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Abstract Vertex cover of complex networks is essentially a major combinatorial optimization problem in

network science, which has wide application potentials in engineering. To optimally cover the vertices of

complex networks, this paper employs a potential game for the vertex cover problem, designs a novel cost

function for network vertices, and proves that the solutions to the minimum value of the potential function

are the minimum vertex covering (MVC) states of a general complex network. To achieve the optimal

(minimum) covering states, we propose a novel distributed time-variant binary log-linear learning algorithm,

and prove that the MVC state of a general complex network is attained under the proposed optimization

algorithm. Furthermore, we estimate the upper bound of the convergence rate of the proposed algorithm,

and show its effectiveness and superiority using numerical examples with representative complex networks

and optimization algorithms.
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1 Introduction

The vertex cover problem is a well-known nondeterministic polynomial (NP) hard problem that covers
the minimum number of vertices of a general network, where at least one endpoint of each edge in the
network is covered [1]. Therefore, it has gained wide interest in different research and potential application
fields, such as wireless sensor networks [2], distributed optimization of collective intelligence [3], intelligent
autonomous systems [4], and Internet of Things [5].

For the minimum vertex cover of a general network, previous decades have witnessed fruitful efforts in
achieving (sub)-optimal solutions, where the connectivity patterns of a general network are important in
the performance of network covering as an NP hard problem [6,7]. Since the seminar work of small-world
and scale-free networks in the 1900s [8,9], the complexity rooted in the ubiquitous connectivity patterns
of small-world and scale-free features in large-scale social and technical networks has been recognized
due to its significant impact on collective system performance [10–12]. Thus, the problem developing
optimization algorithms to find better or optimal solutions to the vertex cover problem is a challenge.

Toward proferring a solution, many efforts have been drawn from the approaches used in combinatorial
optimization. Although the solution of the vertex cover problem of complex networks is not achieved
in polynomial time, however, developing approximate algorithms with improved approximation factors
is achieved [13–16]. For instance, Halperin [13] designed an improved algorithm with the approximation
factor 2−(1−O(1))(2lnlnn/lnn) for the vertex cover problem, where n is the number of network vertices.
Karakostas [14] further reduced the approximation factor for the vertex cover problem to 2−O(1/

√
logn).

Many heuristic algorithms such as evolutionary algorithm [17, 18], genetic algorithm (GA) [19], multi-
objective evolutionary algorithm [20], quantum algorithm [21, 22], and branch-and-bound search algo-
rithm [23], have been developed to find a more optimal solution for covering the network vertices.
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However, most such optimization algorithms are centralized; i.e., the covering strategy for each indi-
vidual (vertex) in the given network is not self-decided; rather, it only follows a central administrator’s
decision. For complex network structures, a large-scale network system can be dysfunctional due to the
heavy computational burden and huge communication costs. Since each vertex inanimately acts, the per-
formance of the whole network system relies on a central administrator, which is vulnerable to targeted
attacks. In autonomous intelligent systems, the high-efficient requirement of a central administrator is
difficult to satisfy and maintain. These emerging issues present the significance of designing efficient
distributed algorithms to solve the vertex cover problem of a general complex network.

Recently, fruitful efforts have been devoted to distributed optimization algorithms for the vertex cover
problem from the evolutionary game-based algorithms, where every vertex takes its independent decision
to achieve the optimized covering of the entire network. An interactive snowdrift game framework between
the vertices of a general network was first presented in [24] and proved the strict Nash equilibriums (SNEs)
between the vertex covering (VC) and minimum vertex covering (MVC) states of a general network.
Moreover, a memory-based best response (MBR) algorithm was employed to prove that the covering
states of all vertices converge to an SNE [24]. Also, the MBR was extended to dynamical networks [25],
and an extended variation of the MBR algorithm as the feedback-based best response algorithm for
weighted vertex cover problem was systematically developed [26]. Sun et al. [27] used a potential game
to describe the weighted vertex cover problem, proposed a relaxed greedy and memory-based algorithm,
and similarly proved the convergence to an SNE.

Although such optimization algorithms are superior to other existing distributed algorithms, they only
guarantee that the covering states of all vertices converge to an SNE. However, an SNE is inefficient for
evaluating the optimality of an MVC state and achieves 50% suboptimality [28]. Therefore, we seek to
develop a distributed optimization algorithm, such that the covering states of all vertices converge to
the MVC state of a general complex network. This paper designs a novel individual cost function, and
proves that the solutions to the minimum value of the potential function are the MVC states. Also, we
propose a new game-based distributed algorithm: the time-variant binary log-linear learning algorithm
(TVBLLA), which, as we prove in this paper, guarantees that the covering states of all vertices converge
to the MVC state of a general complex network.

The main contributions of this paper are summarized as follows.

(1) We design a novel individual cost function with the cost value of each individual (vertex) bounded
in [0,1], and prove that the solutions to the minimum value of the potential function are the MVC
states of a general complex network. Since every individual (vertex) takes its local information to make
covering decisions by itself, our newly designed individual cost function bridges the optimal solutions of
the potential function and the optimal covering states of all vertices of a general complex network.

(2) We newly propose a distributed TVBLLA that outperforms the binary log-linear learning algo-
rithm [29], which cannot guarantee the covering states of all vertices attain the VC state of a general
complex network. We prove for the first time that the covering states of all vertices driven by the proposed
TVBLLA converge with probability one to the MVC state of a general complex network.

(3) We estimate the convergence rate of the proposed TVBLLA and give an upper bound on the
distance between the covering state after finite time steps and the MVC state. We employ extensive
numerical experiments to verify the effectiveness of our proposed TVBLLA. Results prove affirmative
and present its advantage to the representative optimization algorithms on various networks.

The rest of this paper is organized as follows: Section 2 introduces the preliminaries and provides
guidelines for developing the problem. Section 3 presents the relationship between the solutions to a
potential game and the vertex cover problem, and proves that the solutions to the minimum value of the
potential function are the MVC states of a network. Section 4 proposes a TVBLLA. Section 5 analyzes
the performance of TVBLLA, proves that the covering states of all vertices converge to the MVC state
of a general network, and estimates the convergence rate of the TVBLLA. Section 6 provides numerical
simulations to illustrate the effectiveness and advantages of TVBLLA. Section 7 presents the conclusion.
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2 Preliminaries and problem formulation

2.1 Vertex cover problem

Given an undirected graph Ξ = (V,E) with the set of vertices V = {1, 2, . . . , n} and the set of edges
E = {eij} (i, j ∈ V, i 6= j), if there exists an edge from vertex i to vertex j, then eij = 1; otherwise,
eij = 0. A vertex cover is defined as a set VVC such that each eij(eij ∈ E) has at least one endpoint
(vertex) in the set VVC. A minimum vertex cover VMVC is a vertex cover with the minimum cardinality;
i.e., the number of covered vertices is minimum.

Definition 1. Regard the vertex cover problem of a graph (network) as a game among all the vertices
(players) of the graph denoted by G = (V,X, F,E):

(i) X =
∏n

i=1 Xi, where Xi = {0, 1} (0 and 1 represent the uncovered and covered states, respectively)
is the strategy set of player (vertex) i and x = (x1, . . . , xn) ∈ X , xi ∈ Xi is a strategy profile;

(ii) F = {f1, . . . , fn} is the set of cost functions, where fi is the cost function of player i.

2.2 Nash equilibrium and potential game

Consider an n-player game on the finite strategy space X , and let x−i = (x1, x2, . . . , xi−1, xi+1, . . . , xn)
denote the strategy profile of all players except player i. Thus, the cost function of player i can be written
as fi(x) = fi(xi, x−i).

Definition 2 (Nash equilibrium [30]). A Nash equilibrium x̄ = (x̄1, x̄2, . . . , x̄n) is such a strategy profile
where no player can unilaterally change its strategy to decrease its cost, i.e.,

fi(x̄i, x̄−i) 6 fi(x
′
i, x̄−i), (1)

where x̄i ∈ x̄, and ∀x′
i 6= x̄i. If Eq. (1) holds strictly for every x′

i 6= x̄i, x̄ is an SNE.

Definition 3 (Potential game [31]). A strategic game G = (V,X, F,E) is a potential game if there
exists a function ϕ : X→R, such that

fi(x
′
i, x−i)− fi(x

′′
i , x−i) = ϕ(x′

i, x−i)− ϕ(x′′
i , x−i), (2)

for every player i ∈ V , and ∀x′
i, x

′′
i ∈ Xi, where ϕ is a potential function of G.

2.3 Inhomogeneous Markov chains

A discrete-time Markov chain on the finite strategy space X with time-dependent transition probability
matrices P 1, P 2, . . . is inhomogeneous [32–34]. The probability of the state transition during z steps
starting from time t is defined as

P t,z =

t+z−1
∏

i=t

P i, (3)

where P t,z contains element P t,z
i,j .

Note that a transition probability matrix is a stochastic matrix, and all elements in the matrix are
nonnegative.

Definition 4 (Scrambling matrix [32]). A stochastic matrix P is a scrambling matrix if for any two
rows, α and ξ, there exists at least one column γ such that both Pα,γ > 0 and Pξ,γ > 0.

Moreover, the scrambling power of a stochastic matrix P is defined as sp(P ) [32]:

sp(P ) = min
α,α′

∑

γ

min(Pα,γ , Pα′,γ). (4)

For a stochastic matrix P , if some power of P has all positive entries, then P is a regular stochastic
matrix [32]. Besides, for each t ∈ N

+, if a stochastic matrix P t is regular with the same arrangement
of non-zero elements, then there exists an integer c > 0 such that P t,c is a scrambling matrix, i.e.,
∀t>0, sp(P t,c)>0, where c is a scrambling coefficient [32].

Definition 5 (Ergodicity coefficient [33]). The ergodicity coefficient of a stochastic matrix P is defined
as

τ(P ) = 1− sp(P ). (5)
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Lemma 1 ([33]). For a stochastic matrix P and a vector y ∈ R
m such that

∑m
i=1 yi = 0,

‖yP‖ 6 τ(P )‖y‖. (6)

Lemma 2 ([33]). For any two stochastic matrices A and B,

τ(AB) 6 τ(A)τ(B). (7)

If a Markov chain is strongly ergodic, then there exists a unique stochastic row vector π∗, called
stationary distribution, such that limz→∞ πP t,z = π∗ for any initial distribution π [34]. The criteria for
weak ergodicity and strong ergodicity of an inhomogeneous markov chain are introduced as follows.

Lemma 3 ([32]). A Markov chain is weakly ergodic if and only if there exists a subdivision at time
steps t1, t2, . . ., such that

∑∞
l=1 sp(P

tl,zl) diverges, i.e.,
∑∞

l=1 sp(P
tl,zl) > ∞, where zl = tl+1 − tl.

Lemma 4 ([34]). A Markov process {P t} is strongly ergodic if the following requirements hold:

(i) For each t, P t is a regular matrix with stationary distribution πt;

(ii) The Markov process {P t} is weakly ergodic;

(iii) The stationary distribution πt satisfies

∞
∑

t=0

∑

x∈X

‖πt
x − πt+1

x ‖ < ∞. (8)

2.4 Problem formulation

In this paper, we aim at minimizing the global objective function as [17]

f(x) =
n
∑

i=1



xi + µ(1− xi)
n
∑

j=1

(1 − xj)eij



 , (9)

where µ > n/2 is the penalty parameter of the uncovered edge of a general complex network.

We design the cost function of each player i as

fi(x) =
xi + 2µ(1− xi)

∑n
j=1(1− xj)eij

2µ∆
, (10)

where ∆ is the maximum degree of a general complex network.

Lemma 5. Given an undirected graph Ξ and a constant µ, a strategic game G = (V,X, F,E) is the
potential game, where F = {fi}i∈V with fi given by (10), and the potential function is

ϕ(x) =
f(x)

2µ∆
. (11)

We leave out the proof as it is similar to that of Theorem 2 in [27], and the only difference is the
expression of fi(x) and ϕ(x).

Note that given an undirected graph Ξ and a constant µ, a solution to the minimum value of (11) is
also the solution to the minimum value of (9).

3 Relationship between potential game and minimum vertex cover

Let VMIN denote the set of covered vertices in the solution to the minimum value of (9), and ΩMIN :=
{VMIN}. Let ΩVC := {VVC}, ΩMVC := {VMVC}, ΩSNE := {VSNE} denote the sets of VCs, MVCs, SNEs,
respectively.

Proposition 1. The necessary and sufficient condition for an SNE is that for each vertex: (i) if xi = 0,
then xj = 1, ∀j ∈ Γi, where Γi is the neighbor set of player i; (ii) if xi = 1, then xj = 0, ∃j ∈ Γi.
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Proof. (Sufficiency) Suppose a strategy profile x= (x1, . . . , xn) satisfying the conditions (i) and (ii) of
Proposition 1.

(i) For each player i, if xi = 0, xj = 1, ∀j ∈ Γi, we have

fi(0, x−i)− fi(1, x−i) =
−1

2µ∆
< 0.

Thus, player i will not change its strategy from 0 to 1.
(ii) For each player i, if xi = 1, xj = 0, ∃j ∈ Γi, and player i has m (m > 1) neighbors with strategy

0, then

fi(1, x−i)− fi(0, x−i) =
1− 2µm

2µ∆
6

1− 2µ

2µ∆
< 0.

Thus, player i will not change its strategy from 1 to 0. From Definition 2, x = (x1, . . . , xn) is an SNE.
(Necessity) Suppose x = (x1, . . . , xn) is an SNE. From Definition 2, for each player i, fi(xi, x−i) <

fi(x
′
i, x−i), ∀x′

i 6= xi. Assume player i has m neighbors with strategy 0.
(i) If xi = 0, then

fi(0, x−i)− fi(1, x−i) =
2µm− 1

2µ∆
< 0

holds. We have m< 1
2µ <1; thus, m = 0. Thus, if xi = 0, then xj = 1, ∀j ∈ Γi.

(ii) If xi = 1, then

fi(1, x−i)− fi(0, x−i) =
1− 2µm

2µ∆
< 0

holds. We have m > 1
2µ > 0; thus, m > 1. Thus, if xi = 1, then xj = 0, ∃j ∈ Γi.

From Proposition 1, for any SNE, there is no 0-0 edge in the network. Therefore, an SNE must be a
VC state of a general complex network; i.e., we have ΩSNE ⊆ ΩVC.

If a strategy profile x = (x1, . . . , xn) satisfies that at least one endpoint of each edge is covered, then,
we define the strategy profile x as a covered solution of (9); otherwise, it is defined as an uncovered
solution of (9).

Theorem 1. Consider a potential game G = (V,X, F,E) with ϕ(·) and fi(·). We have
(i) fmax

VC 6 n < fmin
UVC, where f

max
VC is the maximum value of (9) in all covered solution, and fmin

UVC is the
minimum value of (9) in all uncovered solution;

(ii) fi(x) ∈ [0, 1], ∀i ∈ V, x ∈ X ;
(iii) ΩMIN = ΩMVC ⊆ ΩSNE ⊆ ΩVC.

Proof. Since the number of network vertices is finite, there exist finite covered solutions to (9). Let
Xvc = {xvc,1, . . . , xvc,g} denote the set of covered solutions. Moreover, let Xuvc = {xuvc,1, . . . , xuvc,h}
denote the set of uncovered solutions. Thus, for any xvc ∈ Xvc and xuvc ∈ Xuvc, we have {k|xvc

k =
1, xvc

k ∈ xvc} ∈ ΩVC, and {k|xuvc
k = 1, xuvc

k ∈ xuvc} /∈ ΩVC.
(i) For any xvc ∈ Xvc, we have

f(xvc) =
∑n

i=1
xvc
i . (12)

Thus, fmax
VC = n.

For any xuvc ∈ Xuvc, there exists at least one uncovered edge with both endpoints being 0. Assume
xuvc
i = 0 and ∃j ∈ Γi, x

uvc
j = 0, where Γi is the neighbor set of player i. Then, we have

f(xuvc) > 2µ
∑n

j=1
(1− xuvc

j )eij > 2µ > n.

Thus, fmin
UVC > n = fmax

VC .
(ii) For any player i, if xi = 0, we have

0 6 fi(x) =
2µ
∑n

j=1(1 − xj)eij

2µ∆
6

ki
∆

6 1,

where ki is the degree of player i.
If xi = 1, we have

0 < fi(x) =
1

2µ∆
<

1

n∆
< 1.
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Thus, fi(x) ∈ [0, 1], ∀i ∈ V .
(iii) In order to prove that ΩMIN = ΩMVC, we will prove that a solution to the minimum value of (9)

is an MVC state, and an MVC state is also a solution to the minimum value of (9). Therefore, we prove
it as sufficient and necessary conditions.

(Sufficiency) Suppose xmin = (xmin
1 , . . . , xmin

n ) is a solution to the minimum value of (9). Then

f(xmin) 6 f(x̃), ∀x̃ 6= xmin. (13)

If xmin /∈ Xvc, by the part (i) of Theorem 1, then f(xmin) > f(xvc), ∀xvc ∈ Xvc. It is a contradiction to
(13). Thus, xmin is a covered solution. If xmin is not a minimum covered solution, then f(xmin) > f(xmvc),
where {k|xmvc

k = 1, xmvc
k ∈ xmvc} ∈ ΩMVC. It is also a contradiction to (13). Thus, xmin is the MVC

state of a general complex network.
(Necessity) Suppose xmvc = (xmvc

1 , . . . , xmvc
n ) is the MVC state of given complex network, but not the

solution to the minimum value of (9). Then, there exists a strategy profile x̃ such that

f(xmvc) > f(x̃). (14)

According to (12), we have

f(xmvc) < f(x′), ∀x′ ∈ Xvc\Xmvc,

where Xmvc is the set of the MVC states. Thus, Xmvc ⊆ Xvc.
According to the conclusion of (i), we have

f(x′) < f(x′′), ∀x′′ /∈ Xuvc.

Thus, we have

f(xmvc) < f(x), ∀x /∈ Xmvc,

which is a contradiction to (14). Thus, ΩMIN = ΩMVC.
Suppose a strategy profile x∗ = (x∗

1, . . . , x
∗
n) is a solution to the minimum value of (9), but not an

SNE. According to Definition 2, there exists at least one player who changes its strategy to decrease the
cost, that is

fi(x
∗
i , x

∗
−i) > fi(x

′
i, x

∗
−i), ∃x′

i 6= x∗
i .

From Lemma 5, we have

ϕ(x∗
i , x

∗
−i) > ϕ(x′

i, x
∗
−i),

and thus, x∗ is not a solution to the minimum value of (9), which is a contradiction to the hypothesis.
Thus, x∗ is an SNE, and we have ΩMIN ⊆ ΩSNE.

According to the conclusion of Proposition 1, we have ΩSNE ⊆ ΩVC. Then, ΩMIN = ΩMVC ⊆ ΩSNE ⊆
ΩVC.

Remark 1. (1) The part (i) of Theorem 1 is used to verify whether the covering states of all vertices
satisfy the VC state of a general complex network. Besides, Eq. (9) presented in this paper is to transform
the vertex cover problem into a combinatorial optimization problem.

(2) Since the change of each player’s cost function fi(·) can be mapped to the potential function ϕ(·),
the vertex cover problem can be solved in a distributed algorithm. More importantly, the cost value
of each individual is bounded in [0, 1], which is an indispensable condition for the following proposed
TVBLLA to guarantee that the covering states of all vertices converge to the MVC state of a general
complex network.

4 Optimization approach: TVBLLA

In this section, we newly design a TVBLLA. The procedure of the TVBLLA is summarized at Algorithm 1.
In Step 3, the time-dependent ptxi

at time step t is given as

ptxi
(βt) =

eβ
tfi(xi,x

t−1
−i )

∑

x̃i∈Λt
i
eβ

tfi(x̃i,x
t−1
−i )

, (15)
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Algorithm 1 TVBLLA

Step 1: At each time step t, player i ∈ V is randomly chosen and allowed to update its strategy; other players repeat their

previous strategies, i.e., xt
−i = xt−1

−i .

Step 2: Player i selects one trial strategy x̂t
i from its constrained strategy set Ci(x

t−1
i ) with probability:

p(x̂t
i = xi) =

1

nmax

, ∀xi ∈ Ci(x
t−1
i ) \ xt−1

i ,

p(x̂t
i = xt−1

i ) = 1 −
|Ci(x

t−1
i )| − 1

nmax

,

where nmax := max
i∈V

|Ci(x
k
i )|, ∀k > 0.

Step 3: Player i puts x̂t
i and xt−1

i in set Λt
i , and selects one strategy xi from Λt

i with the probability pt
xi

for the current time

step, i.e., xt
i = xi.

where the time-varying coefficient βt 6 0 represents the greedy level at time step t. When βt = 0, player i
randomly selects a strategy from Λt

i. When βt→−∞, player i is more possible to select the best response
BRt

i [24, 35] from Λt
i, where BRt

i = argminxi∈Λt
i
fi(xi, x

t−1
−i ).

In this paper, we design βt as a function approaching to minus infinity when time step t → +∞,
namely,

βt = − ln(λt+ 1)

c
, (16)

where c ∈ N
+, λ > 1.

We give the following two assumptions on the constrained strategy set.

Assumption 1 (Feasibility). For any player i ∈ V , and any strategy pair x0
i , x

z
i ∈ Xi, there exists a

sequence of strategies x0
i → x1

i → · · · → xz
i satisfying xk

i ∈ Ci(x
k−1
i ) for all k ∈ {1, 2, . . . , z}.

Assumption 2 (Reversibility). For any player i ∈ V , and any strategy pair x1
i , x

2
i ,

x2
i ∈ Ci(x

1
i ) ⇔ x1

i ∈ Ci(x
2
i ).

In practice, if a player’s strategy set Xi is a fixed set, we can set Ci(x
t−1
i ) = Xi, which satisfies

Assumptions 1 and 2. If a player’s strategy set Xi is variable, the two assumptions are not necessarily
satisfied.

Under Assumptions 1 and 2, the TVBLLA with time-varying βt induces an inhomogeneous Markov
chain Mβt = {{xt}, X, P t}, where the transition probability matrix is {P t

x′,x′′}x′,x′′∈X , and P t depends
on time step t. It is easy to check that, for ∀t > 0, the arrangements of non-zero elements of the transition
probability matrix P t are the same. P t

x′,x′′ is the transition probability from the strategy profile x′ to
the strategy profile x′′ at time step t.

(1) When x′
−i = x′′

−i and x′
i 6= x′′

i , P
t
x′,x′′ is expressed as

P t
x′,x′′ =

ptx′′
i
(βt)

|V | · nmax
=

1

|V | · nmax
· eβ

tfi(x
′′
i ,x

′
−i)

eβ
tfi(x′′

i ,x
′
−i)+eβ

tfi(x′
i,x

′
−i)

, (17)

where 1
|V | represents the probability that player i is selected to update its strategy and |V | = n.

(2) When x′ = x′′, each player has the same opportunity to be selected for updating the strategy, and
the selected player updates its strategy, which is the same as its previous strategy. Thus,

P t
x′,x′′ =

n
∑

i=1

1

|V |



1− |Ci(x
′
i)| − 1

nmax
+

∑

x̃i∈Ci(x′
i)\x

′
i

1

nmax
· eβ

tfi(x
′′
i ,x

′
−i)

eβ
tfi(x′′

i ,x
′
−i)+eβ

tfi(x̃i,x′
−i)



 . (18)

(3) In other cases, at least two players update their strategies at the same time step. Thus,

P t
x′,x′′ = 0. (19)

If we fix βt in (15) as a constant, i.e., βt = β̄, ∀t > 0, then the TVBLLA degrades to the binary
log-linear learning algorithm (BLLA) [29], and the probability ptxi

(β̄) does not depend on time step t, but
on the joint strategy of all its neighbors. It means that in this case, the Markov chain Mβ̄ = {{xt}, X, P}
with the transition probability matrix {Px′,x′′}x′,x′′∈X induced by the BLLA is a homogeneous Markov
chain [32–34]. Note that Px′,x′′ does not depend on time step t.
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Proposition 2. Consider a potential game G with ϕ(·) and fi(·). Then the BLLA induces a homoge-
neous Markov chain Mβ̄ on X , which has a unique stationary distribution π with the coordinates:

πx =
eβ̄ϕ(x)

∑

x̃∈X eβ̄ϕ(x̃)
. (20)

We leave out the proof as it is similar to that of Theorem 6.2 in [36]. The difference is the expression
of Px′,x′′ .

Now, before we analyze the convergence of the TVBLLA in Section 5, we give the following proposition
to point out the main defect of the BLLA, whose convergence to the VC state cannot be guaranteed.

Proposition 3. Consider a potential game G with ϕ(·) and fi(·). The BLLA cannot guarantee that
the covering states of all vertices converge to the VC state of a general complex network.

Proof. The BLLA induces a homogeneous Markov chain Mβ̄ . It has a unique stationary distribution

π= {πx1 , . . . , πx|X|}, where xj ∈ X . According to (20), we have πxj > 0, ∀xj ∈ X . Then there exists a
positive probability for each element in the stationary distribution. In other words, any strategy profile
x may appear on the finite strategy space X . Thus, the BLLA cannot guarantee that the covering states
of all vertices converge to the VC state of a general complex network.

5 Convergence analysis of the TVBLLA

5.1 Convergence to the MVC state

Theorem 2. Consider a potential game G with ϕ(·) and fi(·). There exists a value c in (16) such that
the TVBLLA with time-varying βt can guarantee that the covering states of all vertices converge with
probability one to the MVC state of a general complex network, i.e,

lim
t→∞

p

{

xt ∈
{

x∗|f(x∗) = min
x∈X

f(x)

}}

= 1.

Proof. (i) At a given time step t, βt is a fixed value β̃t by (16). And if βt = β̃t, ∀t > 0, then the TVBLLA
induces a homogeneous Markov chain, and it has a unique stationary distribution πt = {πt

x1 , . . . , πt
x|X|},

where xz ∈ X , which satisfies πt = πtP t. Thus, for any column j of the transition probability matrix
P t, we have πt

j = limk→∞(P t
i,j)

k > 0, where (P t
i,j)

k is the k power of matrix P t
i,j . Thus, at a given time

step t, P t is a regular matrix.
(ii) At a given time step t, the transition probability matrix P t is regular with the same arrangements

of non-zero elements. Thus, there exists some c > 0 such that P t,c is scrambling,

sp(P t,c) > minx′,x′′∈X P t,c
x′,x′′ ,

where P t,c
x′,x′′ denotes the positive elements of P t,c.

By substituting (16) into (15). We have

ptxi
(βt) =

eβ
tfi(xi,x

t−1
−i )

∑

x̃i∈Λt
i
eβ

tfi(x̃i,x
t−1
−i )

=
(λt+ 1)−

fi(xi,x
t−1
−i

)

c

∑

x̃i∈Λt
i
(λt+ 1)−

fi(x̃i,x
t−1
−i

)

c

=
1

∑

x̃i∈Λt
i
(λt + 1)

fi(xi,x
t−1
−i

)−fi(x̃i,x
t−1
−i

)

c

.

From part (ii) of Theorem 1, we have

ptxi
(βt) >

1
∑

x̃i∈Λt
i
(λt + 1)

1
c

=
1

2(λt+ 1)
1
c

.

Further, we have

P t
x′,x′′(βt) >

1

2|V |nmax(λt + 1)
1
c

.

Next, let P t
x′,x′′ := P t

x′,x′′(βt). We have

P t,c
x′,x′′ =

∑

x1∈X

· · ·
∑

xc−1∈X

P t
x′,x1P t+1

x1,x2 · · ·P t+c−1
xc−1,x′′ >

1

2c|V |cnc
max (λ(t+ c− 1) + 1)

,
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sp(P t,c) > min
x′,x′′∈X

P t,c
x′,x′′ >

1

2c|V |cnc
max (λ(t+ c− 1) + 1)

,

∞
∑

l=1

sp(P tl,c) >
1

2c|V |cnc
max

∞
∑

l=1

1

λ(tl + c− 1) + 1
.

The time sequence is subdivided into the following blocks {Tk}∞:

T1 = {1, . . . , c}, T2 = {c+ 1, . . . , 2c}, . . . .

Thus, tz = (z − 1)c+ 1, z ∈ N
+.

Let tl = (l − 1)c+ 1. Thus, tl+1 − tl = c. We have

∞
∑

l=1

sp(P tl,c) >
1

2c|V |cλcnc
max

∞
∑

l=1

1

l + 1/(λc)
> ∞.

Thus,
∑∞

l=1 sp(P
tl,c) diverges. According to Lemma 3, the TVBLLA with time-varying βt in (16) induces

an inhomogeneous Markov chain Mβt , which is weakly ergodic.
(iii) Then, we prove that the following inequality holds:

∞
∑

t=0

∑

x∈X

‖πt
x − πt+1

x ‖ < ∞.

Substituting (16) into (20), we have

πt
x=

1
∑

x̃∈X eβt(ϕ(x̃)−ϕ(x))
=

1
∑

x̃∈X(λt+ 1)
ϕ(x)−ϕ(x̃)

c

. (21)

Then

πt
x − πt+1

x =

∑

x̃∈X [(λ(t+1)+1)
ϕ(x)−ϕ(x̃)

c − (λt+1)
ϕ(x)−ϕ(x̃)

c ]
∑

x̃∈X(λt+1)
ϕ(x)−ϕ(x̃)

c

∑

x̃∈X(λ(t+1)+1)
ϕ(x)−ϕ(x̃)

c

.

Considering ϕ(x) and ϕ(x̃), ∀x̃ ∈X , there exist two cases: (a) ϕ(x) 6 ϕ(x̃), ∀x̃ ∈ X ; (b) ϕ(x) > ϕ(x̃),
∃x̃ ∈ X .

For case (a), we know that x ∈ X∗ is a solution to the minimum value of (11), where X∗ is the set of
the solutions to the minimum value of (11). Thus, we have

πt
x − πt+1

x 6 0, ∀t > 0.

For case (b), we know that x /∈ X∗ is not a solution to the minimum value of (11). Define

X− := {x̃ ∈ X |ϕ(x)>ϕ(x̃)}; X+ := {x̃ ∈ X |ϕ(x)6ϕ(x̃)}.

When ∀x̃ ∈ X−, we have
πt
x − πt+1

x > 0, ∀t > 0.

When ∀x̃ ∈ X+, we have
πt
x − πt+1

x 6 0, ∀t > 0,

limt→∞

[

(λ(t+1)+1)
ϕ(x)−ϕ(x̃)

c − (λt+1)
ϕ(x)−ϕ(x̃)

c

]

= 0.

Thus, for case (b), there exists some t′ > 0 such that

πt
x − πt+1

x > 0, ∀t > t′.

Further, we have

∞
∑

t=0

∑

x∈X

‖πt
x − πt+1

x ‖=
t′
∑

t=0

∑

x∈X

‖πt
x − πt+1

x ‖+
∞
∑

t=t′+1

∑

x∈X

‖πt
x − πt+1

x ‖,
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∞
∑

t=t′+1

∑

x∈X

‖πt
x − πt+1

x ‖=
∑

x∈X∗

(

lim
t→∞

πt
x−πt′+1

x

)

+
∑

x/∈X∗

(

πt′+1
x − lim

t→∞
πt
x

)

.

According to (21), we have
∑

x∈X∗

lim
t→∞

πt
x =

1

|X∗| ,
∑

x/∈X∗

lim
t→∞

πt
x = 0,

∞
∑

t=0

∑

x∈X

‖πt
x − πt+1

x ‖ < ∞.

Then, according to Lemma 4, the TVBLLA with time-varying βt in (16) induces an inhomogeneous
Markov chain Mβt , which is strongly ergodic.

Thus, there exists a unique stationary distribution π∗ of Mβt . According to (20), as t → +∞,
βt → −∞, if a coordinate π∗

x in the stationary distribution π∗ satisfies π∗
x > 0, then the strategy profile x

is the solution to the minimum value of potential function ϕ(x). Therefore, by employing the TVBLLA,
the covering states of all vertices converge with probability one to the MVC state of a general complex
network.

Note that parameter c plays a key role in the convergence of the TVBLLA. Specifically, the parameter
c can be chosen as a minimum value c̄ such that sp(P t,c̄) > 0, ∀t > 0. Let us turn back again to the
inhomogeneous Markov chain Mβt . Matrix P t has the same arrangements of non-zero element for all t.
Hence, sp(P t,c)>0 with any t, if and only if sp(P 0,c)>0 with βt = 0. According to [37], parameter c can
be chosen as the minimum value c̄ such that

⌊c̄/n⌋ > ln(2 + ǫ)

ln(nn)− ln(nn − 1)
, (22)

where ⌊r⌋ is the largest integer not exceeding r, and ǫ is a small positive value.

Remark 2. Compared with the existing distributed optimization algorithms which can only guarantee
to obtain an SNE as t goes to infinity, the TVBLLA in this paper is the first distributed optimization
algorithm to guarantee the MVC state of a general complex network as t goes to infinity.

5.2 Convergence rate estimation

We further analyze the convergence rate of the TVBLLA. Firstly, we give a proposition as follows.

Proposition 4. Given x and y, we have
(i) If x ∈ [1,+∞) and y ∈ (0, 1), then (x+ 1)y − xy 6 yxy−1, and xy − (x− 1)y > yxy−1;
(ii) If x ∈ [0, 1), then ln(1 − x) 6 −x;
(iii) If x ∈ [1,+∞), y > x, then

∑y
k=x

1
k > ln(y+1

x ).

Proof. (i) Using Newton’s generalized binomial theorem, we have

(

1 +
1

x

)y

=

∞
∑

k=0

(

y

k

)(

1

x

)k

=1+

(

y

1

)(

1

x

)

+

(

y

2

)(

1

x

)2

+ · · · .

Since x ∈ [1,+∞) and y ∈ (0, 1),

(

y

2k

)(

1

x

)2k

+

(

y

2k + 1

)(

1

x

)2k+1

= y(y−1) · · · (y−2k+1) · 1

(2k)!

(

1

x

)2k
(2k + 1)x+(y − 2k)

(2k + 1)x

= σk < 0, k < ∞.

Since

lim
k→∞

(

y

k

)(

1

x

)k

= 0,

(

1 +
1

x

)y

6 1 +

(

y

1

)(

1

x

)

= 1 +
y

x
,

which leads to
(x+ 1)y − xy

6 yxy−1. (23)
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Analogously,

(

1− 1

x

)y

=1−
(

y

1

)(

1

x

)

+

(

y

2

)(

1

x

)2

−
(

y

3

)(

1

x

)3

+ · · · ,

xy − (x− 1)y > yxy−1. (24)

(ii) Let h(x) = ln(1 − x) + x. Since h′(x) = x
x−1 < 0 and x ∈ [0, 1), we have h(x) 6 h(0) = 0, which

leads to

ln(1− x) 6 −x. (25)

(iii) When y = x, since 1
x ∈ [0, 1],

y
∑

k=x

1

k
=

1

x
> ln

(

y + 1

x

)

= ln

(

1 +
1

x

)

.

When y > x, we have
(a) For y = m, the following inequality holds:

m
∑

k=x

1

k
> ln

(

m+ 1

x

)

;

(b) For y = m+ 1,
m+1
∑

k=x

1

k
=
∑m

k=x

1

k
+

1

m+ 1
,

ln

(

m+ 2

x

)

= ln

(

m+ 1

x

)

+ ln

(

1 +
1

m+ 1

)

.

Since 1
m+1 > ln(1 + 1

m+1 ),
m+1
∑

k=x

1

k
> ln

(

m+ 2

x

)

.

Next, we will estimate an upper bound on the distance between the covering state after finite time
steps and the MVC state of a general complex network. Let vm denote the state probability vector
of an inhomogeneous Markov chain Mβt at time step m <∞, namely vm = v0P 0,m. The stationary
distribution of an inhomogeneous Markov chain Mβt is π∗. Then, the decomposition is

vmc − π∗ =
(

vmc − π0P 0,mc
)

+ (π0P 0,mc − πmc) + (πmc − π∗), (26)

where πt is the stationary distribution of the Mβt with any time step t. Note that at a given time step t,

βt is a fixed value β̃t by (16), and we can replace β̄ in (20) with the fixed value β̃t to calculate πt
x, where

πt
x ∈ πt. Then

‖vmc − π∗‖ 6 ‖vmc − π0P 0,mc‖+ ‖π0P 0,mc − πmc‖+ ‖πmc − π∗‖. (27)

Theorem 3. The TVBLLA with time-varying βt induces an inhomogeneous Markov chain Mβt , where
the transition probability matrix is P t. The convergence rate can be estimated as

‖vmc − π∗‖ 6
θ

mδ
, (28)

where θ > 0, δ = min{b,δ′}
min{b,δ′}+1 , b =

1
λc2c|V |cnc

max
, δ′ = minx/∈X∗

ϕ(x)−ϕ(x∗)
c , x∗ = argminx∈X ϕ(x).

Proof. We analyze each term on the right-hand side of (27).
(i) For the first term, according to Lemma 1, we have

‖vmc − π0P 0,mc‖ = ‖(v0 − π0)P 0,mc‖ 6 τ(P 0,mc)‖v0 − π0‖. (29)
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According to Lemma 2, we have

τ(P 0,mc) = τ(P 0,(a−1)cP (a−1)c,(m−a+1)c) 6 τ(P (a−1)c,(m−a+1)c) = τ(P (a−1)c,cP ac,c · · ·P (m−1)c,c)

6
∏m

k=a
τ(P (k−1)c,c) =

∏m

k=a

(

1− sp(P (k−1)c,c)
)

, a > 1.

Since

sp(P (k−1)c,c)=
(kc)sp(P (k−1)c,c)

kc
>

1

2ckcλ|V |cnc
max

,

there exists a value b = 1
2cλc|V |cnc

max
∈ (0, 1) such that

b/k 6 sp(P (k−1)c,c) < 1.

Then, we have

τ(P 0,mc) 6
∏m

k=a

(

1− sp(P (k−1)c,c)
)

6
∏m

k=a
(1− b/k) = e

∑m
k=a ln(1−b/k).

According to parts (ii) and (iii) of Proposition 4, we have

m
∑

k=a

ln

(

1− b

k

)

6 −
m
∑

k=a

b

k
6−bln

(

m+ 1

a

)

= ln

(

a

m+ 1

)b

.

We obtain

τ(P 0,mc) 6

(

a

m+ 1

)b

=
l

(m+ 1)b
, (30)

where l = ab∈ [1,+∞), and b∈(0, 1).
(ii) For the second term, we have πmPm,1 = πm. Let V (m) := π0P 0,m − πm, where V (0) = 0. Then,

V (mc) = π0P 0,mc − πmc = π0P 1,mc−1 − πmc

= π0P 1,mc−1 − π1P 1,mc−1 + π1P 1,mc−1 − πmc = · · ·

=

m
∑

k=1

c
∑

s=1

(πkc−s − πkc−s+1)P kc−s+1,s−1P kc,(m−k)c.

According to Lemmas 1 and 2, we have

‖V (mc)‖ 6

m
∑

k=1

τ(P kc,(m−k)c)

c
∑

s=1

‖πkc−s−πkc−s+1‖. (31)

According to the proof of Theorem 2, there exists some t′ such that for any t > t′, πt
x is an increasing or

a decreasing function. Specifically, when x ∈ X∗, πt
x is an increasing function with t; when x /∈ X∗, πt

x

is a decreasing function with t. Then,

‖V (mc)‖6
t′
∑

k=1

τ(P kc,(m−k)c)

c
∑

s=1

‖πkc−s − πkc−s+1‖

+

m
∑

k=t′+1

τ(P kc,(m−k)c)

c
∑

s=1

‖πkc−s − πkc−s+1‖.

According to (30), we have

τ(P kc,(m−k)c) 6

(

k + 1

m+ 1

)b

, (32)

where b ∈ (0, 1).
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There exists some value C′ > 0 such that

t′
∑

k=1

τ(P kc,(m−k)c)

c
∑

s=1

‖πkc−s − πkc−s+1‖ 6
C′

(m+ 1)b
.

For any t > t′, we have

‖πt+1 − πt‖ =
∑

x∈X∗

(πt+1
x − πt

x)−
∑

x/∈X∗

(πt+1
x − πt

x),

∑

x∈X∗

πt
x +

∑

x/∈X∗

πt
x = 1, ∀t > 0. (33)

Thus, we have

‖πt+1 − πt‖ =
∑

x∈X∗

(πt+1
x − πt

x)−
(

1−
∑

x∈X∗

πt+1
x

)

+

(

1−
∑

x∈X∗

πt
x

)

= 2

(

∑

x∈X∗

πt+1
x −

∑

x∈X∗

πt
x

)

,

∞
∑

t=t′

‖πt+1 − πt‖ 6 2.

So, for any k > t′ + 1, we have

τ(P kc,(m−k)c)

c
∑

s=1

‖πkc−s − πkc−s+1‖

= 2τ(P kc,(m−k)c)

(

∑

x∈X∗

πkc
x −

∑

x∈X∗

π(k−1)c
x

)

.

Let πkc
∗ = 1−

∑

x∈X∗ πkc
x . By part (i) of Proposition 4, we have

m
∑

k=t′+1

τ(P kc,(m−k)c)

c
∑

s=1

‖πkc−s − πkc−s+1‖ 6
2

(m+ 1)b

m
∑

k=t′+1

(k + 1)b(π
(k−1)c
∗ − πkc

∗ )

6
2

(m+ 1)b

[

m
∑

k=t′+1

(k + 1)bπ
(k−1)c
∗ −

m−1
∑

k=t′+1

(k+1)bπkc
∗ − (t′ + 1)bπt′c

∗ +(t′ + 1)bπt′c
∗

]

=
2

(m+ 1)b

[

m
∑

k=t′+1

((k + 1)b − kb)π
(k−1)c
∗ + (t′ + 1)bπt′c

∗

]

6
2

(m+ 1)b

[

b

m
∑

k=t′+1

π
(k−1)c
∗

k1−b
+ (t′ + 1)bπt′c

∗

]

.

Let C = C′ + 2(t′+1)bπt′c
∗ . We have

‖V (mc)‖6 C′

(m+1)b
+

2b

(m+1)b

m
∑

k=t′+1

π
(k−1)c
∗

k1−b
+
2(t′+1)bπt′c

∗

(m+1)b
=

C

(m+1)b
+

2b

(m+1)b

m
∑

k=t′+1

π
(k−1)c
∗

k1−b
.

Next, we analyze πt
∗, t > t′.

πt
∗ =

∑

x/∈X∗

πt
x =

∑

x/∈X∗ eβ
tϕ(x)

∑

x̃∈X eβtϕ(x̃)
=

∑

x/∈X∗(λt+ 1)−
ϕ(x)

c

∑

x̃∈X(λt+ 1)−
ϕ(x̃)

c



Chen J, et al. Sci China Inf Sci January 2023 Vol. 66 112205:14

=
∑

x/∈X∗

1
∑

x̃∈X(λt+ 1)
ϕ(x)−ϕ(x̃)

c

6
∑

x/∈X∗

1
∑

x̃∈X(λt)
ϕ(x)−ϕ(x̃)

c

.

Let s∗ := |X∗|, s := |X |. Thus, |X\X∗| = s− s∗. Further,

πt
∗ 6

s− s∗

s(λt)δ′
=

d

tδ′
, (34)

where

δ′ = min
x/∈X∗

ϕ(x) − ϕ(x∗)

c
, x∗ = argmin

x∈X
ϕ(x), d =

s− s∗

sλδ′
.

From part (ii) of Theorem 1, δ′ ∈ (0, 1). By (34), we have

‖V (mc)‖ 6
C

(m+1)b
+

2bd

(m+1)b

m
∑

k=t′+1

1

k1−b(kc− c)δ′

6
C

(m+1)b
+

2bd

(m+1)bcδ′

m
∑

k=t′+1

1

(k − 1)1−b(k − 1)δ
,

where

δ =
min{b, δ′}

min{b, δ′}+ 1
< min{b, δ′}, (b− δ) ∈ (0, 1).

According to part (i) of Proposition 4, we have

‖V (mc)‖ 6
C

(m+1)b
+

2bd

(m+1)bcδ′

m
∑

k=t′

k(b−δ)−1

6
C

(m+1)b
+

2bd

(b−δ)(m+1)bcδ′

m
∑

k=t′−1

[(k+1)(b−δ)−k(b−δ)]

6
C

(m+1)b
+

2bd

(b−δ)(m+1)bcδ′
[(m+1)(b−δ)−(t′ − 1)(b−δ)]

6
C

(m+1)b
+

2bd

(b−δ)(m+1)δcδ′
.

(iii) For the third term, for m > t′, we have

‖πmc − π∗‖ = 2

(

∑

x∈X∗

π∗
x −

∑

x∈X∗

πmc
x

)

6 2− 2
∑

x∈X∗

πmc
x = 2πmc

∗ 6 2d/(cδ
′

mδ′).

Based on the above analysis, we have

‖vmc − π∗‖ 6 ‖vmc − π0P 0,mc‖+ ‖π0P 0,mc − πmc‖+ ‖πmc − π∗‖

6
l

(m+1)b
‖v0−π0‖+ C

(m+1)b
+

2bd

(b−δ)(m+1)δcδ′
+

2d

cδ′mδ′

6
l

mδ
‖v0−π0‖+ C

mδ
+

2bd

(b−δ)mδcδ′
+

2d

cδ′mδ
=

θ

mδ
,

where

l ∈ [1,+∞), δ =
min{b, δ′}

min{b, δ′}+ 1
, b =

1

λc2c|V |cnc
max

,

δ′ = min
x/∈X∗

ϕ(x) − ϕ(x∗)

c
, x∗ = argmin

x∈X
ϕ(x), θ > 0.

Remark 3. Theorem 3 tells that the upper bound of the convergence rate of the TVBLLA is limited
by parameters δ′ and b. Specifically, the upper bound increases exponentially with the decrease of δ′ and
b. Thus, in finite time steps, i.e., m < ∞, if the scale of a distributed networking system is large, i.e., n
is large, then δ will be small, and the convergence rate of the TVBLLA is slower.
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6 Simulation experiment and analysis

To evaluate the effectiveness and advantage of the TVBLLA, we consider (1) the comparison of the
TVBLLA with the MBR and relaxed greedy and memory-based algorithm (RGMA), where the memory
length ml = 1 for the MBR and RGMA, since we may regard the TVBLLA as an optimization algorithm
with the memory length of 1 as well; (2) the comparison of the TVBLLA with some representative existing
optimization algorithms, where we set the memory length ml> 1 for the MBR and RGMA to achieve
their best performance; (3) the comparison of the TVBLLA with a heuristic local search algorithm on
three benchmarks.

The constrained strategy set Ci(x
t
i) is given by Xi, ∀i ∈ V , which satisfies Assumptions 1 and 2,

and the parameter µ is set to (n + 1)/2. All numerical simulations are realized on the same computer
with 3.20-GHz CPU and 16.0-G RAM. For each algorithm, we independently repeat 100 runs of the
simulations on each network for each data of f(x), and obtain the minimum value fmin, the average value
f̄ , the maximum value fmax, the range R = fmax − fmin, and the standard deviation σ.

According to (22), the minimum value c̄ will tend to infinity in the large-scale networks, which causes
the time-varying factor βt decreases very slowly. Due to the finite time in practice, we relax the parameter
c with a preferred convergent rate as proved in Theorem 3 in the following simulation experiments; that
is, c takes a small value. Coefficient λ is set to 1E + 8.

6.1 Comparison with the MBR and RGMA (ml = 1)

In this subsection, we compare the TVBLLA with the MBR and RGMA on a variety of representative
complex networks, including the ER random networks [38], the WS small-world networks [8], the BA
scale-free networks [9], and the 2-D grid (regular lattices) networks [39]. The four types of networks are
described as follows.

(1) ER n〈k〉 denotes the ER networks with n vertices, where 〈k〉 is the average degree of a general
complex network.

(2) WS(I) and WS(II): For WS(I), we select pr = 0.1; and for WS(II), pr = 0.5, where pr is the
probability to randomly rewire each edge of a small-world network.

(3) BA(I) and BA(II): The Πi of BA(I) is
ki∑
j kj

; and Πi of BA(II) is
lnki∑
j lnkj

, where Πi is the probability

that a new vertex is connected to an existing vertex i.
(4) Grid n denotes regular lattices with n vertices.
In addition, the MBR and RGMA are summarized as follows.
MBR [24, 40]. The main idea of the MBR is that each vertex rationally records the best responses of

the latest step into its memory, which will randomly select a strategy from the memory for the next time
step.

RGMA [27]. The main idea of the RGMA is that each vertex records the temporal strategy by the
relaxed greedy rule of the latest step into its memory, which will select a strategy from the memory with
probability ρ for the next time step.

The memory length ml of the MBR and RGMA is set to 1, and the mutation probability ρ of the
RGMA is set to 1 (a larger ρ can lead to a better solution [27]). The number of time steps of each run
for three algorithms in this subsection, i.e., the TVBLLA, the MBR, and the RGMA is set to the same
as 8E+ 7, and the results are recorded in Table 1. From Table 1, we can see that the f̄ of the TVBLLA
is much smaller than that of the RGMA on all examples. Moreover, the MBR with ml = 1 fails to reach
a stable state of all examples even after the maximum number of running time steps.

6.2 Comparison with the existing typical algorithms

We compare the TVBLLA with several optimization algorithms on a variety of networks including the
MBR, RGMA, GMA, BLLA, and GA, where the GMA, BLLA, and GA are summarized as follows.

GMA. This is the game-based memetic algorithm (which is a hybrid algorithm) [41]. Firstly, each
chromosome locally evolves le times by the asynchronous updating rule, and repeats each chromosome
evolution gGMA

max generations.
BLLA [29]. Here, β̄ is fixed as a constant as compared with the TVBLLA. If β̄ → −∞, each player

tends to choose the best response.
GA. The genetic algorithm is a typical centralized algorithm [42–44], and the fitness function is set

by (9).
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Table 1 Comparison of the TVBLLA, MBR, and RGMA: the average value f̄a)

Algorithms

ml=1

Networks

ER (n/〈k〉/c) WS(I) (n/〈k〉/c)

500/4

/1E−3

1000/4

/5E−4

1000/8

/3E−4

2000/4

/2.5E−4

500/4

/1.5E−3

1000/4

/1E−3

1000/8

/5E−4

2000/4

/4E−5

TVBLLA 261.87 529.33 650.83 1059.15 318.02 638.72 752.93 1278.01

RGMA 295.31 588.16 715.82 1187.09 348.41 687.27 801.18 1385.06

MBR – – – – – – – –

WS(II) (n/〈k〉/c) BA(I) (n/〈k〉/c)

500/4

/1.5E−3

1000/4

/6E−4

1000/8

/4.5E−4

2000/4

/3E−4

500/4

/3E−4

1000/4

/5E−5

1000/8

/3E−5

2000/4

/2.5E−5

TVBLLA 282.46 568.88 683.57 1141.57 207.81 419.71 540.19 840.01

RGMA 320.34 627.05 743.30 1266.91 234.62 455.83 611.72 897.28

MBR – – – – – – – –

BA(II) (n/〈k〉/c) Grid (n/c)

500/4

/3E−4

1000/4

/1.5E−4

1000/8

/1.5E−4

2000/4

/5E−5

100

/2E−2

500

/4E−3

1000

/2E−3

2000

/6E−4

TVBLLA 223.82 458.27 598.33 908.64 50.27 251.56 503.24 1005.53

RGMA 248.86 492.29 653.07 996.43 64.33 305.69 626.11 1251.58

MBR – – – – – – – –

a) The bold numbers are the best results.

Table 2 Comparison of the TVBLLA, MBR, RGMA, GMA, BLLA, and GA: the average value f̄/range R/standard deviation

σa)

Networks
Algorithms

TVBLLA MBR RGMA GMA BLLA GA

500/4 261.87/3/0.86 268.67/8/2.03 271.39/10/2.64 273.87/5/1.28 279.28/8/1.98 310.90/11/3.03

ER 1000/4 529.41/4/1.18 539.04/9/2.71 543.42/11/2.88 548.33/6/1.77 562.84/9/2.61 622.48/18/4.35

(n/〈k〉) 1000/8 650.99/4/1.23 667.57/12/3.34 675.30/17/4.17 682.31/7/2.02 695.42/10/2.92 788.90/22/5.37

2000/4 1059.15/4/1.45 1072.36/15/3.98 1088.54/18/4.45 1107.88/8/2.11 1122.73/19/4.67 1254.91/32/7.75

500/4 318.02/4/1.35 323.14/6/1.84 326.11/7/2.07 329.45/5/1.56 336.38/8/2.15 357.30/11/3.16

WS(I) 1000/4 638.81/4/1.41 649.16/9/2.53 655.97/10/2.75 664.73/5/1.58 674.08/9/2.72 725.10/16/4.01

(n/〈k〉) 1000/8 752.95/5/1.62 765.65/11/2.98 775.20/12/3.20 786.70/6/1.92 790.62/10/2.98 848.90/21/5.25

2000/4 1278.01/5/1.84 1299.16/15/3.92 1321.41/18/4.35 1338.55/10/2.95 1353.26/25/6.66 1455.36/29/7.21

500/4 282.46/3/0.81 291.50/6/1.85 294.90/8/2.20 296.80/5/1.53 303.94/6/1.81 332.32/10/2.85

WS(II) 1000/4 568.85/4/1.03 584.68/7/2.08 589.54/8/2.35 593.04/5/1.86 607.58/9/2.53 672.56/15/3.87

(n/〈k〉) 1000/8 683.59/4/1.27 711.44/8/2.32 723.64/9/2.70 728.02/6/2.01 735.48/11/3.01 799.50/20/5.06

2000/4 1141.57/6/1.42 1164.59/13/3.78 1178.11/17/4.15 1198.90/12/3.23 1219.48/19/4.86 1343.61/27/6.91

500/4 207.81/3/0.63 214.60/5/1.42 216.78/6/1.83 215.01/4/1.22 219.08/6/1.70 246.60/9/2.53

BA(I) 1000/4 419.75/3/0.75 426.90/6/1.83 432.08/8/2.09 436.89/4/1.31 444.90/9/2.75 506.36/11/3.02

(n/〈k〉) 1000/8 540.22/4/1.11 556.82/9/2.47 566.36/13/3.29 572.40/5/1.52 580.20/10/3.02 662.83/16/4.05

2000/4 840.01/4/1.33 850.60/11/3.31 862.30/14/3.70 891.26/6/1.86 896.60/15/3.91 1029.27/23/5.45

500/4 223.82/3/0.77 231.58/4/1.36 235.92/6/1.77 236.71/3/1.14 239.88/8/2.08 281.70/10/2.79

BA(II) 1000/4 458.34/3/0.99 468.68/7/2.14 472.44/10/2.83 475.55/4/1.38 484.80/11/3.11 568.14/12/3.31

(n/〈k〉) 1000/8 598.39/4/1.05 611.64/10/2.84 618.46/14/3.78 624.15/5/1.67 640.44/12/3.37 744.55/17/4.22

2000/4 908.64/4/1.37 928.75/11/3.19 939.66/13/3.18 949.18/8/2.03 973.59/16/4.08 1144.32/25/6.37

100 50.27/1/0.55 55.28/9/2.50 56.24/10/2.63 56.33/4/1.22 59.96/8/2.02 64.63/20/4.98

Grid 500 251.56/4/0.96 278.54/20/5.13 283.46/22/5.64 287.07/9/2.78 299.52/10/2.89 323.44/27/7.04

(n) 1000 503.28/5/1.23 556.14/24/6.31 568.26/28/7.27 576.21/11/3.23 605.02/12/3.32 656.10/30/8.25

2000 1004.53/7/1.85 1122.68/27/7.30 1154.88/29/7.41 1167.41/12/3.45 1218.05/18/4.35 1312.24/42/10.89

a) The bold numbers are the best results.

Since each algorithm has different parameters, we present the best effect of parameters on each algo-
rithm, whose parameters are given in detail as follows.

(1) MBR. ml = 20.

(2) RGMA. ml = 20, ρ = 1.

(3) GMA. The population size: mGMA
size = 100; the times of local evolution: le = 10; the mutation

rate: 0.5.

(4) BLLA. β̄ = −1E + 5.

(5) GA. The population size: mGA
size = 100; the mutation rate: 0.5.

The f̄ and R of six algorithms are recorded in Table 2, where f̄ of the TVBLLA is from Table 1. Note
that in all collected experiment data, the running time steps of all algorithms are set to 8E+7. The ratio
of fmin, f̄ and fmax of each algorithm to the network size n is plotted in Figures 1–4.

As shown in Table 2, the TVBLLA obtains the best average value f̄ on all exampled networks, and the
f̄ of the MBR is smaller than those of the other four algorithms. Moreover, the TVBLLA also performs
the best range R and the standard deviation σ on all examples. Specifically, the R and σ of the GMA is
smaller than those of the other four algorithms.

We further examine the convergence rates of all exampled algorithms, which present a reverse trend
as compared with those of f̄ and R. The f̄ of different algorithms on the networks ER, WS(II), BA(II)
and Grid are shown in Figures 5–8. Note that the the minimum number of covered vertices of the Grid
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n=500, <k>=4 Max
Average
Min

n=1000, <k>=4 Max
Average
Min

Figure 1 The ratio of fmin, f̄ and fmax of each algorithm to

the network size n = 500, where the average degree 〈k〉 of ER,

WS, and BA networks is 4.

Figure 2 The ratio of fmin, f̄ and fmax of each algorithm to

the network size n = 1000, where the average degree 〈k〉 of ER,

WS, and BA networks is 4.

n=1000, <k>=8
Max
Average
Min

n=2000, <k>=4
Max
Average
Min

Figure 3 The ratio of fmin, f̄ and fmax of each algorithm to

the network size n = 1000, where the average degree 〈k〉 of ER,

WS, and BA networks is 8.

Figure 4 The ratio of fmin, f̄ and fmax of each algorithm to

the network size n = 2000, where the average degree 〈k〉 of ER,

WS, and BA networks is 4.
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Figure 5 The ER network. Comparison among different al-

gorithms, where f̄ is sampled every 1E + 5 time steps.

Figure 6 The WS(II) network. Comparison among different

algorithms, where f̄ is sampled every 1E + 5 time steps.

1000 is 500. As shown in Figures 5–8, we can see that, although the convergence rates of the TVBLLA
and BLLA are slower than those of the other algorithms, the TVBLLA can achieve the best results in
terms of f̄ in finite time steps.

6.3 Comparison with the heuristic local search algorithm on three standard benchmarks

We also compare the proposed TVBLLA with a heuristic local search algorithm for solving the vertex
cover problem, i.e., the so-called MetaVC, on three standard benchmarks, including DIMACS-HARD1),

1) http://lcs.ios.ac.cn/ caisw/Resource (DIMACS%20complementary%20graphs.tar.gz).
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Figure 7 The BA(II) network. Comparison among different

algorithms, where f̄ is sampled every 1E + 5 time steps.

Figure 8 The Grid network. Comparison among different

algorithms, where f̄ is sampled every 1E + 5 time steps.

Table 3 Comparison of the TVBLLA and MetaVC on the three benchmarks

Benchmarks Network name Optimal value

Algorithms

TVBLLA MetaVC

success rate: sr (%)/average run time (s): T̄

DIMACS-HARD

brock400 4 367 95/500.61 100/0.17

brock800 4 774 93/503.26 100/201.06

MANN a45 690 94/501.37 100/20.02

brock400 2 371 95/498.82 100/2.81

brock800 2 776 92/496.35 67/708.59

C2000.9 1920 94/500.13 10/1102.35

C4000.5 3982 92/502.98 100/89.71

MANN a81 2221 91/499.65 87/606.83

TVBLLA MetaVC

success rate: sr (%)/average run time (s): T̄

BHOSLIB-HARD

frb53-24-1 1219 93/500.82 92/545.36

frb53-24-2 1219 94/501.36 100/105.88

frb53-24-3 1219 95/500.08 100/26.72

frb53-24-4 1219 93/499.67 100/126.73

frb53-24-5 1219 94/502.81 100/19.60

frb56-25-1 1344 92/500.96 98/345.67

frb56-25-2 1344 92/498.68 95/402.53

frb56-25-3 1344 93/497.64 100/58.12

frb56-25-4 1344 95/498.32 100/23.84

frb56-25-5 1344 94/503.67 100/11.82

frb59-26-1 1475 92/497.99 85/574.56

frb59-26-2 1475 94/501.23 45/1021.83

frb59-26-3 1475 93/500.64 100/302.36

frb59-26-4 1475 95/499.78 92/475.91

frb59-26-5 1475 94/502.64 100/29.18

TVBLLA MetaVC

fmin(f̄)/average run time (s): T̄

REAL-WORLD-HARD

socfb-CMU 4986 4986(4988.92)/1998.15 4986(4986.00)/282.28

web-webbase-2001 2651 2651(2652.88)/1006.35 2652(2652.00)/1.54

socfb − UCSB37 11261 11261(11263.09)/3008.72 11261(11261.06)/172.14

socfb-UConn 13230 13230(13234.71)/3496.53 13230(13230.05)/501.06

BHOSLIB-HARD2), and REAL-WORLD-HARD3). Ref. [45] reported the MetaVC achieved the best
performance on most of the testing instances. The comparison results are recorded in Table 3. The sr
is the number of times and the optimal value was successfully obtained divided by the total number of
runs [45], and c is set to 1E − 4. From Table 3, we can see that for benchmarks DIMACS-HARD and
BHOSLIB-HARD, the sr values of TVBLLA are all over 90%, while those values of MetaVC are quite
unstable with variant performance. For benchmark REAL-WORLD-HARD, although the f̄ values of
TVBLLA are larger than those of the MetaVC, they are also very close to the optimal value. In sum,
although the MetaVC performs well in some of the examples, the TVBLLA achieves much more stable
and satisfactory performance as compared with the MetaVC in finite time on all examples. Note that on
the comparison of the average run time of the TVBLLA and the MetaVC for the most instances of Table 3,
we record that the average run time of the TVBLLA is much longer than that of the MetaVC, which

2) http://lcs.ios.ac.cn/ caisw/Resource (benchmarks/graph-benchmarks.htm).

3) http://lcs.ios.ac.cn/ caisw/Resource (realword%20graphs.tar.gz).
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is mainly caused by two reasons: (i) The updating/learning mechanism is different; i.e., the updating
mechanism of the TVBLLA is a serial updating mechanism, while the MetaVC is a parallel updating
mechanism; (ii) The parameters of the MetaVC need to be pre-tuned to reach the optimial configuration,
while the average run time of the MetaVC does not include the time spent on tuning the parameters;
yet, the TVBLLA does not require such a pre-tuned/training phase.

7 Conclusion

To solve the vertex cover problem in complex network systems, many distributed optimization algorithms
have been presented. However, a distributed optimization algorithm realizing the MVC state of a general
complex network is unsatisfied. This paper proposed the TVBLLA for solving the vertex cover problem
from a potential game perspective, proved that the solutions to the minimum value of the potential
function are the MVC states of a general complex network, whose convergence to the MVC state of a
general complex network has been guaranteed and verified by extensive examples of general complex
networks.

Since the proposed TVBLLA requires only one player to update its strategy at each time step, further
attention is paid to ensure each vertex updates its strategy parallelly. In more practical situations,
designing new distributed optimization algorithms to achieve robust self-stabilization performance [46,47]
is desired.
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