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Dear editor,

Visual object tracking, which has attracted increasing at-

tention in the field of general visual understanding, aims

to track each temporally changing object in a video se-

quence, with the target specified only in the first frame.

Although most tracking algorithms have facilitated signifi-

cant advances in RGB video sequences, object tracking using

only RGB information is unreliable under extreme lighting

conditions (e.g., dark night, rain, and foggy). With the de-

velopment of hardware devices, infrared cameras have been

widely used to capture the contour information of objects by

sensing the radiation intensity of their surfaces, which effec-

tively compensates for RGB images for identifying objects.

Therefore, the integration of complementary data from vi-

sual and thermal infrared spectrum is essential for dealing

with appearance changes and background distractions in the

RGB-T object tracking problem. According to the differ-

ent fusion methods of multimodal data, previous RGB-T

tracking algorithms can be divided into three categories:

modality weight learning for multimodal trackers [1], sparse

representation-based multimodal trackers [2], and RGB-T

tracking based on deep learning [3, 4] (Appendix A). Al-

though the above RGB-T tracking approaches have achieved

promising performance, several challenges remain regarding

the utilization of the interactive characteristics between het-

erogeneous modalities to solve the RGB-T tracking problem.

In this study, we propose a cross-modal interaction (CMI)

learning framework for the RGB-T tracking task, which

explores the interrelated characteristics of the two modal-

ities to promote heterogeneous information fusion. The

CMI architecture is composed of a basic feature encod-

ing/extraction network, a cross-modal interaction module,

and a binary classification network (Figure 1(a)). Accord-

ing to the object tracking state in the previous frame, we

sampled multiple region samples from the input RGB and

thermal image pairs, and then adopted a pre-trained CNN

for extracting hierarchical representations of all region pro-

posals. Inspired by the recent transformer mechanism, we

introduce two specially designed interaction learning mod-

ules from the pixel-/relation-level cross-modal feature repre-

sentation, which can be seamlessly integrated in our RGB-T

tracking network. Specifically, the pixel-level CMI approach

mainly considers pixel-pairwise affinities in the spatial do-

main, whereas the relation-level CMI method employs these

pattern associations between the two modalities. The built

cross-modal correlations can be used to guide the propaga-

tion of these convolutional features from one modality to

another during the process of multimodal fusion. These

fused features of RGB and thermal data can be aggregated

and then fed into the binary classification network. The bi-

nary classification network has three fully connected layers

followed by the cross-entropy loss function to estimate the

possibilities of proposal regions as the background or fore-

ground, and the top-k confident candidates can be used to

regress the final location of the tracking object.

This study aims to learn the cross-modal interaction in

the feature-learning process to boost the performance of the

RGB-T tracking problem. Given a pair of samples in RGB

and thermal modalities (recorded as IR and IT ), we can

choose CNNs to extract deep feature representations. By

mining these cross-modal interactions/correlations between

two modalities, we can then perform cross-modal informa-

tion propagation from one modality to another modality to

enhance the feature representation of tracking objects. For-

mally,

FR = Conv(IR),FT = Conv(IT ),

Wcorr = fcorr(FR,FT ),

FT →R = fT →R(Wcorr,FT ),

F ′
R = ψ(FR , λRFT →R),

(1)

where FR and FT denote convolutional features of the in-

put RGB and thermal images, respectively. The function

fcorr is used to explore the intra-modal correlation in the

spatial domain or the cross-modal interaction between two

modalities (Figure 1(b)). With the guidance of the cross-

modal correlation Wcorr, the function fT →R is adopted to

perform feature propagation from the thermal modality to

the RGB modality. Finally, we obtain the enhanced feature

of the RGB modality (i.e., F ′
R
), where the hyperparameter

λR refers to a learned balance factor and ψ denotes an ag-

gregated concat function by considering the original feature

(i.e., FR) and the propagated feature from another modal-
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Figure 1 (Color online) Illustration of our proposed CMI network architecture. Given the input RGB and thermal image pair,

we first adopt a classic convolutional network to extract multi-scale feature representation. In the CMI module, we can mine these

cross-modal correlations between two heterogeneous modalities, which can be then employed to promote/guide the propagation

from one modality to another modality. These fused features of RGB and thermal data can be then fed into the binary classifica-

tion network. Finally, we can address the RGB-T tracking task in an end-to-end network. (a) Network architecture; (b) feature

propagation in the CMI module.

ity (i.e., FT →R). Similarly, we can perform cross-modal

interaction learning among different modalities to obtain a

robust feature representation for a specific object.

By employing the convolutional features of the two

modalities {FR,FT }, we can first obtain the pixel-pairwise

correlation of each modality at the feature level:

Wpixel
R

= σ(QRK
T
R/

√

dR),

Wpixel
T

= σ(QT K
T
T /

√

dT ),
(2)

where Wpixel
R

and Wpixel
T

denote the pixel-pairwise corre-

lations for the RGB and thermal modality, respectively.

QR ∈ R
(wh)×dR and KR ∈ R

(wh)×dR are the reshaped

feature matrices of convolutional maps. w, h and dR are the

width, height, and channel of convolutional feature map, re-

spectively. QR and KR can be learned from FR though one

or more 1 × 1 convolutional layers; σ refers to a standard

normalization (e.g., softmax function). Similarly, we can

learn the feature representations QT and KT of the thermal

image and then obtain the corresponding pixel-pairwise spa-

tial affinity Wpixel
T

. By employing pixel-pairwise correlation

in the spatial domain, we can then perform feature prop-

agation across different modalities to complete pixel-level

fusion. Second, we consider the relation-level interaction

between RGB and thermal modality from a high semantic

perspective, which can be formulated as

Wrelation
(R,T ) = σ(Wpixel

T
⊙Wpixel

R
), (3)

where⊙ refers to the dot product operation of the two matri-

ces. The relation-level CMI is mined from the pixel-pairwise

correlations for the RGB and thermal modalities, where

Wpixel
R

and Wpixel
T

belong to the low-order pattern corre-

lations in the pixel level, and then are employed to infer a

high-order pattern interaction (i.e., Wrelation
(R,T )

) between het-

erogeneous modalities in the semantic level. Under the guid-

ance of relation-level interactions, we can promote the trans-

mission of information from one modality to another modal-

ity. Finally, we perform feature propagation across different

modalities to complete the cross-modal fusion, which is then

fed into the subsequent binary classification network for the

RGB-T tracking task.

Experiments. Comprehensive evaluations of the

GTOT [2], RGBT234 [1], and VOT-RGBT2019 [5] datasets

showed that our CMI performs better than the compared

baselines (see Appendix B). The performance improvements

may be primarily due to the complementarity between the

heterogeneous data sources, which allows the moving objects

to be well located during the tracking process in the RGB-

T video sequences. The component-wise analysis demon-

strates that by accounting for the multi-level cross-modal in-

teractions, the complementary characteristics between RGB

and thermal images can be well captured in the information

fusion process. Through a qualitative comparison, we can

observe that cross-modal fusion can help capture the effec-

tive representation of tracking objects and generate more

precise predictions in challenging video sequences. Both the

tracking speed and robustness under the modality-missing

situation are superior when using our CMI learning mech-

anism. Therefore, extensive experimental results clearly

demonstrate the effectiveness of the proposed CMI method

in solving the RGB-T tracking problem.

Acknowledgements This work was supported by National
Natural Science Foundation of China (Grant Nos. 61972204,
62072244) and in part by Natural Science Foundation of Jiangsu
Province (Grant Nos. BK20191283, BK20190019).

Supporting information Appendixes A and B. The sup-
porting information is available online at info.scichina.com and
link.springer.com. The supporting materials are published as
submitted, without typesetting or editing. The responsibility
for scientific accuracy and content remains entirely with the au-
thors.

References

1 Li C, Liang X, Lu Y, et al. RGB-T object tracking: bench-

mark and baseline. Pattern Recogn, 2019, 96: 106977

2 Li C, Cheng H, Hu S, et al. Learning collaborative sparse

representation for grayscale-thermal tracking. IEEE Trans

Image Process, 2016, 25: 5743–5756

3 Yu Y, Xiong Y, Huang W, et al. Deformable Siamese atten-

tion networks for visual object tracking. In: Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, 2020. 6728–6737

4 Wang C, Xu C, Cui Z, et al. Cross-modal pattern-

propagation for RGB-T tracking. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recog-

nition, 2020. 7062–7071

5 Kristan M, Matas J, Leonardis A, et al. The seventh visual

object tracking VOT2019 challenge results. In: Proceed-

ings of the IEEE International Conference on Computer

Vision Workshops, 2019

info.scichina.com
link.springer.com
https://doi.org/10.1016/j.patcog.2019.106977
https://doi.org/10.1109/TIP.2016.2614135

