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Abstract This paper investigates the criterion of interval stability of impulsive positive systems with time-

varying delay using the idea of generalized pole placement and equivalent systems. Unlike previous stability

conditions, the interval stability criterion can more accurately determine the stability of impulsive positive

systems. In simple terms, the new criterion can determine the system’s stability and convergence speed.

Furthermore, a suitable sufficient condition of interval stabilization is obtained on the basis of the interval

stability criterion, which can not only guarantee the stability of impulsive positive systems, but also modulate

the state’s convergence rate to the required level. A new algorithm is developed with the interval stabilization

approach to accurately control the target system’s convergence rate. Two instances are proposed to prove

the superiority of the attainable interval stabilization criterion.
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1 Introduction

Impulsive positive systems (IPSs) [1–3] are specific hybrid systems [4] whose state variables and outputs
are not only nonnegative as initial states and inputs but also arise instantaneous jumps or changes at some
discrete moments. Such systems can describe a wide range of practical applications, such as portfolio
management [2], epidemic dynamics [5], physiological pharmacokinetic model [6], and integrated pest
management [7, 8]. Additionally, IPSs can represent the switched positive systems [9–14] and sampled-
data positive systems [15]. The study on IPSs is both theoretically and practically significant.

Although it has many branches, stability is a fairly significant actuation for the advancement of IPSs.
On account of a copositive Lyapunov function (CLF) [16], the adequate requirements for IPSs stability
were first established in [1]. Refs. [3, 17] obtained several stability/stabilization requirements for linear
IPSs through the concept of dwell-time and linear CLF. By constructing suitable CLF and using some an-
alytical approaches, several sufficient conditions for finite-time stability are given in [18,19]. Furthermore,
Refs. [2, 20, 21] investigated IPSs’ exponential stability.

However, no studies on the interval stability/stabilization of IPSs have been conducted. Particularly,
interval stability/stabilization of linear stochastic systems was investigated in several studies [22, 23].
Refs. [24,25] researched the P th moment stability/stabilization of linear stochastic systems. Inspired by
the above studies, the accurate control about the convergence speed for IPSs with time-varying delay is
fulfilled through equivalent systems and elaborate definitions of interval stability.

Stimulated by the mentioned exposition, we analyze the interval stability for IPSs, focusing on uncov-
ering the Giusto properties of interval stability and promoting the manifestation in the controller design.
In this study, the conditions for interval stability and the design of an interval state feedback controller
for such systems are presented, which is a significant breakthrough in the study of IPSs and precision
control. This paper’s main highlights and contributions are divided into three parts.

*Corresponding author (email: zhsh0510@163.com)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-021-3426-1&domain=pdf&date_stamp=2022-12-26
https://doi.org/10.1007/s11432-021-3426-1
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-021-3426-1
https://doi.org/10.1007/s11432-021-3426-1


Wang X Z, et al. Sci China Inf Sci January 2023 Vol. 66 112203:2

(1) A new interval stability criterion of IPSs with time-varying delay is proposed, which can more
accurately describe the performance of such systems. To achieve this, we convert the initial system into
two equivalent systems and assign a CLF. The new stable criterion is considered an extension of the
previous stable criterion for IPSs.

(2) The IPS interval stabilization problem is addressed by controlling the state matrix eigenvalues at
a suitable interval, which ensures the system’s stability and accurately controls the convergence speed of
the states.

(3) An algorithm is developed as a supplement to interval stabilization to further control the conver-
gence rate for IPSs. Combined with the interval stabilization approach, IPSs can be accurately controlled.
There is no relevant conclusion that can accomplish this as far as we know.

The remaining paper is organized as follows. In Section 2, some preliminaries and definitions are
presented in preparation for the main results. In Section 3, a standard is presented in relation to IPSs’
interval stability. In Section 4, a sufficient condition is derived concerning interval stabilization of IPSs.
Furthermore, the interval stabilization controller for IPSs is obtained. Two numerical examples are
presented in Section 5. The conclusion is reached in Section 6.

Notation. HT is the transposition of matrix H. R
n expresses the n-dimensional Euclidean space.

R
n
+ denotes nonnegative orthant of Rn. N is the set of positive integer. Re(ξ) denotes real parts about

matrix eigenvalues. The spectrum set of the matrix H is represented by σ(H). C−q
−p is the vertical strip

region from −p to −q in the complex plane. The notation ‖ · ‖ denotes Euclidean norm. The 1-norm
concerning x ∈ R

n is ‖x‖1 =
∑n

i=1 | xi |. H � 0 (� 0,≺ 0,≻ 0) means that all elements of matrix H
are nonpositive (nonnegative, negative, and positive). d � 0 (� 0,≺ 0,≻ 0) means that all entries of
the vector d are nonpositive (nonnegative, negative, and positive). For any given θ ∈ R+, g(θ

−) means
the limit of g(t) as t goes to θ from the left. For τ > 0, PC([−τ, 0],Rn) denotes the space in relation to
piecewise right continuous function φ̄ : [−τ, 0] → R

n with ‖φ̄‖τ = sup−τ6θ60‖φ̄(θ)‖1. min{d} denotes
the minimum element of vector d. max{d} denotes the maximum element of vector d.

2 Preliminaries

Consider IPSs:










ẋ(t) = Ax(t) +Adx(t− τ(t)) + Bu(t), t 6= tk, k ∈ N,

x(tk) = Hx(t−k ), t = tk, k ∈ N,

x(t0 + θ) = φ̄(θ), t0 = 0, θ ∈ [−τ, t0],

(1)

where u(t) ∈ R
r is the continuous control input, x(t) ∈ R

n is the state, τ(t) is the time-varying delay
gratifying 0 < τ (t) 6 τ , φ̄(θ) ∈ PC([−τ, 0],Rn) is the initial continuous function, A, Ad, B, and H are
system matrices with compatible dimensions.

The state of system (1) jumps at t = tk, 0 = t0 < t1 < · · · < tk < · · · , and limk→∞ tk = +∞. Let
Tk := tk+1 − tk, k ∈ N denote the dwell-time. The minimum dwell-time τ0 and the maximum dwell-time
τ1 are defined as infk {Tk} > τ0 and supk {Tk} 6 τ1, respectively. The set of impulse time sequence
satisfies 0 < τ0 6 Tk 6 τ1.

Remark 1. In addition to the general characteristics of the general impulsive systems, IPSs also have
the dynamic characteristics of the positive systems, that is, the state variables always remain in the
non-negative quadrant.

Definition 1 ([2]). If the system path x(t) � 0 (t > t0) holds for all φ̄(·) � 0 and u(t) � 0, then system
(1) is positive.

Definition 2 ([26]). Real matrix U , (uij)n×n is a Metzler matrix if uij > 0, i 6= j, as well as M is
the set of Metzler matrices.

Definition 3 ( [21]). If there exist constants λ̄ > 0 and c̄ > 0 satisfying that for any φ̄(·) � 0,
‖x(t)‖ 6 c̄e−λ̄(t−t0)‖φ̄‖τ , t > t0, then system (1) is exponentially stable.

Based on the idea of pole assignment and Definition 3, Definition 4 is gained.

Definition 4. System (1) is asymptotically interval (−p,−q) stable with 0 6 q < p if σ(A) ⊂ C−q
−p :=

{ξ : −p < Re(ξ) < −q} and limt→∞ ‖x(t)‖ = 0.

Remark 2. p, q are non-negative constants and ξ is the eigenvalue of matrix A, which can reflect some
properties of system (1) such as its convergence rate. σ(A) ⊂ C−q

−p := {ξ : −p < Re(ξ) < −q} indicates
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that the real part of the eigenvalue of matrix A is located in the vertical strip region from −p to −q in
the complex plane. When q = 0 and p = ∞, the interval stability becomes asymptotically stable.

Definition 5 ([27]). The function V : R+ × R
n → R+ pertains to class v̄0 if the following conditions

hold:
(1) The function V is continuous for all sets [tk, tk+1)×R

n, as well as lim(t,y)→(t−
k
,x) V(t, y) = V(t−k , x)

for each x, y ∈ R
n, t ∈ [tk, tk+1), k ∈ N.

(2) The function V(t, x(t)) locally gratifies Lipschitz condition, and V(t, 0) ≡ 0 holds for all t > t0.

Definition 6 ([28]). Given a function V ∈ v̄0, the upper right-hand derivative of V along the solution
x(t) of system (1) is defined as

D+V(t, x(t)) = lim
̟→0+

sup[V(t+̟, x(t) +̟)− V(t, x(t))]/̟.

Lemma 1 ( [29]). Real square matrix A ∈ M if and only if (iff) there exists a scalar ϑ such that
A+ ϑI � 0.

Lemma 2 ([1]). System (1) under u(t) = 0 is positive iff A ∈ M, Ad � 0, and H � 0.

Lemma 3. If there exist a costant µ > 0 and a vector v ∈ R
+
n satisfying that

(HT − µI)v � 0, (2)

then V(tk) 6 µV(t−k ), k ∈ N.

Proof. In light of system (1) and V(t) = xT(t)v, one can deduce that

V(tk)− µV(t−k ) = xT(t−k )H
Tv − µxT(t−k )v = xT(t−k )(H

T − µI)v.

Then, from (2), V(tk) 6 µV(t−k ), k ∈ N is obtained.

Remark 3. When µ > 1, the CLF may jump up at the impulsive time instants and the impulses may
be viewed as disturbance impulses which are not conducive to the stability of the system (1). When
µ < 1, the CLF will jump down at the impulsive time instants and the impulses can be regarded as
stabilizing impulses that are beneficial to the stability of the system. When µ = 1, the impulses are
‘neutral’, indicating that they are neither beneficial nor harmful to the stability of system (1).

3 Interval stability

In this part, a sufficient criterion of interval (−p,−q) stable for system (1) under u(t) = 0 is derived
utilizing Lyapunov-Razumikhin techniques.

Construct a CLF:

V(t) = xT(t)v, (3)

where v ≻ 0.

Remark 4. For IPSs, if the conventional quadratic Lyapunov function is selected to study the stability,
the conventional quadratic Lyapunov function needs to realize the attenuation in the whole state space.
In this case, there may be no solution for IPSs. If the CLF is used to study the stability of IPSs, it
only needs that all non-negative states of the system meet the attenuation condition. This method is
considered to be more effective in revealing the characteristics of IPSs and has been widely used in the
study of IPSs.

Ground on copositive Lyapunov function (3) and Razumikhin method, the interval (−p,−q) stable
condition is deduced, which is presented as follows.

Theorem 1. For any Tk ∈ [τ0, τ1], system (1) under u(t) = 0 is interval (−p,−q) stable, if there exist
scalars µ > 0, ω > 0, p, q and appropriate dimensioned vectors v ∈ R

n
+, such that when µ ∈ (0, 1), the

following inequalities hold:
(

−AT +

(

ω

µ
+

lnµ

τ1
− p

)

I

)

v ≺ 0, (4)

(

AT +

(

ω

µ
+

lnµ

τ1
+ q

)

I

)

v ≺ 0, (5)
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(−AT
d − ωI)v ≺ 0, (6)

(AT
d − ωI)v ≺ 0, (7)

(HT − µI)v � 0, (8)

or when µ > 1, the following inequalities and inequalities (6)–(8) hold:

(

−AT +

(

ωµ+
lnµ

τ0
− p

)

I

)

v ≺ 0, (9)

(

AT +

(

ωµ+
lnµ

τ0
+ q

)

I

)

v ≺ 0. (10)

Proof. By Definition 4, system (1) under u(t) = 0 is interval (−p,−q) stable iff the system is asymptot-
ically interval (−∞,−q) and (−p,∞) stable. Thus, only both following systems











ẋ(t) = −(A+ pI)x(t) −Adx(t− τ(t)), t 6= tk, k ∈ N,

x(tk) = Hx(t−k ), t = tk, k ∈ N,

x(t0 + θ) = φ̄(θ), t0 = 0, θ ∈ [−τ, t0],

(11)

and










ẋ(t) = (A+ qI)x(t) +Adx(t − τ(t)), t 6= tk, k ∈ N,

x(tk) = Hx(t−k ), t = tk, k ∈ N,

x(t0 + θ) = φ̄(θ), t0 = 0, θ ∈ [−τ, t0]

(12)

are asymptotically stable; then system (1) under u(t) = 0 is interval (−p,−q) stable. About system (11),
choose copositive Lyapunov function (3).

For sufficiently small scalar α > 0, it follows (4), (6) and (9) that

(

−AT +

(

ω

µ
+

lnµ

τ1
− p+ α

)

I

)

v ≺ 0, (13)

(−AT
d − ωe−ατI)v ≺ 0, (14)

(

−AT +

(

ωµ+
lnµ

τ0
− p+ α

)

I

)

v ≺ 0. (15)

Let v = min(v), v = max(v), and

G(t) = eα(t−t0)V(t),

where sufficiently small scalars α > 0. According to the different value range of µ, the following two cases
will be discussed in µ ∈ (0, 1) and µ > 1, respectively.

Case I. µ ∈ (0, 1).
The goal is to prove the asymptotical stability of the system (11). Setting δ = 1

µ
‖φ̄(θ)‖τ , θ ∈ [−τ, t0],

the following inequality:

G(t) < δv, t ∈ [t0 − τ,∞) (16)

will be proved. On the basis of mathematical induction, the proof is implemented via three steps.
Step 1. In respect of time interval t ∈ [t0 − τ, t0].

G(t) = eα(t−t0)V(t) = eαθV(t0 + θ) 6 µδv < δv. (17)

Therefore, when t ∈ [t0 − τ, t0], inequality (16) is satisfied.
Step 2. In respect of time interval t ∈ (t0, t1).
In this step, inequality (16) will be proved via the contradiction method. Assume that there exists

t ∈ (t0, t1) satisfying G(t) > δv.
According to (17), it is shown that G(t0) 6 µδv. Consequently, there exist t⋆ and t⋆⋆ making that

t⋆⋆ = inf{t ∈ (t0, t1);G(t) > δv}, t⋆ = sup{t ∈ (t0, t
⋆⋆);G(t) 6 µδv}. Considering that G(t) is continuous
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about t ∈ (t0, t1), one has G(t⋆⋆) = δv, t⋆⋆ ∈ (t0, t1); G(t
⋆) = µδv, t⋆ ∈ (t0, t

⋆⋆). In respect of t ∈ [t⋆, t⋆⋆],
there holds:

µG(t+ θ) 6 µδv 6 G(t), θ ∈ [−τ, 0).

Then in relation to t ∈ [t⋆, t⋆⋆] and arbitrary given constant ω > 0, it is able to acquire that

D+G(t) = eα(t−t0)
(

αV(t) +D+V(t)
)

6 −
lnµ

τ1
G(t) +

lnµ

τ1
G(t) + eα(t−t0)

(

αV(t) +D+V(t)
)

+ ω

(

1

µ
G(t)− G

(

t− τ(t)
)

)

. (18)

Moreover, calculating D+V(t) along track of system (11), one can obtain that

D+V(t) = D+xT(t)v =
(

−(A+ pI)x(t) −Adx
(

t− τ(t)
)

)T

v. (19)

It can be verified that the following expressions hold:

G(t) = eα(t−t0)xT(t)v, (20)

−G(t− τ(t)) 6− eα(t−t0)e−ατxT
(

t− τ(t)
)

v. (21)

Substituting (19)–(21) into (18), it can be derived that

D+G(t) 6 −
lnµ

τ1
G(t) + eα(t−t0)

[

xT(t) xT
(

t− τ(t)
)

]

[

(

−AT + (ω
µ
+ lnµ

τ1
− p+ α)I

)

v

(−AT
d − ωe−ατI)v

]

. (22)

Combining (13) and (14), one will get

D+G(t) < −
lnµ

τ1
G(t), t ∈ [t⋆, t⋆⋆]. (23)

Due to − lnµ
τ1

(t⋆⋆ − t⋆) 6 − lnµ
τ1

τ1 = −lnµ, G(t⋆) = µδv, it can be deduced from (23) that

G(t⋆⋆) < e
−

lnµ
τ1

(t⋆⋆−t⋆)
G(t⋆) < e−lnµµδv =

1

µ
µδv = δv = G(t⋆⋆), (24)

which is a contradiction. As a result of the above discussion, G(t) < δv holds for t ∈ (t0, t1).
Step 3. In respect of time interval t ∈ [tk, tk+1).
Now presume that for t ∈ [t0 − τ, tk), k ∈ N, the inequality G(t) < δv holds. Coherently, for any

t ∈ [tk, tk+1), k ∈ N, the inequality G(t) < δv will be proved. The proof is divided into two steps.
Step 3.1. When t = tk, k ∈ N, by (8), it can be acquired that

G(tk) = eα(tk−t0)xT(tk)v < µδv < δv.

Given that, G(t) < δv holds in relation to t = tk, k ∈ N.
Step 3.2. When t ∈ (tk, tk+1), the inequality G(t) < δv will be carried out via the contradiction method.
Naturally assume that G(t) < δv does not hold for t ∈ (tk, tk+1). According to G(tk) < µδv, there exist

t⋆⋆ = inf{t ∈ (tk, tk+1);G(t) > δv} and t⋆ = sup{t ∈ (tk, t
⋆⋆);G(t) 6 µδv}.

Given that G(t) is continuous for t ∈ (tk, tk+1), G(t
⋆⋆) = δv and G(t⋆) = µδv hold. When t ∈ [t⋆, t⋆⋆],

the following inequality is true:

µG(t+ θ) 6 µδv 6 G(t), θ ∈ [−τ, 0).

With reference to t ∈ [t⋆, t⋆⋆] and any ω > 0, one can gain that

D+G(t) = eα(t−t0)
(

αV(t) +D+V(t)
)

6 −
lnµ

τ1
G(t) +

lnµ

τ1
G(t) + eα(t−t0)

(

αV(t) +D+V(t)
)

+ ω

(

1

µ
G(t)− G

(

t− τ(t)
)

)

.
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Similar to the process of (18)–(24), it will get that G(t⋆⋆) < G(t⋆⋆). This is a contradiction, that is,
the hypothesis is not valid. So, when t ∈ (tk, tk+1), k ∈ N, inequality G(t) < δv is established. According
to steps 3.1 and 3.2, it can be seen that for any t ∈ [tk, tk+1), k ∈ N, the inequality G(t) < δv holds.

As described above, combining steps 1–3, utilizing mathematical induction, it is clear that in relation
to any t ∈ [t0 − τ,∞), inequality G(t) < δv holds. Considering δ, we have

G(t) <
v

µ
‖φ̄(θ)‖τ , t > t0 − τ. (25)

Since eα(t−t0)v‖x(t)‖1 6 G(t), from (25), it is equal to showing that

‖x(t)‖1 < e−α(t−t0)
v

µv
‖φ̄(θ)‖τ , t > t0 − τ.

Overall, system (11) is asymptotically stable as for µ ∈ (0, 1).
Case II. µ > 1.
For the purpose of verifying that system (11) is asymptotically stable, via setting £ = µ‖φ̄(θ)‖τ ,

θ ∈ [−τ, t0], the following inequality

G(t) < £v, t ∈ [t0 − τ,∞),

will be proved. We will take advantage of the method about mathematical induction to prove the above
inequality in three steps.

Step 1. Concerning time interval t ∈ [t0 − τ, t0].

G(t) = eα(t−t0)V(t) < £v, θ ∈ [−τ, 0].

Therefore, when t ∈ [t0 − τ, t0], G(t) < £v holds.
Step 2. Concerning time interval t ∈ (t0, t1).
As t ∈ (t0, t1), G(t) < £v will be testified via the method of reduction to absurdity.
Presume that G(t) < £v does not hold. There exists t ∈ (t0, t1) satisfying that G(t) > £v. Notice that

G(t0) <
1
µ
£v. There exist t⋆⋆ = inf{t ∈ (t0, t1);G(t) > £v} and t⋆ = sup{t ∈ (t0, t

⋆⋆);G(t) 6 1
µ
£v}. As

a result, G(t⋆⋆) = £v and G(t⋆) = 1
µ
£v hold. About any t ∈ (t⋆, t⋆⋆), one can derive that

G(t+ θ) 6 £v 6 µG(t), t ∈ [−τ, 0]. (26)

In relation to t ∈ (t⋆, t⋆⋆) and any scalar ω > 0, it can be deduced from (26) that

D+G(t) = eα(t−t0)
(

αV(t) +D+V(t)
)

6 −
lnµ

τ0
G(t) +

lnµ

τ0
G(t) + eα(t−t0)

(

αV(t) +D+V(t)
)

+ ω(µG(t)− G
(

t− τ(t)
)

). (27)

Given that G(t) and V(t) are continuous functions in the interval [t0, t1), then substituting (19)–(21)
into (27), one has

D+G(t) 6 −
lnµ

τ0
G(t) + eα(t−t0)

[

xT(t) xT
(

t− τ(t)
)

]

[

(

−AT + (ωµ+ lnµ
τ0

− p+ α)I
)

v

(−AT
d − ωe−ατI)v

]

. (28)

Combining (14) and (15), one can get the following inequality:

D+G(t) < −
lnµ

τ0
G(t), t ∈ [t⋆, t⋆⋆]. (29)

Due to − lnµ
τ0

< 0, from (29), it is clear that D+G(t) < 0, t ∈ [t⋆, t⋆⋆], which means that the inequality

G(t⋆⋆) < G(t⋆) holds. But this contradicts G(t⋆⋆) = £v > 1
µ
£v = G(t⋆). Therefore, the hypothesis is not

valid, in other words, G(t) < £v holds for t ∈ (t0, t1).
Step 3. Concerning time interval t ∈ [tk, tk+1), k ∈ N.
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Suppose that when t ∈ [t0 − τ, tk), k ∈ N, the following inequality holds:

G(t) < £v. (30)

Then the inequality G(t) < £v, t ∈ [tk, tk+1), k ∈ N will be proved. The proof steps are split into three
steps.

Step 3.1. The estimation of G(t) at t−k , k ∈ N.
In this part, G(t−k ) 6

1
µ
£v, k ∈ N will be proved through the contradiction method.

As expected, we claim that the inequality G(t−k ) 6
1
µ
£v holds. If not, suppose that G(t−k ) >

1
µ
£v. The

above hypothesis will be discussed in two cases as follows, namely, Case(a) and Case(b).
Case(a). G(t) > 1

µ
£v holds for over t ∈ [tk−1, tk), k ∈ N.

It follows from (30) that

G(t+ θ) < £v < µG(t), θ ∈ [−τ, 0], t ∈ [tk−1, tk). (31)

In respect of t ∈ [tk−1, tk) and any constant ω > 0, it entails from (31) that

D+G(t) = eα(t−t0)
(

αV(t) +D+V(t)
)

6 −
lnµ

τ0
G(t) +

lnµ

τ0
G(t) + eα(t−t0)

(

αV(t) +D+V(t)
)

+ ω
(

µG(t)− G
(

t− τ(t)
)

)

.

Similar to the process of (27)–(29), one can gain that

D+G(t) < −
lnµ

τ0
G(t), t ∈ [tk−1, tk). (32)

Due to − lnµ
τ0

(t−k − tk−1) < − lnµ
τ0

τ0 = lnµ and G(tk−1) < £v, according to (32), one can check that

G(t−k ) < e
−

lnµ
τ0

(t−
k
−tk−1)G(tk−1) <

1

µ
£v,

which is a contradiction. Thus, G(t−k ) <
1
µ
£v holds for Case(a).

Case(b). There exists t ∈ [tk−1, tk) making that G(t) 6 1
µ
£v.

Regulate t⋆ = sup{t ∈ [tk−1, tk);G(t) 6
1
µ
£v}, and then t⋆ ∈ [tk−1, tk) and G(t⋆) = 1

µ
£v. Hence, for

t ∈ [t⋆, tk), it can be deduced that

1

µ
£v 6 G(t) 6 £v, t ∈ [t⋆, tk),

G(t+ θ) < £v 6 µG(t), θ ∈ [−τ, 0], t ∈ [t⋆, tk). (33)

About t ∈ [t⋆, tk) and any constant ω > 0, from (33), it can be entailed that

D+G(t) = eα(t−t0)
(

αV(t) +D+V(t)
)

6 −
lnµ

τ0
G(t) +

lnµ

τ0
G(t) + eα(t−t0)

(

αV(t) +D+V(t)
)

+ ω
(

µG(t)− G
(

t− τ(t)
)

)

.

Similar to the process of (27)–(29), it can acqurie that D+G(t) < 0, t ∈ [t⋆, tk). So G(t−k ) < G(t⋆) =
1
µ
£v. This is a contradiction. In a nutshell, G(t−k ) 6

1
µ
£v is true as for Case(b).

Step 3.2. The estimation of G(tk) , k ∈ N.
With the reference to t = tk, k ∈ N, by (8) and Lemma 3, considering G(t−k ) 6

1
µ
£v, one can get that

G(tk) 6 µeα(tk−t0)xT(t−k )v < £v.

Step 3.3. For t ∈ (tk, tk+1), k ∈ N, G(t) < £v is to be testified based on the method of reduction to
absurdity.
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As t ∈ (tk, tk+1), presume that G(t) < £v does not hold for t ∈ (tk, tk+1). So, there exists t ∈ (tk, tk+1)
leading that G(t) > £v. Let t⋆⋆ = inf{t ∈ (tk, tk+1);G(t) > £v}, t⋆⋆ ∈ (tk, tk+1). It can verify that
G(t⋆⋆) = £v. If G(t) > 1

µ
£v, t ∈ [tk, t

⋆⋆), set t⋆ = tk; if not, set t⋆ = sup{t ∈ (tk, t
⋆⋆);G(t) 6 1

µ
£v}.

Undoubtedly, for t ∈ [t⋆, t⋆⋆], the following inequalities hold:

1

µ
£v 6 G(t) 6 £v, t ∈ [t⋆, t⋆⋆),

G(t+ θ) 6 £v < µG(t), θ ∈ [−τ, 0], t ∈ [t⋆, t⋆⋆). (34)

About t ∈ [t⋆, t⋆⋆) and any constant ω > 0, it can be deduced from (34) that

D+G(t) = eα(t−t0)
(

αV(t) +D+V(t)
)

6 −
lnµ

τ0
G(t) +

lnµ

τ0
G(t) + eα(t−t0)

(

αV(t) +D+V(t)
)

+ ω
(

µG(t)− G
(

t− τ(t)
)

)

.

Similar to the process of (27)–(29), one can derive that D+G(t) < 0, t ∈ [t⋆, t⋆⋆). So £v = G(t⋆⋆) <
G(t⋆) = 1

µ
£v. This leads to a contradiction. Consequently, G(t) < £v holds with reference to t ∈

(tk, tk+1).

By synthesizing steps 1–3, and utilizing mathematical induction, we acquire that G(t) < £v holds for
t ∈ [t0 − τ,∞). Analogous to the proof about (26), the following results can be obtained:

‖x(t)‖1 < e−α(t−t0)
µv

v
‖φ̄(θ)‖τ , t > t0 − τ.

Thus, the system (11) is asymptotically stable. In other words, the system (1) under u(t) = 0 is interval
(−p,∞) stable. Simultaneously, the stable criterion (5), (7), (8) and (10) of system (12) can be inferred
by means of the similar process, which can make the system (1) under u(t) = 0 interval (−∞,−q) stable.

Remark 5. When the impulses are disturbance impulses, Theorem 1 requires that there exists a
minimum dwell-time τ0 such that the impulse time sequence satisfies infk {Tk} > τ0, which guarantees
that the impulses will not occur too frequently. When the impulses are stabilizing impulses, it is required
that there exists a maximum dwell-time τ1 such that the impulse time sequence satisfies supk {Tk} 6 τ1.
This ensures the impulses occur frequently enough for the stabilizing effect.

Remark 6. As is known to all, most of the existing theories about the stability of IPSs, such as
asymptotic stability, can only judge the steady-state performance of such systems, but cannot judge
some dynamic performance, such as the convergence rate of the system. To tackle this limitation, we
make a breakthrough improvement on these theories and gain a more precise stability criterion of IPSs
with time-varying delay, that is, interval stability, which can accurately judge the convergence speed of
the system.

On the basis of Theorem 1, the common stability conditions of IPSs can be acquired as follows.

Corollary 1. For any Tk ∈ [τ0, τ1], system (1) under u(t) = 0 is asymptotically stable, if there exist
scalars µ > 0, ω > 0 as well as appropriate dimensioned vectors v ∈ R

n
+, such that when µ ∈ (0, 1), the

following inequalities hold:

(

AT +

(

ω

µ
+

lnµ

τ1

)

I

)

v ≺ 0,

(AT
d − ωI)v ≺ 0, (35)

(HT − µI)v � 0, (36)

or when µ > 1, the following inequality and (35), (36) hold:

(

AT +

(

ωµ+
lnµ

τ0

)

I

)

v ≺ 0.



Wang X Z, et al. Sci China Inf Sci January 2023 Vol. 66 112203:9

4 Interval stabilization

Based on the previous results, this part works out the interval stabilization problem of the system (1)
via state-feedback.

The main purpose of this section is to hatch up a state-feedback controller for the system (1):

u(t) = Kx(t),

where K ∈ R
r×n is a gain matrix.

Consider










ẋ(t) = (A+ BK)x(t) +Adx(t− τ(t)), t 6= tk, k ∈ N,

x(tk) = Hx(t−k ), t = tk, k ∈ N,

x(t0 + θ) = φ̄(θ), t0 = 0, θ ∈ [−τ, t0],

(37)

where A ∈ M, Ad � 0, B ∈ R
n×r, B � 0, and H � 0. τ(t), x(t), x(t−k ), and φ̄(θ) are defined as in (1).

Lemma 4 ([20]). System (37) is positive iff A+ BK ∈ M, Ad � 0, and H � 0.

Theorem 2. Considering the unstable system (1), for given scalars τ1 > τ0 > 0 and a stipulated vector
ṽ ∈ R

n
+, if there exist scalars µ > 0, ω > 0, p, q, ℓ, vectors v ∈ R

n
+, and z ∈ R

n, such that when µ ∈ (0, 1),
the following inequalities hold:

ṽTBTvA+ BṽzT + ℓI � 0, (38)
(

−AT +

(

ω

µ
+

lnµ

τ1
− p

)

I

)

v − z ≺ 0, (39)

(

AT +

(

ω

µ
+

lnµ

τ1
+ q

)

I

)

v + z ≺ 0, (40)

(−AT
d − ωI)v ≺ 0, (41)

(AT
d − ωI)v ≺ 0, (42)

(HT − µI)v � 0, (43)

or when µ > 1, the following inequalities and (38), (41)–(43) hold:

(

−AT +

(

ωµ+
lnµ

τ0
− p

)

I

)

v − z ≺ 0, (44)

(

AT +

(

ωµ+
lnµ

τ0
+ q

)

I

)

v + z ≺ 0, (45)

where

u(t) = Kx(t) =
1

ṽTBTv
ṽzTx(t), (46)

the system (37) is interval (−p,−q) stable.

Proof. The proof is split into two steps.
(1) The positivity about system (37). Owing to ṽ ≻ 0, ṽ ∈ R

r, B � 0, B ∈ R
n×r, and v ∈ R

n, then it
is acquired that ṽTBTv is a positive constant. It can be deduced from (38) that

A+
1

ṽTBTv
BṽzT +

ℓ

ṽTBTv
I � 0. (47)

In the light of Lemma 4, the system (37) is positive.
(2) The interval (−p,−q) stability of system (37). Through utilizing the same demonstration as those

in the stability of Theorem 1, the sufficient conditions of the interval stability criterion of system (37)
are expressed in the following form, that is, when µ ∈ (0, 1), the following inequalities hold:

(

−AT +

(

ω

µ
+

lnµ

τ1
− p

)

I

)

v −KTBTv ≺ 0, (48)
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(

AT +

(

ω

µ
+

lnµ

τ1
+ q

)

I

)

v +KTBTv ≺ 0, (49)

(−AT
d − ωI)v ≺ 0, (50)

(AT
d − ωI)v ≺ 0, (51)

(HT − µI)v � 0, (52)

or when µ > 1, the following inequalities and (50)–(52) hold:
(

−AT +

(

ωµ+
lnµ

τ0
− p

)

I

)

v −KTBTv ≺ 0, (53)

(

AT +

(

ωµ+
lnµ

τ0
+ q

)

I

)

v +KTBTv ≺ 0. (54)

Considering the form of expression aboutK in (46), we can derive that inequalities (48)–(54) are equivalent
to inequalities (39)–(45), which demonstrates that the system (37) is interval (−p,−q) stable in case of
the conditions of Theorem 2. The proof is completed.

Remark 7. Arbitrary 0 6 q < p cannot guarantee the existence of the solution of Theorem 1 or
Theorem 2, but Theorem 1 or Theorem 2 can be solved by increasing the value of p or decreasing the
value of q. Therefore, in practice, appropriate p and q can always be found to control the convergence
rate of the system.

Remark 8. In this paper, sufficient conditions for Theorems 1 and 2 are given. In Theorems 1 and 2,
the sufficient conditions are divided into two cases: µ ∈ (0, 1) or µ > 1. As long as the corresponding
sufficient conditions in the cases of µ ∈ (0, 1) or µ > 1 are solved, the convergence rate of the system
state can be controlled within a certain range.

Remark 9. An interval stabilization method is provided in Theorem 2, which can modulate the con-
vergence speed of the system states more precisely than the existing stabilization methods. The primary
thought of this method is analogous to the pole assignment method, which has not been extended to
IPSs with time-varying delay as far as we are concerned.

Corollary 2. Considering the unstable system (1), for a vector ṽ ∈ R
n
+ and scalars τ1 > τ0 > 0, if there

exist scalars µ > 0, ω > 0 and ℓ, vectors v ∈ R
n
+ and z ∈ R

n, such that when µ ∈ (0, 1), the following
inequalities hold:

ṽTBTvA+ BṽzT + ℓI � 0, (55)
(

AT +

(

ω

µ
+

lnµ

τ1

)

I

)

v + z ≺ 0,

(AT
d − ωI)v ≺ 0, (56)

(HT − µI)v � 0, (57)

or when µ > 1, the following inequality and (55)–(57) hold:

(

AT +

(

ωµ+
lnµ

τ0

)

I

)

v + z ≺ 0,

where

u(t) = Kx(t) =
1

ṽTBTv
ṽzTx(t),

the system (37) is asymptotically stable.

Theorem 2 can control the real parts of the eigenvalues for IPSs in a suitable interval location, so as
to achieve the goal of controlling the system convergence rate. Consequently, the relevant algorithm is
designed as Algorithm 1.

5 Illustrative examples

In this section, two examples will be put forward to examine the validity of the above conclusion.
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Algorithm 1 System eigenvalues adjustment algorithm

Step 1. For the interval M = (−p,−q), the corresponding controller can be solved according to Theorem 2, which can ensure that

the real parts of eigenvalues about the system matrix for the closed-loop system are located in M . If the dynamic performance of

the system meets the requirements, the algorithm is terminated. Otherwise, execute Step 2.

Step 2. If the system converges too slowly, increase the values of p and q until they satisfy the requirement. Otherwise, execute

Step 3.

Step 3. If the system converges too rapidly, decrease the values of p and q until they satisfy the requirement. The algorithm is

terminated.
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Figure 1 (Color online) The open-loop system state response.

5.1 Simulation for the convergence rate of IPSs under disturbance impulses

System (1) with µ = 1.2 and u(t) = Kx(t) is noted as below:

A =

[

0.2 1

1 −1

]

, H =

[

1.1 0.1

0.2 0.8

]

, Ad =

[

0.01 0.09

0.2 0.01

]

, B =

[

1.6

0.8

]

,

τ0 = 0.2, τ(t) = 0.2 + 0.13 sin(t). Let the initial states be xi(t0) = 5 (i = 1, 2). The open-loop system
state response can be displayed in Figure 1.

As a common method of stabilization, the system gain matrix can be solved via Corollary 2 as follows:

K1 =
[

−1.0302 −0.5595
]

.

The paths of the system states with state feedback control are shown in Figure 2(a). When t > 8.7 s,
xi(t) < 0.01 (i = 1, 2).

Remark 10. Up to now, the usual stabilization methods can only ensure the asymptotic convergence of
IPSs, not to exert influence on the convergence speed. Whereas, Theorem 2 can regulate the time-delay
system convergence speed through regulating the interval (−p,−q), as stated below.

According to Theorem 2, the system convergence rate can be regulated by conducting its generalized
eigenvalues in a suitable interval location. Performing Yalmip toolbox when ṽ = 1 and ω = 0.2, one can
set (−p,−q) = (−5,−4). One can derive a feasible solution according to the inequalities (44)–(46) in
Theorem 2, so that the corresponding gain matrix is

K2 =
[

−1.3427 −1.1845
]

,

which can ensure the faster convergence speed than above.

Remark 11. In this paper, based on the copositive Lyapunov function method, the sufficient condition
of interval stability is expressed in the form of linear programming (LP). LP condition can be easily
solved by using the Yalmip toolbox, which has the characteristics of small calculation, convenience, and
good applicability.

The paths of the system states with state feedback control are plotted in Figure 2(b). When t > 4.3 s,
xi(t) < 0.01.

Without doubt, one can arrange (−p,−q) = (−10,−9), so that the corresponding gain matrix is

K3 =
[

−2.7802 −2.0671
]

.

The states of the system will converge faster. As is presented in Figure 2(c), when t > 1.7 s, xi(t) <
0.01 (i = 1, 2). Comparing Figures 2(a)–(c), we can make the system convergence speed even faster than
above via picking the befitting interval (−p,−q) and obtaining the relevant gain matrix.
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Figure 2 (Color online) The paths of the system states with state feedback control. (a) The system state’s convergence rate

trajectory under Corollary 2; (b) the trajectory in the interval (−5,−4); (c) the trajectory in the interval (−10,−9); (d) the

trajectory in the interval (−1.7,−1.3).

Meanwhile, one can reduce the convergence rates of the system by setting the interval (−p,−q) =
(−1.7,−1.3). Based on Theorem 2, the gain matrix can be derived as below:

K4 =
[

−0.6053 −0.3095
]

.

Apparently, the system will converge more slowly as displayed in Figure 2(d), where xi(t) < 0.01 (i =
1, 2) when t > 15.3 s.

Remark 12. From the above example, it can be concluded that, the method in this paper can ensure the
stability of IPSs with time-varying delay and control the convergence speed of such systems via regulating
the suitable interval (−p,−q). Nevertheless, the common stabilization cannot do this [1–3, 20, 21]. In
simple terms, the usual approaches for stabilization of IPSs with time-varying delay only satisfy xi(t) <
0.01 (i = 1, 2) at t = 8.7 s (see Figure 2(a)), but the stabilization method in this paper can adjust the
convergence rate of the system (shown in Figures 2(b)–(d)).

5.2 Simulation for the convergence rate of IPSs under stabilizing impulses

System (1) with µ = 0.5 and u(t) = Kx(t) is displayed as

A =

[

1 2.4

2 1

]

, H =

[

0.15 0.12

0.5 0.3

]

, Ad =

[

0.1 0.1

0.2 0.1

]

, B =

[

1.2

1.6

]

,

τ1 = 0.6, τ(t) = 0.2 + 0.1 sin(t). Let the initial states be xi(t0) = 5 (i = 1, 2). The open-loop system
state response can be delineated in Figure 3.

As a usual stabilization approach, the system gain matrix can be addressed through Corollary 2 as
below:

K1 =
[

−1.2071 −1.3724
]

.

The paths of the system states with state feedback control can be presented in Figure 4(a). When
t > 1.8 s, xi(t) < 0.01 (i = 1, 2).

Applying the Yalmip toolbox when ṽ = 1 and ω = 0.4, let (−p,−q) = (−9,−8). We can get the
corresponding gain matrix is

K2 =
[

−7.9052 −8.6194
]

,

which can make the system convergence rate faster than above.
The paths of the system states with state feedback control are exhibited in Figure 4(b). When t > 0.6 s,

xi(t) < 0.01(i = 1, 2).
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Figure 3 (Color online) The open-loop system state response.
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Figure 4 (Color online) The paths of the system states with state feedback control. (a) The system state’s convergence rate

trajectory under Corollary 2; (b) the trajectory in the interval (−9,−8); (c) the trajectory in the interval (−0.5,−0.3).

Meanwhile, we can reduce the convergence rates of the system by regulating the interval (−p,−q) =
(−0.5,−0.3). Based on Theorem 2, the related gain matrix can be obtained as follows:

K3 =
[

−0.1849 −0.2151
]

.

The system states will converge slower as drawn in Figure 4(c), where xi(t) < 0.01 (i = 1, 2) when
t > 13.6 s.

6 Conclusion

This paper establishes a new interval stability criterion for IPSs with time-varying delay that has not been
investigated so far. The interval stabilization controller is designed to regulate the system’s convergence
speed and ensure stability. We discovered that the system stability improvement made the new criterion
outperform the current approaches in actual system control. Combined with the interval stabilization
approach, the system eigenvalues adjustment algorithm is designed to accurately control the target sys-
tem’s convergence rate. Finally, two numerical examples are presented to demonstrate the theoretical
analysis validity.
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