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Appendix A Related work
Visual object tracking: Visual object tracking, which is an important but challenging problem in the field of computer vision, has

attracted increasing attention owing to its broad application in vision understanding. Correlation filter-based tracking methods [2,

11,13,19] have shown advantages because of their high computational efficiency with the use of fast Fourier transforms. For example,

a classic type of correlation filter, called the minimum output sum of squared error (MOSSE) filter [2], was first proposed to produce

stable correlation filters when initialized from the first frame. Some extensions of the correlation filter trackers were subsequently

proposed. Using the well-established theory of circulant matrices, the CSK tracker [20] established a link to Fourier analysis that

opened up the possibility of extremely fast learning and detection using the fast Fourier transform (FFT). To incorporate color

information in the process of visual tracking, the CSK tracker was extended to multidimensional color features by defining an

appropriate kernel [12]. To tackle the problem of the fixed template size in kernel correlation filter tracker, Li et al. [33] extended

the correlation filter-based tracker and then proposed an effective scale adaptive scheme to improve the tracking capability. To

achieve high-speed tracking, a kernelized correlation filter (KCF) [19] was presented to leverage the powerful kernel trick at the

same computational complexity as that of linear correlation filters. In contrast to the conventional discriminative correlation filters

framework, Danelljan et al. [13] employed an implicit interpolation model to learn convolution filters in a continuous spatial domain.

In [11], a discriminative scale space tracker (DSST) was proposed to learn separate correlation filters for explicit translation and

scale estimation.

Convolutional neural networks (CNNs) with powerful feature representation abilities have facilitated significant advances in

computer vision tasks (e.g., whole-image classification [18, 37, 42], semantic segmentation [4, 5, 17], and object detection [15]). In

addition, numerous handcrafted features have been replaced by deep CNN features to represent the target appearance in the task

of visual object tracking [9, 10]. Wang et al. [40] trained a stacked denoising auto-encoder offline to learn generic image features

by employing auxiliary natural images and then transferred the learned knowledge from offline training to the online tracking

process. An extended version of DLT, named SO-DLT [39], was proposed to pre-train the CNN to recognize objects and generate

a probability map to better fit the characteristics of object tracking. Nam et al. [35] proposed a multi-domain convolutional

neural network (MDNet) learning framework to address the problem of visual tracking, where a CNN pre-trained by multi-domain

learning is updated online in the context of a new sequence to learn domain-specific information adaptively. Inspired by MDNet

and fast R-CNN [16], a real-time visual tracking algorithm [21] was proposed to accelerate the feature extraction procedure and

learn more discriminative models for instance classification. Li et al. [32] presented a correlation filter neural network (CFNN)

tracker by employing the advantages of both deep learning and correlation filter-based methods. Efficient convolution operators

(ECO) [9] were proposed to dramatically reduce the number of parameters in the DCF model and simultaneously improve the

tracking speed and robustness. In [47], deeper and wider Siamese network architectures were designed for achieving real-time

visual tracking based on the no-padding residual units. Deformable Siamese attention networks [44] were proposed to handle object

tracking by employing a Siamese attention mechanism, that is, deformable self-attention and cross-attention. Zhang et al. [48]

proposed a tracking framework by combining the anchor-free network with an efficient feature combination module, which used a

2D spatial transformation to align the feature sampling locations with predicted bounding boxes. The transformer tracking work [6]

presented an attention-based feature fusion network that effectively combines the template and search region features solely using

attention without correlation. The spatio-temporal transformer tracking method [43] was then proposed to capture global feature

dependencies of both spatial and temporal information in video sequences. Despite breakthroughs in visual object tracking, many

challenges still exist; in particular, tracking target objects under conditions of low illumination leads to loss of essential object

information.

RGB-T object tracking: Owing to the special advantages and accessibility of thermal infrared cameras, RGB-T object

tracking has recently has gained increasing attention [27, 29, 45, 50]. According to different fusion methods of multi-modal data

information, existing RGB-T tracking methods are mainly based on weight learning [31,50], sparse representation [25,29], and deep

learning methods [38,44].

Multi-modal weight learning algorithms obtain the weights/confidences of multi-modal data under different conditions and

then fuse the multi-modal data information through the learned weights to improve multi-modal object tracking. For instance, a

deep quality-aware feature aggregation network (FANet) [50] was proposed to achieve quality-aware aggregation of both hierarchical

features and multi-modal information for robust online RGB-T tracking. To achieve effective multimodal fusion, soft cross-modality

consistency was used to enforce ranking consistency between RGB and thermal modalities while allowing sparse inconsistency [31].

By employing the sparse representation strategy, Li et al. [25] jointly optimized the sparse codes and reliable weights of different

modalities to simultaneously integrate grayscale and thermal information. A grayscale-thermal object tracking method in a Bayesian

filtering framework was proposed to pursue multitask Laplacian sparse representation to adaptively leverage multimodal visual

data [28]. A weighted sparse representation regularized graph model [29] was also introduced to learn a robust object representation

using multi-spectral (RGB and thermal) data for visual tracking. A discriminative learning framework was proposed to adaptively
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Table B1 Attribute-based PR score (%) on the RGBT234 dataset against state-of-the-art trackers. The best, second and third

performances are represented in red, green and blue, respectively.

Method SGT FANet DAPNet DAFNet MaCNet C-COT CMPP SOWP+RGBT MDNet+RGBT Ours

NO 87.7 84.7 90.0 90.9 92.7 88.8 95.6 86.8 89.5 94.3

PO 77.9 78.3 82.1 85.9 81.1 74.1 85.5 74.7 79.6 87.9

HO 59.2 70.8 66.0 68.6 70.9 60.9 73.2 57.0 67.0 73.4

LI 70.5 72.7 77.5 81.2 77.7 64.8 86.2 72.3 74.5 85.2

LR 75.1 74.5 75.0 81.8 78.3 73.1 86.5 72.5 75.8 84.2

TC 76.0 79.6 76.8 81.8 77.0 84.0 83.5 70.1 73.9 79.4

DEF 68.5 70.4 71.7 74.1 73.1 63.4 75.0 65.0 70.8 77.6

FM 67.7 63.3 67.0 74.0 72.8 62.8 78.6 63.7 66.4 79.1

SV 69.2 77.0 78.0 79.1 78.7 76.2 81.5 66.4 76.8 82.8

MB 64.7 67.4 65.3 70.8 71.6 67.3 75.4 63.9 67.8 74.3

CM 66.7 66.8 66.8 72.3 71.7 65.9 75.6 65.2 71.0 76.9

BC 62.8 71.0 71.7 79.1 77.8 59.1 83.2 64.7 74.4 83.9

ALL 72.0 76.4 76.6 79.6 79.0 71.4 82.3 69.6 76.3 83.1

and collaboratively learn the classifiers and reliability weights of different modalities for RGB-infrared tracking [24]. Recently, deep

learning methods, particularly convolutional neural networks, have further improved the performance and robustness of RGB-T

tracking tasks. To perform the deep RGB-T tracking task, a dense feature aggregation and pruning network (DAPNet) [49] was

constructed to perform an effective information fusion of different modalities in an end-to-end fashion. A multiadapter convolutional

network (MANet) [27] was employed to jointly perform modality-shared, modality-specific, and instance-aware feature learning in

an end-to-end trained deep framework for RGB-T tracking. A modal-aware attention network [45] was proposed to perceive the

importance of each modality and to guide the adaptive fusion of dual-modality features on multiple feature layers. Wang et al. [38]

proposed a cross-modal pattern-propagation (CMPP) tracking framework to diffuse instance patterns across RGB-T data in both

spatial and temporal domains. In departure from the existing RGB-T tracking approaches, we attempt to mine the intrinsic

correlations between two heterogeneous modalities to promote information propagation from one modality to another modality.

Appendix B Experiments
Experimental Settings: We evaluated the effectiveness of our CMI on two larger RGB-T object tracking datasets: GTOT [25]

and RGBT234 [26]. The GTOT dataset [25] consisted of 50 spatially and temporally aligned pairs of RGB and thermal infrared

video sequences in different environments. To comprehensively evaluate different tracking algorithms, the challenges were divided

into seven categories based on the weather and time of the shoot and the status of the target. The RGBT234 dataset [26] was

an extension of the RGBT210 dataset [30]. It contained 234 video pairs that were strictly aligned using two modalities. Its total

frames were approximately 234K and the frame of the largest video pair was 8K. Various occlusion levels (including no, partial,

and heavy occlusions) were annotated for the occlusion-sensitive evaluation of the different algorithms. For the attribute-sensitive

performance analysis, the attributes of each video sequences were also annotated, including no occlusion (NO), partial occlusion

(PO), heavy occlusion (HO), low illumination (LI), low resolution (LR), thermal crossover (TC), deformation (DEF), fast motion

(FM), scale variation (SV), motion blur (MB), camera movement (CM), and background clutter (BC). We employed widely used

tracking evaluation metrics, including the success rate (SR) and precision rate (PR), for the quantitative performance evaluation

of RGB-T object tracking. SR is the percentage of frames whose overlap ratio between the estimated bounding box and the ground

truth bounding box is larger than a specified threshold. We computed the representative SR score using the area under the curves.

PR is the percentage of frames whose predicted bounding box is within a threshold distance of the ground truth. Because the

target objects in GTOT are small, we computed the representative PR score by setting the thresholds to 5 and 20 pixels for GTOT

and RGBT234 datasets, respectively. The VOT-RGBT2019 dataset [23] contains 60 testing sequences. The targets are annotated

as rotated rectangles to enable a more thorough localization accuracy. By following the standard evaluation protocol in [23], we

used the accuracy, robustness, and expected average overlap (EAO) to evaluate the performance of different trackers. Accuracy and

robustness reflect the accuracy and robustness of the tracker, whereas the expected average overlap reflects the overall performance

of the tracker. Higher values of accuracy, robustness, and expected average overlap are desirable for a tracker.

The entire CMI network was optimized in an end-to-end manner. In the training process, the VGG-M model [3] pre-trained on

the ImageNet dataset was adopted to initialize the first three convolutional layers, and other network parameters were initialized

randomly. In the CMI module, we simultaneously employed two CMI learning strategies to obtain fusion features, which were then

fed into the binary classification network. Positive and negative samples were randomly selected from the training video sequences.

To better capture this multi-domain information, the last fully connected layer was followed by K network branches in the binary

classification network, and each video sequence was used to optimize one network branch independently. In the iterative learning

process, we randomly selected eight frames from each video sequence and then cropped 32 positive samples and 96 negative samples

from each frame to optimize the parameters of the CMI network. A selected bounding box is considered a positive sample if it

overlaps by more than 70% with a ground-truth bounding box, and a bounding box is judged to be a negative sample if it overlaps

by less than 50% with a ground-truth bounding box. The parameter learning rate of the feature extraction and fusion network

modules was set to 0.0001, and the learning rate of the other network parameters was 0.001. We trained our CMI network using

the stochastic gradient descent method with 1000 iterations, a momentum of 0.9, and a weight decay of 0.0005. Following the same

protocol in [38], we selected the entire GTOT dataset as the training set when evaluating the RGBT234 dataset and randomly

selected 70 videos of the RGBT234 dataset as the training set when evaluating the GTOT dataset.

In the test stage, the K network branches used for multi-domain learning were replaced by one branch in the last layer of the

binary classification network. We sampled 500 positive and 5000 negative samples from the initial frame to fine-tune the parameters

of our network model. The network parameters of the feature extraction and fusion parts were fixed during the test process. In the

binary classification subnetwork, the learning rate of the first two network layers was set to 0.0001, and the learning rate of the last

fully connected layer was 0.001. The end-to-end CMI network could then be optimized over 30 iterations using the random gradient
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Table B2 Attribute-based SR score (%) on the RGBT234 dataset against state-of-the-art trackers. The best, second and third

performances are represented in red, green and blue, respectively.

Method SGT FANet DAPNet DAFNet MaCNet C-COT CMPP SOWP+RGBT MDNet+RGBT Ours

NO 55.5 61.1 64.4 63.6 66.5 65.6 67.8 53.7 62.6 67.4

PO 51.3 54.7 57.4 58.8 57.2 54.1 60.1 48.4 53.5 60.9

HO 39.4 48.1 45.7 45.9 48.8 42.7 50.3 37.9 44.9 50.3

LI 46.2 48.8 53.0 54.2 52.7 45.4 58.4 46.8 48.1 57.1

LR 47.6 50.8 51.0 53.8 52.3 49.4 57.1 46.2 48.9 55.3

TC 47.0 56.2 54.3 58.3 56.3 61.0 58.3 44.2 51.1 55.6

DEF 47.4 50.3 51.8 51.5 51.4 46.3 54.1 46.0 50.0 55.3

FM 40.2 41.7 44.3 46.5 47.1 41.8 50.8 38.7 43.3 49.9

SV 43.4 53.5 54.2 54.4 56.1 56.2 57.2 40.4 52.0 58.0

MB 43.6 48.0 46.7 50.0 52.5 49.5 54.1 42.1 48.0 53.2

CM 45.2 47.4 47.4 50.6 51.7 47.3 54.1 43.0 50.1 54.5

BC 41.8 47.8 48.4 49.3 50.1 39.3 53.8 41.9 48.9 54.9

ALL 47.2 53.2 53.7 54.4 55.4 51.4 57.5 45.1 51.6 57.8
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Figure B1 Overall performance comparison with state-of-the-art methods on the RGBT234 dataset.

descent method. We employed the above learned CMI network to obtain these multi-modal features and predict the location results

of the target of interest. For the tracking process in the t-frame, we sampled 256 proposal regions with a Gaussian distribution

model by employing the tracking result of the (t− 1)-th frame and obtained the positive and negative scores of all selected samples

with the learned CMI network. The top-k proposal regions of the positive scores (i.e., k=5) was used to obtain the bounding boxes,

and its mean value was the final predicted bounding box of the tracking target.

Results and comparisons To comprehensively evaluate the effectiveness of the proposed CMI, we compared it with several

state-of-the-art approaches [14,29,38,45,50] on two public RGB-T tracking datasets. Tables B1 and B2 report the attribute-based

PR/SR scores of the proposed CMI and comparisons with several state-of-the-art methods on the RGBT234 dataset, including

SGT [29], FANet [50], DAPNet [49], DAFNet [14], MaCNet [45], CMPP [38], C-COT [13], SOWP [22], and MDNet [35]. Our CMI

can significantly outperform existing baselines, achieving improvements in 11.1%/10.6% over SGT [29], 6.7%/4.6% over FANet [50],

6.5%/4.1% over DAPNet [49], 3.5%/3.4% over DAFNet [14], 4.1%/2.4% over MaCNet [45], 0.8%/0.3% over CMPP [38], and

6.8%/6.2% over the MDNet+RGBT method in terms of PR/SR score. Our CMI exhibits much higher performance than other

existing trackers. Furthermore, when predicting object locations in different attribute-based video sequences, the PR/SR results of

our CMI method achieved significant gain under most conditions, for example, 83.9%/54.9% vs. 62.8%/41.8% [29] for background

clutter (BC), 82.8%/58.0% vs. 78.0%/54.2% [49] for scale variation (SV), and 77.6%/55.3% vs. 74.1%/51.5% [14] for deformation

(DEF). In particular, our CMI obtained the best tracking results in the partial occlusion (PO) and heavy occlusion (HO) cases,

which demonstrates that the proposed cross-modal fusion method can improve the RGB-T tracking performance to some extent.

When the tracking objects have significant appearance changes (such as scale variation and deformation) or are moving in the

complicated environments of background clutter and camera movement, we can also achieve the best tracking performance. These

attribute-based results indicate that CMI performs well in various appearance changes and challenging situations. Furthermore,

Fig. B1 presents a comparison of the PR/SR curves of our CMI and other state-of-the-art RGB-T tracking methods. From the

above results, we can observe that our CMI performs better than the compared baselines [14, 29, 35, 38, 45, 49, 50] in both the PR

and SR metrics. These above improvements may be due to the complementarity between the heterogeneous data sources, which

allows the moving objects to be well located during the tracking process in the RGB-T video sequences.

Fig. B2 presents a comparison of the PR/SR curves of our CMI and other baselines on the GTOT dataset, including MANet [27],

ECO [9], C-COT [13], DAFNet [14], L1-PF [41], SGT [29], FANet [50], CMPP [38], FANet [50], MaCNet [45], MDNet [35]+RGBT

and SGT [29]. The proposed CMI method obtained PR and SR scores of 93.9% and 74.1%, respectively. Comparisons with previous

methods [9, 27, 35, 50] demonstrate that the proposed CMI substantially outperforms them, achieving improvements of 4.5% over

MANet [27], 5.4% over FANet [50], and 5.9% over MaCNet [45] in terms of the PR score, as well as improvements of 2.9% over
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Figure B2 Overall performance comparison with state-of-the-art methods on the GTOT dataset.

Table B3 Tracking results of different trackers on the VOT-RGBT2019 dataset. The best, second and third performances are

represented in red, green and blue, respectively.

Method Accuracy Robustness EAO

TFNet [51] 0.462 0.594 0.288

FANet [50] 0.472 0.508 0.247

MANet++ [34] 0.509 0.538 0.272

SGT [29] 0.518 0.723 0.297

MANet [27] 0.582 0.701 0.346

ATOM [8] 0.587 0.695 0.321

DiMP [1] 0.601 0.709 0.327

SiamBAN [7] 0.622 0.706 0.333

ADRNet [46] 0.622 0.766 0.396

Ours CMI 0.625 0.716 0.381

DAFNet [14], 3.4% over DAPNet [49], and 6.5% over MDNet [35]+RGBT in terms of the SR score. When compared with the

top second CMPP method [38], a better tracking performance was achieved, for example, 93.9% vs. 92.6% in terms of the PR

score and 74.1% vs. 73.8% in terms of the SR score. The above experimental results indicate that the proposed CMI method can

effectively address the RGB-T tracking task by considering cross-modal interaction learning in the process of information fusion.

We further present the tracking performance comparisons between the proposed CMI method and other existing tracking meth-

ods on the VOT-RGBT2019 dataset, including TFNet [51], FANet [50], MANet++ [34], SGT [29], ATOM [8], SiamBAN [7], and

ADRNet [46]. As shown in Table B3, the CMI obtains 0.625, 0.716, and 0.381 in the accuracy, robustness, and EAO metrics,

respectively. Comparisons with previous tracking methods demonstrate that the proposed CMI method also substantially outper-

forms them, achieving improvement of 0.163 over TFNet [51], 0.153 over FANet [50], 0.116 over MANet++ [34], and 0.024 over

DiMP [1] in terms of accuracy metric. In addition, we obtained the second and third ranks in the other two metrics, for example,

0.716 vs. 0.706 [7] for the robustness rate and 0.381 vs. 0.346 [27] for the EAO rate. Overall, this demonstrates that the proposed

CMI method is effective in tracking video objects in RGBT video sequences.

Ablation study: To evaluate the effectiveness of the two CMI strategies, Fig. B3 shows the comparison results under various

experimental settings on the RGBT234 dataset, including CMI with pixel- and relation-level interactions (i.e., “w/ pixel/relation-

level CMI”), CMI with the pixel-level interaction (i.e., “w/ pixel-level CMI”), CMI with the relation-level interaction (i.e., “w/

relation-level CMI”), and a baseline method (i.e., MDNet+RGBT). In addition to adding the CMI module, our CMI and its variants

have the same experimental settings as the baseline “MDNet+RGBT” method. When compared with the “MDNet+RGBT” method,

our CMI with relation-level interaction achieves a better tracking performance, that is, 79.5% vs 76.3% in terms of PR score and

56.2% vs 51.6% in terms of SR score. When CMI network adopts the pixel-level interaction in the fusion process, the tracking

performance achieves 80.1%/57.0% in PR/SR scores, which are also higher than the tracking results of “MDNet+RGBT”. After

simultaneously considering both the pixel- and relation-level interactions, our CMI achieves the best tracking performance, that

is, 83.1%/57.8% in the PR/SR scores. The main reason for these improvements is that multi-level cross-modal interactions are

considered during the information-fusion process, thus resulting in the effective capture of complementary characteristics between

RGB and thermal images.

As shown in Fig. B4, we provide a qualitative comparison of our CMI against several state-of-the-art baselines for different

RGB-T video sequences, including SGT [29], MDNet [35]+RGBT, SOWP [22]+RGBT, and C-COT [13]. Our CMI performs well

in video sequences with low illumination and complex backgrounds, as illustrated in Fig. B4(a), and Fig. B4(b), respectively. This

indicates that we can better predict the location of moving objects using our CMI, whereas other trackers lose the object of interest

under extreme lighting conditions. In Fig. B4(b) and Fig. B4(d), tracking objects have a cluttered background and partial occlusion

to some extent, and robust tracking results can also be obtained. This demonstrates that cross-modal fusion can help capture an

effective representation of tracking objects and generate more precise predictions in challenging video sequences.

We present the runtime and tracking performance of our CMI against baseline methods, such as MDNet [36], MDNet+RGBT,
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Figure B3 Overall performance comparison with various experimental settings on the RGBT234 dataset.
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Figure B4 Qualitative comparison of our CMI against several state-of-the-art baselines on different RGB-T video sequences.

MANet [27], FANet [50], and CMPP [38]. For comparison, we used our CMI model on the platform of PyTorch with E5-2650@2.2

GHz CPU and NVIDIA GeForce 2080Ti GPU with an average tracking speed of 1.3 FPS. Note that the MDNet method [36] only

employs RGB information to perform object tracking, whereas MDNet+RGBT simultaneously uses RGB and thermal information

to address the RGB-T tracking problem. Compared with the baselines, we obtained a better tracking performance on the GTOT

and RGBT234 datasets, except for MANet [27]. For example, we obtained 93.9%/74.1/% in PR/SR scores on the GTOT dataset

and 83.1%/57.8% on the RGBT234 dataset with 1.3PFS, which are superior to MDNet [36] and MDNet+RGBT in both performance

and runtime (i.e., MDNet+RGBT with 83.3%/67.6%/3.2FPS vs. ours 93.9%/74.1/%/1.6FPS on the GTOT dataset). The tracking

performance of our CMI also outperformed that of FANet [50] and CMPP [38] with the same running speed. The above experimental

results demonstrate that our tracking performance and speed can be improved through the use of the proposed CMI framework.

Table B4 Runtime(FPS) and performance(%)of our CMI against the baseline methods on GTOT and RGBT234 datasets.

Datasets Metric MDNet [36] MDNet+RGBT MANet [27] FANet [50] CMPP [38] Ours

GTOT
PR 81.2 83.3 89.4 88.5 92.6 93.9

SR 63.3 67.6 72.4 69.8 73.8 74.1

RGBT234
PR 71.0 76.3 77.7 76.4 82.3 83.1

SR 49.0 51.6 53.9 53.2 57.5 57.8

FPS 3.2 1.6 1.1 1.3 1.3 1.3

We further present the visual features and correlation maps of the CMI module to better understand the fusion process of the

two heterogeneous modalities, including the inputs of RGB and thermal modalities, the correlations in the pixel and relation levels,

and the outputs of the pixel-/relation-level CMI modules. As shown in Fig B5, the RGB and thermal modalities have different

responses/representations for tracking objects. According to Eqn.(2) and Eqn.(3) in the revised manuscript, we can obtain the

pixel-wise correlations of RGB and thermal modalities (i.e., Wpixel
R and Wpixel

T ) and the relation-level correlation of two modalities

(i.e., Wrelation
(R,T ) ). We can obtain the output features by the pixel-level CMI and relation-level CMI strategies, which are aggregated

and then fed into the subsequent binary classification network to boost the tracking performance. This indicates that the fused

output features of the CMI can capture the appearance information of a specific object better than the input feature maps.
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RGB modality

Thermal modality

(a) Input                                         (b) Pixel-/relation-level correlation                                    (c) Output

Pixel-level CMI

Relation-level CMI

Figure B5 Visualization analysis for the CMI module, including the inputs of RGB and thermal modalities, the correlations in

the pixel and relation levels, and the outputs of pixel-/relation-level CMI modules.
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Figure B6 Performance comparisons (SR score) of CMI and MDNet under different degrees of modality loss on the RGBT234

dataset.

We conducted experiments to evaluate the robustness of the proposed CMI framework under the situation of modality loss,

which is common in practice. Here, we randomly lost one of the modalities (either RGB or thermal information) for some frames in

a video sequence, where the degrees of modality loss were set to 0, 20%, and 50%. As shown in Fig. B6, we report the performance

comparisons (SR scores) of CMI and MDNet under different degrees of modality loss for the RGBT234 dataset. With a 20%

degree of modality, the tracking results of CMI and MDNet were 55.7% and 49.4%, respectively, in terms of the SR score. When

losing 50% of the modality information in a video sequence, the performance degradation of CMI and MDNet were 3.9% and 4.8%,

respectively. In summary, these comparison results reveal that the adopted cross-modal interaction mechanisms are effective in

addressing the RGBT tracking problem.
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