPIPS PSNR/SSIM/LPIPS PSNR/SSIM/LPIPS

Without perceptual loss 26.50/0.694/0.385 26.54/0.661/0.432 24.84/0.614/0.331 26.26/0.651/0.439

With perceptual loss 28.09/0.739/0.247 27.83/0.701/0.295 26.21/0.664/0.266 28.11/0.696/0.313

Table C5 NIQE metric comparison on SR results about the perceptual loss in the domain translation based on real test sets.

The best results are in bold.

Method/Test set Real #1 Test Real #2 Test

Without perceptual loss 4.659 4.939

With perceptual loss 3.895 4.114

Appendix C.6.2 Studies on edge retention loss and degradation consistency loss in SR training process
We designed several experiments to study the effects of the edge retention loss and degradation consistency loss in the SR training

process (without the edge retention loss and degradation consistency loss, without edge retention loss, and the full loss). Table C6

shows the quantitative comparisons of the SR network trained with different losses based on the synthetic #1 test set. The

SR network trained with the full loss function has the best quantitative results in terms of the metrics of PSNR and LPIPS.

Figure C5 shows the visual results on different loss functions on real test sets. The SR network trained without edge retention

loss and degradation consistency loss generate artificial results with color variation and unreal objects. By adding the degradation

consistency loss, the color variation issue can be suppressed but the SR results still have artificial edges. When the edge retention

loss is further adopted, the generation of fake edges and textures can be prevented. Figure C5(d) indicates that the degradation

consistency loss and edge retention loss can provide constraints for the SR network to avoid generating unreal objects, color

variation, unreal edges, and other content distortion issues.
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Figure C5 Visual comparison on SR network trained with different loss based on Real test sets.

Table C6 Quantitative comparison of SR network trained with different loss based on the real #1 test set.

MAE loss and adversarial loss Edge retention loss Degradation consistency loss PSNR/SSIM/LPIPS

✓ × × 21.28/0.601/0.432

✓ × ✓ 23.58/0.593/0.385

✓ ✓ ✓ 28.09/0.739/0.254

Appendix D Conclusion

We presented a content-preserving weak supervision neural network to reconstruct SR based on unpaired remote sensing data

sets. First, we adopted the domain translation to synthesize the pseudo-LR images from real HR images. Then, the pseudo-LR

images and real HR images provided pixel wise supervision for the SR network. To preserve the contents of the synthesized the

pseudo-LR images, we used the perceptual loss to constrain the domain translation process. Furthermore, to avoid fake edges and

unreal objects in the SR results, we proposed the edge retention loss and degradation consistency loss to constrain the SR network

training. Experimental results on a synthetic test set and real test set demonstrated that the proposed unpaired remote sensing

images SR method achieved competitive visual results compared with paired and unpaired SR methods.
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