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Abstract This article presents a novel pattern-based intelligent control scheme with prescribed performance

(PP) for uncertain pure-feedback systems operating in multiple control situations (patterns). Based on PP,

an observer-based adaptive neural network (NN) control approach, which not only achieves system stability

and prescribed tracking control performance but also realizes accurate identification/learning of the unknown

closed-loop dynamics via deterministic learning and uses only one NN unit, is proposed. Subsequently, the

knowledge learned is utilized to construct high-performance candidate controllers for each control situation.

Based on the transformed system and observer technique, accurate classification of the nth order systems

under different control situations is achieved by requiring only one set of dynamic estimators, thereby signif-

icantly reducing the complexity of pattern recognition. Thus, sudden changes in the control situation can be

rapidly recognized based on the minimum residual principle, with which the correct candidate controller is

selected to achieve superior control performance. The simulation results verify the efficacy of the proposed

scheme.
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1 Introduction

In the real world, humans can learn many highly complex control tasks with sufficient practice, and the
same control task or a similar control task encountered the next time can be easily performed with little
effort, even in many different and usually uncertain dynamic environments. This kind of human-like
intelligent control idea must not only have the capability to acquire/learn knowledge but also be able
to recognize different environments in real time and rapidly decide which measures to take to deal with
the current situation. With the advancement of science and technology, the working environment is
becoming more complicated, and the system model faces the threat of various unexpected factors, such
as system failures, dynamic changes of subsystems, and external disturbances [1]. Inspired by human
motion behavior, the development of an advanced control method that recognizes emergencies in real
time through autonomous learning and adopts optimal control strategies to ensure the smooth operation
of the system has emerged to be a significant yet challenging task.

Over the past few decades, research on learning control (LC) systems, in which the controller is de-
signed to estimate/learn unknown information, has attracted considerable attention. Then, the learned
information can be reused as the experience of the controller [2], of which the premise is that true infor-
mation can be learned. Meanwhile, the pattern recognition method is employed to recognize the current
control situation (pattern) of the plant and select the optimal controller to serve [2]. However, the re-
alization of these ideas is a difficult problem because learning in dynamic environments is considered to
be the most difficult issue in the fields of adaptive control and LC [3, 4]. Subsequently, by imitating the
structure and function of the human brain, neural networks (NNs) and fuzzy systems [5] have attracted
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considerable research interest because of their powerful learning capabilities. Many approximation-based
intelligent control methods have been proposed to solve the tracking control problem of nonlinear sys-
tems [6–12], in which NNs are used to approximate/learn the unknown nonlinear dynamics. Moreover,
many difficult problems involving NN-based control have been resolved. For example, the “explosion of
complexity” issue is overcome by the dynamic surface control technique [13–15], and the existence of
implicit ideal control is proven by the implicit function theorem [7, 8, 16]. However, the aforementioned
studies only require the convergence of the tracking error to a small residual set. Thus, generally, the
transient and steady-state tracking performance cannot be guaranteed, which is a difficult task. To
overcome this problem, Ref. [17] proposed an approach called prescribed performance (PP) control [18],
which has been recently applied to vehicle active suspension systems [19]. However, the existing intelli-
gent control schemes usually require the control environment to change slowly or remain invariant over
time. When the control environments change abruptly and largely, the related control design becomes
rather complicated and challenging.

The speed and accuracy of the controller’s response to sudden and large changes may be regarded as
a measure of intelligence [1]. For those cases where the control situations change from one to another
abruptly, traditional adaptive control generally reacts too slowly to those sudden changes, resulting in
decreases in transient performance or even instability of the control system [1]. To solve this issue,
a representative method called multiple model adaptive control (MMAC) has been proposed in the
1990s, and many interesting results have been reported [1, 20–22]. The basic idea is that there are
multiple identification models, including fixed models and adaptive models running in parallel, and the
model closest to the current operating regime of the plant according to the identification errors will be
determined and used to generate control signals for improved transient performance. However, MMAC
can also be categorized as adaptive control, and most of the existing schemes mentioned previously did
not explore the learning capability in the adaptive process, thereby lacking the real intelligent capability
of knowledge acquisition and reutilization [23]. Therefore, the realization of human-like learning and
control capabilities for these methods is still a challenging issue.

Learning capability, that is, acquiring knowledge from a dynamic environment and using learned knowl-
edge to improve control performance, is the core of an intelligent control system [2,23]. Recently, a mech-
anism based on adaptive NN control called deterministic learning (DL) theory was proposed by [24, 25].
Accurate learning of the closed-loop dynamics in dynamic environments was obtained, and better control
performance was achieved using learned knowledge, which provided a new paradigm for the development
of the intelligent control with real learning capability [24, 25]. In addition to the LC problems of nonlin-
ear systems [26–31], some other intelligence-related problems, such as system identification and pattern
recognition, have been solved and verified successfully through DL [32–36]. Furthermore, to solve the
control problem of uncertain nonlinear systems operating in multiple control situations, a pattern-based
control scheme was proposed by [37] for simple affine nonlinear systems and extended to a representative
class of pure-feedback systems [38]. Notably, the existing pattern-based control schemes [37,38] can only
guarantee that the tracking error converges to a small residual set but cannot quantitatively calculate
the transient and steady-state tracking performance. Moreover, the nth order systems in [38] require
O(n) number of NNs to construct controllers and another O(n) number of NNs to construct pattern
classifiers (dynamic estimators) for each independent control situation. With the increase in the order
of the system and the types of control situations, the number and complexity of NNs to be trained will
increase dramatically, resulting in the limited application of pattern-based intelligent control. Therefore,
the simple, efficient, and performance-guaranteed design of pattern-based intelligent control is an issue
worthy of further investigation.

In this study, we address the problem of pattern-based intelligent control with guaranteed PP for pure-
feedback systems operating in multiple control situations. First, the appropriate system transformation
technique is introduced to transform the original pure-feedback system into a nonaffine system in normal
form. Based on PP, an error transformation technique is employed, and the constrained tracking control
problem of the original system is converted into a simple unconstrained stabilization problem. Based
on a high gain observer (HGO), a novel adaptive neural control (ANC) scheme is proposed to achieve
system stability and prescribed tracking control performance, in which only one NN approximator is used.
Because of the simplified control design, the satisfaction of partial persistent excitation (PE) condition
of the radial-basis function (RBF) NN can be easily verified, and accurate identification/learning of the
implicit unknown dynamics of the transformed system is achieved. By reutilizing the knowledge obtained,
a bank of pattern-based candidate controllers for all different control situations is constructed. Second,
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to realize the classification of different control situations, an HGO-based NN identifier is developed to
learn the transformed system dynamics in all different control situations through DL. With learned
knowledge, a set of dynamic estimators is constructed for the classification of different control situations.
Third, when the control situation changes abruptly, a set of residuals is obtained by comparing the
dynamic estimators with the monitored system; thus, sudden changes can be rapidly recognized based on
the minimum residual principle. Finally, based on the recognition results, the correct experience-based
controller corresponding to the current control situation is selected to achieve stability and improved
control performance.

The main contributions of this work are the following. (1) The proposed HGO-based ANC scheme
not only achieves specified transient and steady-state tracking performance, but also realizes accurate
identification/learning of the unknown system dynamics. Moreover, only one NN unit is used for each
control situation. (2) Learned knowledge can be reutilized to improve the control performance without
any further adaptation online, while the prescribed tracking performance can still be guaranteed. (3) In
the LC and dynamical pattern recognition processes, the number of NNs to be trained is considerably re-
duced, and the complexity of control design, recognition, and computation is significantly alleviated. The
attraction of the proposed scheme is that autonomous learning, decision-making, and high-performance
control are realized in a simple manner, which is consistent with the essential meaning of intelligence
(i.e., the capacity to acquire and apply knowledge, see Webster’s dictionary), and will provide new ideas
for the development of intelligent control methods in dynamic environments.

The remainder of this article is organized as follows. Section 2 reviews the problem formulation
and related preliminaries. Two phases of identification/training are implemented in Section 3, and the
phases of rapid recognition and control of the changed control situation are presented in Section 4. The
simulation studies conducted to verify the method are discussed in Section 5. Finally, Section 6 draws
the conclusion.

2 Problem formulation and preliminaries

2.1 Problem formulation

Consider the following nth-order pure-feedback system, which is described as















ẋi = fk
i (x̄i, xi+1), 1 6 i 6 n− 1,

ẋn = fk
n(x̄n, u), n > 2,

y = x1,

(1)

where x̄i = [x1, . . . , xi]
T ∈ Ri, i = 1, 2, . . . , n are the system measurable state vectors, u ∈ R and y ∈ R

are the input and output of the system. We assume that there are N + 1 different control situations (or
patterns), such as possible large changes of the system dynamics/parameters, faults in the subsystems.
fk
i (·) (i = 1, 2, . . . , n) denote the unknown smooth nonlinear functions of the kth control situation with
k = 0, 1, . . . , N .

For system (1), we define

gki (x̄i, xi+1) =
∂fk

i (x̄i, xi+1)

∂xi+1
, (2)

where i = 1, 2, . . . , n and xn+1 = u.

Assumption 1 ([8]). The signs of the functions gki (·) (i = 1, 2, . . . , n) are considered known, and there
are unknown constants gkimax > gkimin > 0 such that gkimin 6 |gki (·)| 6 gkimax < ∞, ∀(x̄i, xi+1) ∈ Ωx̄i+1 ⊂
Ri+1, i = 1, 2, . . . , n, k ∈ {0, 1, 2, . . . , N}, where Ωx̄i+1 denotes a compact region.

Assumption 1 means that the defined functions gki (·), i = 1, 2, . . . , n are strictly either positive or
negative. Without loss of generality, it is assumed that all signs are positive. Assumption 1 is reasonable
because gki (·) being away from zeros is controllable conditions of system (1), which is made in most of
control schemes [39]. It should be emphasized that the upper and lower bounds of gki (·) are only required
for analytical purposes, and their true values are not necessarily known.
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The desired reference trajectory yd is generated by

{

ẋd,i = xd,i+1, i = 1, . . . , n− 1,

ẋd,n = fd(xd), yd = xd,1,
(3)

where xd = [xd,1, . . . , xd,n]
T ∈ Rn is the state vector of the reference system, yd ∈ R is the desired

reference output, and fd(·) denotes a continuous known nonlinear function. It is assumed that xd,i

(i = 1, 2, . . . , n) are bounded and recurrent signals starting from the initial condition xd(0), and the
reference system trajectory is a recurrent orbit expressed as ϕd(xd(0)) or ϕd.

Our objective of this study is to develop a pattern-based intelligent control scheme such that all closed-
loop signals remain bounded, and the tracking error e1(t) = y(t)−yd(t) tends to zero even in the presence
of changes in the control situation. More specifically, the tracking error is required to satisfy

−̟ρ(t) 6 e1(t) 6 ̟ρ(t), (4)

where ̟ and ̟ are positive constants, ρ(t) is a strictly positive smooth and decreasing performance
function. Similar to [17], we choose ρ(t) = (ρ0 − ρ∞)e−ℓt + ρ∞, where ρ0, ρ∞ and ℓ denote strictly
positive constants with ρ∞ being limt→∞ ρ(t). For any initial condition, ̟ρ0 and ̟ρ0 are appropriately
selected such that ̟ρ0, ̟ρ0 > |e1(0)|. For the term e−ℓt in ρ(t), the decreasing rate ℓ of ρ is to prescribe
a lower bound on the required speed of convergence of e1(t). −̟ρ(t) and ̟ρ(t) are the tracking error’s
lower and upper bounds at steady state.

The basic framework of the pattern-based intelligent control scheme is shown in Figure 1, which consists
of four phases. The first is two offline training/identification phases (see Figures 1(a) and (b)), i.e., the
implementation of two levels of knowledge acquisition. The objective is to construct an experience-based
controller bank for high-performance control and a set of dynamic estimators for pattern classification.
The second is the online recognition phase and control phase (knowledge utilization), i.e., using the
candidate controllers and estimators constructed above to design appropriate recognition and controller
switching strategies to achieve high-performance control in the case of sudden changes in the control
situation (see Figure 1(c)). Next, we seek to address the following intelligence-related issues: (1) how to
provide ideal tracking control with PP for each independent control situation (see Section 3); (2) when
the control situation changes abruptly, how to rapidly and accurately perceive this change, and adopt
appropriate control strategies (see Section 4).

2.2 Preliminary knowledge

The output of the RBF networks can be given by

fnn(Z) =

l
∑

i=1

wisi(Z) = WTS(Z), (5)

where Z ∈ ΩZ ⊂ Rq is the NN input vector, q is the dimension of the NN input, W = [w1, w2, . . . , wl]
T ∈

Rl denotes the weight vector, l > 1 is the network node number, S(Z) = [s1(Z), s2(Z), . . . , sl(Z)]T ∈ Rl

is the vector of the RBF. si(Z) is chosen as the commonly used Gaussian function described by si(Z) =
exp[−(Z − ξi)

T(Z − ξi)/η
2
i ], i = 1, . . . , l, where ξi = [ξi1, ξi2, . . . , ξiq]

T denotes the center of the receptive
field, and ηi denotes the Gaussian function’s width. As shown in [40] that for any continuous function
f(Z) over a compact set ΩZ ∈ Rq, there exists an ideal constant weight vector W ∗ such that f(Z) can
be approximated by NN to any arbitrary accuracy κ∗: f(Z) = W ∗TS(Z) + κ(Z), ∀Z ∈ ΩZ ∈ Rq, where
κ(Z) represents the approximation error with |κ(Z)| 6 κ∗.

In [24], the localized RBF networks possess the spatially localized learning abilities of representation,
storage, and adaptation. For any bounded trajectory Z(t) over the compact set ΩZ , f(Z) can be ap-
proximated by using only a limited number of neurons, which are located in a local area close to the
trajectory, and we obtain

f(Z) = W ∗T
ζ Sζ(Z) + κζ ,

where Sζ(Z) = [sj1(Z), . . . , sjζ (Z)]T ∈ Rlζ represents the regression subvector of S(Z), lζ < l, W ∗
ζ =

[w∗
j1
, . . . , w∗

jζ
]T is the corresponding ideal constant weight vector, κζ is approximation error with ||κζ |−|κ||

being small.
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The first identification phase The second identification phase

ANC with PP
Via DL Closed-loop dynamics

knowledge is acquired

For each independent control situation

The underlying dynamics Fs,k under CNEBC
(as given in (34)) is accurately

identified/learned via DL

Construct dynamic estimators (as given in
(41)) by using the knowledge learned above

Construct an experience-based controller bank (as
given in (33)) for all control situations by using

the acquired knowledge

Two phases of offline training/identification

Online recognition and control∑
U x

x

x

~

u
L

Controller switching strategy Dynamical pattern recognition strategy

Control situation
changing

Plant

(a) (b)

(c)

Figure 1 (Color online) Schematic diagram of the pattern-based intelligent control. (a) The first offline training phase; (b) the

second offline training phase; (c) online recognition and control when the control situation changes.

Based on the results in [41] about the PE property of the RBF NNs, Wang et al. [24,25] proposed that
for a localized RBF NN WT

ζ Sζ(Z) whose centers are placed on a regular lattice, nearly any recurrent
trajectory Z(t) can lead to satisfying the PE condition of Sζ(Z), and it is a key factor that enables the
true learning capability of the RBF networks to be realized.

3 Offline training/identification phase

In this section, two phases of offline training/identification are first implemented for the pattern-based
intelligent control scheme. The objective is to construct a family of candidate experience-based controllers
and a bank of dynamic estimators for the N+1 different control situations by using the knowledge learned
in the two accurate identification phases, respectively.

3.1 The first identification phase—controller design

In the first identification/training phase, for each independent control situation, a novel adaptive neural
controller is first designed to achieve convergence of tracking error with PP, and the real learning ability
is further achieved in the stable control process via DL. Then, using the knowledge learned in different
control situations, a pattern-based candidate controller bank is constructed.

3.1.1 Constrained error transformation

In order to achieve the constrained error e1(t), a performance transformation technique is introduced to
convert the original constrained tracking error into a new unconstrained error ζ1(t) [17]. We define

e1(t) = ρ(t)Υ(ζ1(t)), (6)

where ζ1(t) is the newly defined transformed error, Υ(ζ1(t)) is a smooth and increasing invertible function
satisfying

{

limζ1→+∞ Υ(ζ1(t)) = ̟,

limζ1→−∞ Υ(ζ1(t)) = −̟.
(7)
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In this study, we select the transformed function Υ(ζ1(t)) as

Υ(ζ1(t)) =
̟eζ1(t) −̟e−ζ1(t)

eζ1(t) + e−ζ1(t)
. (8)

Furthermore, according to (6) and (8), the unconstrained tracking error can be obtained in the following
form:

ζ1 = Υ−1(e1(t)/ρ(t)) =
1

2
ln
̟ + e1(t)/ρ(t)

̟ − e1(t)/ρ(t)
. (9)

Then, the derivative of the unconstrained error is

ζ̇1 = ̺ (ė1 − ρ̇(t)/ρ(t)e1) , (10)

where ̺=1/2ρ(t)(1/(e1(t)/ρ(t)+̟)−1/(e1(t)/ρ(t)−̟)). According to (4), we can conclude that ̺ > 0.
Notice that from (7) we can see that the inequality −̟ < Υ(ζ1) < ̟ holds, and by combining (9) we can
obtain (4), which means that the tracking error constraints are guaranteed. Subsequently, our objective
is to construct an appropriate controller to guarantee that the unconstrained error ζ1 converges to the
vicinity around zero for system (1) operating in different control situations.

3.1.2 Pattern-based controller

In order to circumvent the complexity of traditional backstepping control design, in which n NN ap-
proximators are generally used for the nth order nonaffine system (1), an appropriate system transfor-
mation is implemented to transform the original system (1) into a normal nonlinear system [42]. Let
~1 = x1 := Qk

1(x1), ~2 = ~̇1 = fk
1 (x̄2) := Qk

2(x̄2), and ~i = ~̇i−1 := Qk
i (x̄i) (i = 3, . . . , n). Then, the

original pure-feedback system (1) can be transformed into the following form:














~̇i = ~i+1, 1 6 i 6 n− 1,

~̇n = F k(x̄n, u), n > 2,

y = ~1,

(11)

where

F k(x̄n, u) =

n−1
∑

j=1

∂Qk
n(x̄n)

∂xj
fk
j (x̄j+1) +

∂Qk
n(x̄n)

∂xn
fk
n(x̄n, u) (12)

with ∂Qk
i (x̄i)/∂xi =

∏i−1
j=1 g

k
j (x̄j+1). Based on (2), ∂F k(x̄n, u)/∂u = ∂Qk

n(x̄n)/∂xn∂f
k
n(x̄n, u)/∂u holds.

Let Gk(x̄n, u) = ∂F k(x̄n, u)/∂u. By combining Assumption 1, we have Gk
min 6 Gk(x̄n, u) 6 Gk

max with
Gk

min =
∏n

j=1 g
k
jmin, G

k
max =

∏n
j=1 g

k
jmax. For more details, please refer to [42].

From the transformation process, we can easily find that the new states ~i (i = 2, 3, . . . , n) are unavail-
able for controller design since the composition of state ~i involves the unknown functions fk

j (x̄j+1) (j =

1, 2, . . . , n), and the only available state for measurement is the output signal ~1. F k(x̄n, u) (k ∈
0, 1, 2, . . . , N) as given in (12) denotes the transformed unknown nonaffine function. To cope with the
unmeasurable issue of the new states ~i (i = 2, . . . , n) [43], we consider the following observer as described
in Lemma 1.

Lemma 1. Suppose the output y(t) and its first n derivatives are all bounded. Consider the linear
system in the following form:

{

rς̇i = ςi+1, 1 6 i 6 n− 1,

rς̇n = −h1ςn − h2ςn−1 − · · · − ς1 + y(t), n > 2,
(13)

where r > 0 is any small constant and the parameters hi (i = 1, 2, . . . , n− 1) are selected such that the
polynomial sn+h1s

n−1+ · · ·+hn−1s+1 is Hurwitz. Thus, there exist constants Hj > 0 (j = 2, 3, . . . , n)
and t∗, for all t > t∗, such that

ςj+1

rj
− y(j) = −rφ(j+1),

∣

∣

∣
φ(j+1)

∣

∣

∣
6 Hj+1, j = 1, 2, . . . , n− 1,

where φ = ςn+h1ςn−1+· · ·+hn−1ς1 and φ(j) represents φ’s jth derivative. For detailed proof of Lemma 1,
please refer to [43].
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For ease of design and analysis, vectors e = ~−Yd = [e1, e2, . . . , en]
T and ê = ~̂−Yd = [ê1, ê2, . . . , ên]

T

are defined, where ~̂ = [ς1, ς2/r, . . . , ςn/r
n−1]T, ~ = [~1, ~2, . . . , ~n]

T, and Yd = [yd, ẏd, . . . , y
(n−1)
d ]T. Then,

we obtain

ẽ = ê− e = [ẽ1, ẽ2, . . . , ẽn]
T =

[

0,
ς2
r
− ~2, . . . ,

ςn
rn−1

− ~n

]T

. (14)

Based on the observer (13) and backstepping technique, the control design for the transformed system
(11) is as follows.

Step 1. By combining (10) and (14), the derivative of the unconstrained error ζ1 can be expressed as

ζ̇1 = ̺ (~2 − ẏd − ρ̇(t)/ρ(t)e1) . (15)

We define ζi = ςi/r
i−1−αif (i = 2, 3, . . . , n), where αif is the first-order filtered output of virtual control

αi as given below. From (14), we have ẽ2 = ς2/r − ~2. Notice that ζ2 = ς2/r − α2f , Eq. (15) can be
rewritten as

ζ̇1 = ̺ (ζ2 − ẏd − ẽ2 + α2f − ρ̇(t)/ρ(t)e1) . (16)

Then, the following virtual control law is proposed as

α2 = −c1ζ1 + ρ̇(t)/ρ(t)e1 + ẏd, (17)

where c1 > 0 denotes a design constant. Then, a new state variable αif is introduced; i.e., virtual control
αi is passed through a first-order filter with the time constant τi [13]. We have

τiα̇if + αif = αi, i = 2, 3, . . . , n, αif (0) = αi(0). (18)

For the convenience of the first-order filter implementation, we define yi+1 = α(i+1)f−αi+1, i = 1, 2, . . . , n−
1. Notice that α̇(i+1)f = −yi+1/τi+1, and then

ẏi+1 = −
yi+1

τi+1
+ ciζ̇i − α̈if + ζ̇i−1

= −
yi+1

τi+1
+Φi+1(ζ1, . . . , ζi+1, y2, . . . , yi+1, yd, ẏd, ÿd), (19)

where i = 1, 2, . . . , n− 1, α̇1f = ẏd, ζ0 = 0, and Φi+1 is a continuous function. According to the analysis
made in [13], there exists a maximum Mi+1 that satisfies |Φi+1| 6 Mi+1 (please refer to [13] for details).
Then, we have

ζ̇1 = ̺ (−c1ζ1 + ζ2 − ẽ2 + y2) . (20)

Step i (2 6 i 6 n − 1). According to the definition in step 1, we know ζi = ςi/r
i−1 − αif . By

combining (13), we have

ζ̇i = ςi+1/r
i − α̇if . (21)

Then, we propose the virtual control laws αi+1 as shown below:

αi+1 = −ciζi + α̇if − ζi−1, (22)

where ci denotes the positive design constant. Then, by combining (22) and ζi+1 = ςi+1/r
i − α(i+1)f ,

Eq. (21) can be rewritten as

ζ̇i = −ciζi + yi+1 + ζi+1 − ζi−1. (23)

Step n. Notice that ζn = ςn/r
n−1 − αnf and ςn/r

n−1 − y(n−1) = −rφ(n) (as given in Lemma 1). We
have ζn = y(n−1) − rφ(n) − αnf . According to (11), it follows that zn = y(n−1); then we have

ζ̇n = F k(x̄n, u)− rφ(n+1) − α̇nf . (24)
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Next, letting υ = −α̇nf + ζn−1, we know ∂υ/∂u = 0. Based on (12), we obtain ∂
[

F k(x̄n, u) + υ
]

/∂u =
Gk(x̄n, u) > Gk

min > 0, k ∈ {0, 1, 2, . . . , N}. Utilizing the implicit function theorem [7], there exists a
smooth implicit function u∗k(x̄n, υ) that makes F k(x̄n, u

∗k) + υ = 0. Utilizing the mean value theo-
rem [44], we have

F k(x̄n, u
k)− F k(x̄n, u

∗k) = Gk
χ(u

k − u∗k), (25)

where Gk
χ = Gk(x̄n, u

k
χ), u

k
χ = χuk +(1−χ)u∗k with 0 < χ < 1. Hence, by combining Assumption 2 and

(12), we obtain Gk
min 6 Gk

χ 6 Gk
max. According to (24) and (25), we have

ζ̇n = Gk
χ(u

k − u∗k)− rφ(n+1) − ζn−1. (26)

Then, consider an RBF network approximation:

u∗k(Z) = W ∗kT

U S(Z) + κk, (27)

where Z = [x̄T
n , υ]

T ∈ Rn+1, κk is the approximation error satisfying |κk| 6 κ∗k, and W ∗
U denotes the

optimal constant weight vector. Then, we propose the actual control law uk as

uk = −cnζn + Ŵ kT

U S(Z), (28)

where uk denotes the adaptive neural control law corresponding to the kth control situation, cn denotes a
positive design constant, Ŵ k

F denotes the estimate of W ∗k
U , and W̃ k

U = Ŵ k
U −W ∗k

U denotes the estimation

error. The update law of neural weight Ŵ k
U is determined as

˙̂
W k

U = −Γk
U [S(Z)ζn + σk

UŴ
k
U ], (29)

where k ∈ {0, 1, 2, . . . , N}, Γk
U = ΓkT

U is the positive adaptation gain matrix, σk
U > 0 denotes a design

constant. Next, by combining (27) and (28), Eq. (26) can be rewritten as

ζ̇n = Gk
χ(−cnζn + W̃ kT

U S(Z)− κk)− rφ(n+1) − ζn−1. (30)

Then, the closed-loop stability result and accurate identification are summarized as the following theorem.

Theorem 1. Consider the controlled plant characterized by (1) under Assumption 1, prescribed per-
formance condition (4), reference model (3) and the observer (13), and the actual control law given by
(28), and update law (29). Then, for any bounded initial conditions on a compact set Ω0 satisfying (4),
we have that (i) all closed-loop signals remain bounded and the tracking error e1 described by (4) con-
verges to a small region around zero in a finite time T k; (ii) locally accurate identification/learning of the

transformed implicit desired control dynamics u∗k(x̄n, υ) can be obtained by Ŵ kT

U S(Z) and W̄ kT

U S(Z)
along the recurrent trajectory Z(t), where

W̄ k
U = meant∈[tka,t

k
b
]Ŵ

k
U (t) (31)

with tkb > tka > T k.

Proof. Please see Appendix A.
From the analysis in Appendix A, accurate identification/learning of u∗k(x̄n, ν) for different control

situations is obtained by the constant RBF network W̄ kT

U S(Z), where the knowledge learned from accurate
identification can be expressed as: for the experienced reference recurrent trajectory ϕd(xd(t)), there are
small constants d∗k > 0 and ǫ∗k > 0 (k = 0, 1, 2, . . . , N) that describe a local region Ωϕd

along ϕd(xd(t)),
such that

dist
(

ϕ (Z (t)) |t>Tk , ϕd (xd (t))
)

< d∗k ⇒
∣

∣

∣
W̄ kT

U S (Z)− u∗k(x̄n, ν)
∣

∣

∣
< ǫ∗k, (32)

where ǫ∗k is close to κ∗k. Once the kth control situation recurs, in other words, when the NN input
Z (t) enters area Ωϕd

, the previously learned constant network W̄ kT

U S(Z) in the kth control situation will
provide precise approximation for u∗k(x̄n, ν). We assume that all the N+1 different control situations are
trained in the first identification/training phase in advance, based on the adaptive neural controller (28),
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and then a bank of candidate pattern-based experienced controller is constructed using the learned
constant RBF NNs. Each candidate controller corresponds to a specific type of control situation, which
can be described as

ΣU =
{

uk
L = −cnζn + W̄ kT

U S(Z)|k = 0, 1, 2, . . . , N
}

. (33)

Under the action of the correct experience-based controller, improved control performance can be obtained
for each control situation of plant (1), and a detailed proof of theorem will be given in the last pattern-
based control phase.

Here ends the first identification phase, and pattern-based candidate controllers (which are all
experience-based controllers) are constructed for each control situation, which will provide a candidate
controller bank for the last pattern-based control phase.

Remark 1. For a system that is operating normally, when the control situation changes abruptly,
the internal dynamics of the system changes accordingly. How to rapidly and correctly recognize the
occurrence and type of the sudden change is a challenging issue. To solve this difficulty, the second phase
of identification is introduced in Subsection 3.2, where the current normal experience-based controller
(CNEBC) will play an important role in the implementation process.

3.2 The second identification phase

For the controlled plant operating stably with multiple control situations, when the control situation
changes, the internal nonlinear dynamics will change accordingly. It is difficult to figure out which part
of the nonlinear dynamics has changed since the system dynamics is normally unknown. Benefiting from
the candidate controller constructed in the first identification phase as given by (33), in this identification
phase, we will identify the underlying system dynamics fk

i (·), i = 1, 2, . . . , n of plant (1) under the
action of CNEBC. However, from the system transformation (11), it is seen that the nonlinear dynamics
F k(x̄n, u) contains all the dynamic characteristics of plant (1). Then, only one synthetic nonlinear
dynamics F k(x̄n, u) needs to be identified for the nth order system (1). Because the newly defined state
~n is not available for measurement, the observer is used again to estimate ~n.

We assume that plant (1) is operating normally in the sth control situation (also known as pattern s),
and us

L as given by (33) denotes the corresponding CNEBC. The transformed system (11) controlled by
CNEBC us

L in different control situation can be expressed as

{

~̇i = ~i+1, 1 6 i 6 n− 1,

~̇n = F s,k(x̄n, u
s
L), n > 2,

(34)

where k = 0, 1, 2, . . . , N, s ∈ {0, 1, 2, . . . , N}.

Assumption 2 ([33, 37]). The states of (1) are uniformly bounded when the plant is controlled by
CNEBC us

L, s ∈ {0, 1, 2, . . . , N} when operating in the N + 1 different control situations.

Since the change of control situation can also be regarded as a system failure, and this assumption
is a formal one in the literature of fault diagnosis (e.g., [33] and the references therein). The reason for
introducing such a uniform boundedness assumption is that for design and analysis of a fault detection
and isolation scheme, the system states and controls must be measurable signals and so remain bounded
before and after the occurrence of a fault (i.e., before and after the control situation changes).

By recalling the observer (13), we construct the following dynamical RBF NN identifier to learn the
synthetic unknown nonlinear dynamics in (34), which is expressed as

˙̂
~n = −ak(~̂n − ςn/r

n−1) + Ŵ s,kT

F SF (ZF ), (35)

where ~̂n denotes the identifier state, ςn/r
n−1 is the state of observer (13), ak denotes a design positive

constant, and Ŵ s,kT

F SF (ZF ) is used to approximate F s,k(x̄n, u
s
L) with the NN input ZF = [x̄T

n , u
s
L]

T. We
consider the adaptive update law as shown below:

˙̂
W s,k

F = Γk
F [−SF (ZF )~̃n − σk

F Ŵ
s,k
F ], (36)

where ~̃n = ~̂n − ςn/r
n−1, Γk

F = ΓkT

F > 0, and σk
F > 0 are design constants. Let W̃ s,k

F = Ŵ s,k
F −W ∗s,k

F ,

where W ∗s,k
F denotes the optimal constant neural weight vector.
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From Lemma (1) and the definition of ~n, we have ςn/r
n−1 − ~n = −rφ(n). Utilizing the local

approximation property of RBF NN, the entire identification error system consisting of system (34),
dynamical identifier (35), observer (13), and neural update law (36) can be represented as

[ ˙̃
~n

˙̃
W

s,k

Fζ

]

=

[

−ak
ST
Fζ(ZF )

−Γk
FζSFζ(ZF ) 0

][

~̃n

W̃
s,k

Fζ

]

+

[

κ
s,k

ζ + rφ(n+1)

−σk
FΓ

k
FζŴ

s,k

Fζ

]

, (37)

and
˙̃W s,k

F ζ̄
= −Γk

F ζ̄SF ζ̄(ZF )~̃n − σk
FΓ

k
F ζ̄Ŵ

s,k

F ζ̄
, (38)

where κs,k
ζ = κs,k−W̃ s,kT

F ζ̄
SF ζ̄(ZF ), κ

s,k = F s,k(ZF )−W ∗s,kT

F SF (ZF ). (·)iζ and (·)iζ̄ represent the regions

that are near and far away from the trajectory ZF , respectively. Based on the analysis in Theorem 1, we
know that the states xi, i = 1, 2, . . . , n are recurrent signals. By combining Assumption 2, xi will also be
a kind of recurrent signal. Furthermore, notice that us

L (as given by (33)) is a function of xi and xd, which
are all recurrent signals; thus, us

L is also a recurrent signal. Therefore, the NN input ZF = [x̄T
n , u

s
L]

T

follows the recurrent trajectory and the partial PE condition of SFζ(ZF ) is further established based on

the results in [24]. According to the stability results in [45], the exponential convergence of ~̃n and W̃ s,k
Fζ

of the nominal part of (37) can be obtained. Notice that φ(n+1) 6 Hn+1; thus, both |κs,k
ζ + rφ(n+1)|

and ‖σk
FΓ

k
FζŴ

s,k
Fζ ‖ can be small values by choosing enough small r and σk

F . Based on Lemma 4.6

in [46], W̃ s,k
Fζ will exponentially converge to a small region around zero with the convergence area being

determined by |κs,k
ζ +rφ(n+1)| and ‖σk

FΓ
k
FζŴ

s,k
Fζ ‖, which implies that Ŵ s,k

Fζ can converge to a small region

of W ∗s,k
Fζ . Then, we can conclude that, along the trajectory ZF , F

s,k(x̄n, u
s
L) can be accurately identified

by Ŵ s,kT

Fζ SFζ(ZF ) and W̄ s,kT

F SF (ZF ), which can be expressed as

F s,k(x̄n, u
s
L) = Ŵ s,kT

Fζ SFζ(ZF ) + κs,k
Fζ = W̄ s,kT

F SF (ZF ) + κ̄s,k
F , (39)

where κs,k
Fζ and κ̄s,k

F are close to κ∗s,k
F , and W̄ s,k

F = meant∈[t′a,t′b]
Ŵ s,k

F (t) denotes a constant neural weight

vector learned in the second identification phase with t′b > t′a > 0 representing a time interval after the
transient process. Similar to (32), for the experienced recurrent trajectory Zk

F , there are small constants

d∗s,kF > 0 and ǫ∗s,kF > 0 that describe a local region ΩF,Zk
F
along Zk

F , such that

dist((x̄n, u
s
L), Z

k
F (t)) < d∗s,kF ⇒

∣

∣

∣
W̄ s,kT

F SF (ZF )− F s,k(x̄n, u
s
L)
∣

∣

∣
< ǫ∗s,kF , (40)

where ǫ∗s,kF denotes the NN identification error and ǫ∗s,kF is close to κ∗s,k
F . That is, under the action of

CNEBC us
L, the unknown synthetic nonlinear dynamics F s,k(x̄n, u

s
L) corresponding to the kth control

situation can be represented by the constant NN W̄ s,kT

F SF (ZF ) with guaranteed approximation accuracy.

Then, a set of dynamic estimators is constructed using W̄ s,kT

F SF (ZF ) as

˙̄
~
k
n = −b(~̄kn − ςn/r

n−1) + W̄ s,kT

F SF (ZF ), (41)

where ~̄kn (k = 0, 1, 2, . . . , N) denotes the state of (41), b > 0 is a design constant, and W̄ s,kT

F SF (ZF )
is the constant NN learned in the previous training phase. With the dynamic model (41), which can
be regarded as training patterns, rapid recognition of change in control situation for plant (1) will be
achieved in Section 4.

4 Online recognition and control phases

Now let us assume that the controlled plant (1) is currently operating stably in pattern 0 and is controlled
by u0

L (as given by (33), where s = 0). Due to some unknown factors, the control situation of plant (1)
changes to the jth control situation at an unknown instant. Then, how to rapidly recognize the occurrence
and type of changes and achieve precise control is a very important as well as challenging issue. Based
on the dynamic model (41) constructed in Subsection 3.2 and the candidate experience-based controllers
as given by (33), a novel rapid recognition and control scheme will be proposed in Subsections 4.1 and
4.2, and the block diagram of the overall pattern-based control is shown in Figure 2.
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Figure 2 (Color online) Block diagram of pattern-based control.

4.1 Rapid recognition scheme

If the control situation of plant (1) changes from the 0th to the jth (j ∈ {0, 1, . . . , N}), the synthetic
dynamics F 0(x̄n, u

0
L) changes to F j(x̄n, u

0
L) accordingly, and the following assumption is introduced.

Assumption 3 ([33, 37]). For the controlled system under us
L as given by (33), s ∈ {0, 1, . . . , N}, the

difference in dynamics between different control situations satisfies |F s,k(x̄n, u
s
L)−F s,j(x̄n, u

s
L)| > 2µs,k

F ,

k, j ∈ {0, 1, . . . , N} and k 6= j, where µs,k
F > κ∗s,k

F is a positive constant with κ∗s,k
F being the ideal

identification error.

In dynamical pattern recognition based on NN [32], Assumption 3 is reasonable, because even ideal NN
identification has approximation errors. If the system dynamic difference is less than the approximation
error, then the NN-based pattern recognition will not be guaranteed, which is a sufficient condition for
effective recognition. We refer the interested readers to Lemma 1 in [33] for details.

Then, by comparing the dynamics of the nth subsystem of (34) under u0
L with the N + 1 dynamic

estimators as given by (41) (where s = 0), and combining ςn/r
n−1−~n = −rφ(n), the following recognition

residual system is obtained as

˙̃
~
k
n = −b~̃kn + W̄ 0,kT

F SF (ZF )− F 0,j(x̄n, u
0
L) + rφ(n+1), (42)

where k = 0, 1, . . . , N , ~̃kn = ~̄kn − ςn/r
n−1, |W̄ 0,kT

F SF (ZF )−F 0,j(x̄n, u
0
L)| denotes the dynamic difference

between the controlled system and the kth dynamic model, and j ∈ {0, 1, . . . , N} denotes that the
controlled system is operating in the jth control situation. Similar to the analysis of Theorem 2 in [32],
by selecting enough small r, the synchronization residual ~̃k will exponentially converge to a small region
around zero with the size of the region being determined by the difference between the system dynamics
of the current control situation and the dynamic estimators.

Based on [32,33], the L1 norm of ~̃k is used to measure the difference between the system dynamics of
the current control situation (34) and the dynamic model (41) as

‖~̃kn(t)‖1 =
1

T0

∫ t

t−T0

|~̃kn(ı)|dı, t > T0, (43)

where k = 0, 1, . . . , N , 0 < T0 6 T , and T denotes the period of the reference trajectory, with which the
rapid recognition can be realized and Theorem 2 is concluded as follows.

Theorem 2. Considering the recognition residual system (42) consisting of system (34) in the jth
control situation, observer (13), dynamic estimators (41) with Assumptions 2 and 3, we have that rapid
recognition of the recurring jth control situation can be realized by comparing the average L1 norm of
the recognition residual (43).
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To detect the change of the control situation of plant (11), through the differences between system
dynamics of (34) and a series of dynamic estimators, the occurrence and type of the change in control
situation can be rapidly recognized. To be more specific, if the control situation of the controlled system
(11) does not change, i.e., Eq. (11) is operating normally in pattern 0, the dynamic model representing
pattern 0 matches the controlled system (11); thus, the corresponding recognition residual ‖~̃0n(t)‖1 will
be the smallest one among all the recognition residuals ‖~̃kn(t)‖1 (k = 0, 1, . . . , N). If the control situation

change to the jth (j ∈ {1, 2, . . . , N}) one at time t0j , the previous learned constant RBF NN W̄ 0,jT

F SF (ZF )
embedded in the dynamic model j will quickly provide an accurate approximation for F 0,j(x̄n, u

0
L); thus,

the corresponding recognition residual ‖~̃jn(t)‖1 will decrease, while the others including ‖~̃0n(t)‖1 will be
larger than ‖~̃jn(t)‖1, which implies that the recurring jth control situation can be rapidly recognized
at time t0j′ . Thereafter, based on the recognition results, the correct experienced candidate controller

uj will be quickly selected to control the current system for improved control performance. For detailed
proof of Theorem 2, we refer the readers to [32, 33].

Remark 2. It is noted that the dynamic model (41) is actually a representation of the unknown
dynamics of system (34). Therefore, when the control situation of the controlled plant changes, accurate
recognition can be realized by comparing the dynamic matching between the current system dynamics
and the set of dynamic estimators (as given by (41)). Because no further online parameter estimation is
required, the recognition process can be done rapidly.

4.2 Pattern-based control

Following Subsection 4.1, the controlled system is initially (t > t0) operating stably in pattern 0 under
CNEBC u0

L (as given by (33)). Due to some unknown factors, the control situation changes from the
0th to the jth (j ∈ {1, 2, . . . , N}) at time t0j , the internal system dynamics will change accordingly, and
the current (changed) system is still controlled by u0

L before the change is recognized. Based on the
rapid recognition scheme proposed in Subsection 4.1, the changed jth control situation can be recognized
rapidly at time t0j′ . Then, based on the recognition result, the correct candidate experienced controller uj

L

is quickly selected to control the current controlled system for improved control performance. However,

when uj
L is selected at time t0j′ , the initial neural input of the constant RBF NN W̄ jT

U S(Z) embedded

in uj might be beyond the region Ωϕd
(as given by (32)); thus, a high gain experienced controller uj′

L

is put into use first for a short period of time [t0j′ , t0j′′ ], after then, uj
L is selected. In summary, the

pattern-based control process for the controlled system can be described as































































~̇i = ~i+1, 1 6 i 6 n− 1,

~̇n = F 0(x̄n, u
0
L), if t0 6 t < t0j ,

~̇i = ~i+1, 1 6 i 6 n− 1,

~̇n = F j(x̄n, u
0
L), if t0j 6 t < t0j′ ,

~̇i = ~i+1, 1 6 i 6 n− 1,

~̇n = F j(x̄n, u
j′

L ), if t0j′ 6 t < t0j′′ ,

~̇i = ~i+1, 1 6 i 6 n− 1,

~̇n = F j(x̄n, u
j
L), if t0j′′ 6 t < tj ,

(44)

where the corresponding candidate experienced controllers are given by














u0
L = −cnζn + W̄ 0T

U S(Z), if t0 6 t < t0j′ ,

uj′

L = −chnζn + W̄ jT

U S(Z), if t0j′ 6 t < t0j′′ ,

uj
L = −cnζn + W̄ jT

U S(Z), if t0j′′ 6 t < tj ,

(45)

where chn denotes the high control gain satisfying chn ≫ cn.
By combining the constructed candidate experienced controllers, as given by (33), and the proposed

rapid recognition scheme, the controlled system (1) will keep stable with prescribed tracking performance
as described by (4), even in the presence of changes in control situation. Theorem 3 is concluded as
follows.
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Theorem 3. Consider the pattern-based closed-loop control system consisting of controlled system (44),
prescribed performance condition (4), reference model (3), observer (13), candidate experienced con-
trollers (45) with the virtual control laws (17) and (22). For the same recurrent trajectory ϕd(0) and
initial condition x(0) as in Theorem 1, by choosing the appropriate parameters, we have that all closed-
loop signals are bounded and the tracking error e1 = x1 − yd exponentially converges to a small region
around zero with prescribed performance (4).

Proof. (i) When the controlled system is operating in pattern 0 and controlled by CNEBC u0
L for

t0 6 t < t0j , based on (20), (23), and (30), the error systems can be described as















ζ̇1 = ̺ (−c1ζ1 + ζ2 − ẽ2 + y2) ,

ζ̇i =−ciζi+ζi+1−ζi−1+yi+1, 26 i6n−1,

ζ̇n = G0
χ(−cnζn + W̄ 0T

U S(Z)− u∗0(x̄n, ν))− rφ(n+1) − ζn−1.

(46)

Consider the Lyapunov function candidate as

V 0 =
ζ21
2̺

+

n
∑

i=2

1

2
ζ2i +

n−1
∑

i=1

1

2
y2i+1. (47)

It is easy to see that V 0 is positive definite. We have

V̇ 0 = ζ1ζ̇1/̺−
˙̺

2̺2
ζ21 +

n
∑

i=2

ζiζ̇i +
n−1
∑

i=1

yi+1ẏi+1

=−
n−1
∑

i=1

ciζ
2
i −

˙̺

2̺2
ζ21 +

n−1
∑

i=1

ζiyi+1 −ζ1ẽ2+
n−1
∑

i=1

[

−
y2i+1

τi+1
+ yi+1Φi+1

]

−Gk
χcnζ

2
n

+Gk
χζn[W̄

0T

U S(Z)−u∗0(x̄n,ν)]−rφ(n+1)ζn. (48)

Similar to (A3) in Appendix A, by combining (32) and Young’s inequality, the following inequality holds:

G0
χζn[W̄

0T

U S(Z)− u∗0(x̄n, ν)] 6 G02

maxcn1ζ
2
n+

ǫ∗0
2

4cn1
. (49)

Then, combining (A3) and (A4), we can obtain

V̇ 0
6 −

n
∑

i=1

Ξ′ζ2i +

n−1
∑

i=1

[

−
1

τi+1
+

1

4
+

M2
i+1

4ω

]

y2i+1 + i
0, (50)

where i0 = ǫ∗0
2

/4cn1 + r2/4(H2
2/c11 +H2

n+1/cn2) + (n− 1)ω, c1 = Ξ′ + c11 + 1− ˙̺/2̺, ci = Ξ′ + 1 (i =

2, 3, . . . , n − 1), G0
mincn = Ξ′ + G02

maxcn1 + cn2 with Ξ′ being a positive design constant, and the time
constant is set as 1/τi+1 = Ξ′ + 1/4 +M2

i+1/4ω. Similar to Theorem 1, let γ0 = min{2̺Ξ′, 2Ξ′} and we
have

V̇ 0
6 −

n
∑

i=1

Ξ′ζ2i −

n−1
∑

i=1

Ξ′y2i+1 + i
0
6 −γ0V 0 + i

0. (51)

Then, the following inequality holds:

V 0
6

i0

γ0
+

(

V 0(0)−
i0

γ0

)

exp(−γ0t). (52)

Similar to the analysis in Theorem 1, it can be concluded that all closed-loop signals are bounded, and
the tracking error e1 = x1 − xd,1 converges exponentially to a small region around zero with PP (4).

(ii) When the control situation changes from the 0th to the jth at time t0j , and the system dynamics
F 0(x̄n, u

0
L) changes to F

j(x̄n, u
0
L) (j ∈ {1, 2, . . . , N}) accordingly as given by (44), based on Assumption 2,

all the states of the controlled system are uniformly bounded before the change in control situation is
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detected. According to the rapid recognition scheme, the sudden change is recognized rapidly at time
t0j′ , where t0j′ > t0j with [t0j , t0j′ ] being a short period of time. Based on rapid recognition, the

correct candidate experienced controller uj is quickly selected to control the current controlled system.

Considering the moment at which uj is selected, the NN input value of W̄ jT

U S(Z) embedded in uj might

be beyond the region Ωϕd
as given by (32), i.e., |W̄ jT

U S(Z)− u∗j(x̄n, ν)| might be a large value; thus, an

appropriate high gain experienced controller uj′ , as given by (45), is implemented first at time t0j′ , and

the system dynamics F j(x̄n, u
0
L) changes to F j(x̄n, u

j′

L ) accordingly as given by (44). Then, the error
systems can be described as















ζ̇1 = ̺ (−c1ζ1 + ζ2 − ẽ2 + y2) ,

ζ̇i = −ciζi+ζi+1−ζi−1+yi+1, 2 6 i 6 n−1,

ζ̇n = Gj
χ(−chnζn + W̄ jT

U S(Z)− u∗j(x̄n, ν))− rφ(n+1) − ζn−1,

(53)

where chn ≫ cn is the high control gain. Consider the Lyapunov function candidate as V j =
ζ2
1

2̺ +
∑n

i=2
1
2ζ

2
i +

∑n−1
i=1

1
2y

2
i+1. Similar to the analysis in step (i) of this proof, the large chn is selected to

compensate the possible large |W̄ jT

U S(Z)−u∗j(x̄n, ν)|. Then ij as given in (51) can be made very small,
and we can obtain

V j
6

ij

γj
+

(

V j(0)−
ij

γj

)

exp(−γjt). (54)

From (54), we can conclude that the tracking error e1 = x1 − xd,1 will converge exponentially to a small

region around zero with PP (4) quickly; thus, the NN input Z embedded in uj
L is pulled back to region

Ωϕd
. Hereafter, the normal candidate experienced controller uj

L is selected at time t0j′′ , and the system

dynamics F j(x̄n, u
j′

L ) changes to F j(x̄n, u
j
L) accordingly.

(iii) After a rapid recognition process, the controlled system re-enters a new normal operating stage.
That is, the controlled system is currently operating in pattern j and controlled by the experienced
controller uj

L. Therefore, similar to step (i) of this part, the error systems can be described as















ζ̇1 = ̺ (−c1ζ1 + ζ2 − ẽ2 + y2) ,

ζ̇i = −ciζi+ζi+1−ζi−1+yi+1, 2 6 i 6 n−1,

ζ̇n = Gj
χ(−cnζn + W̄ jT

U S(Z)− u∗j(x̄n, ν))− rφ(n+1) − ζn−1.

(55)

According to step (i) of this part, we obtain that the tracking error e1 will converge exponentially to a
small region around zero with PP (4).

As can be seen from the above analysis, all the closed-loop signals of the pattern-based control system
are bounded, and the tracking error e1 = x1 − xd,1 converges exponentially to a small region around zero
with PP (4) even in the presence of changes in control situation.

Remark 3. The proposed pattern-based control scheme distinguishes itself from existing methods
(e.g., [20,22,38]). Compared with existing MMAC methods [20,22], which still belong to the category of
adaptive control and lack research on knowledge acquisition, the scheme proposed in this article achieves
accurate modeling/learning of different control situations, thereby significantly reducing the number of
model sets. When the control situation changes suddenly, the type of the current control situation can
be rapidly and accurately recognized, and the correct experience-based controller is selected to obtain
superior control performance (while in MMAC, the closest controller is first selected, and then the control
performance is gradually improved through online adjustment). For the experience-based controllers as

given by (33), compared with the adaptive neural controller (28), the constant RBF NNs W̄ kT

U S(Z) are

employed instead of the estimated RBF NNs Ŵ kT

U S(Z) (k = 0, 1, . . . , N). Thus, when the same control

task recurs, W̄ kT

U S(Z) can rapidly provide an accurate approximation for the unknown dynamics, and no
further online parameter estimation is required in the control process, so the improved control performance
with faster response and less computation cost can be achieved. Moreover, compared with the previous
work [38], this paper proposes a pattern-based control method with PP based on system transformation,
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which greatly reduces the complexity of the control design. To be specific, for the controller design of
each control situation, the proposed method uses only one NN unit (while n in [38]). In the pattern
recognition process, for one change in the control situation, only N +1 dynamic estimators are needed to
be constructed (n× (N +1) are required in [38]). Therefore, this study proposes a more effective control
method for high-order systems, especially when n and N are large.

5 Simulation studies

In order to show the feasibility of the proposed pattern-based intelligent control approach, we consider
the following nonlinear system with three different control situations (patterns):















ẋ1 = fk
1 (x1, x2),

ẋ2 = fk
2 (x̄2, u), k = 0, 1, 2,

y = x1,

(56)

where y = x1 is the output of the system, fk
i (·) (i = 1, 2, k = 0, 1, 2) denote the unknown nonlinearities

corresponding to three different patterns, f0
1 (x1, x2) = x1 + x2 +0.1x3

2, f
0
2 (x̄2, u) = x1x2 +0.2(1+ x2

1)u+
0.1sin(u), f1

1 (x1, x2) = x1 + x2 + 0.2(1 + x2
1)x

3
2, f

1
2 (x̄2, u) = x1x2 + 0.2(1 + x2

1)u + 0.1sin(u), f2
1 (x1, x2) =

x1+x2+0.4x3
2, f

2
2 (x̄2, u) = x1x2+0.15(1+x2

2)u. It is easy to prove that system (56) satisfies Assumption 1.
Our control objective is to drive the system output y to accurately track the desired reference trajectory
yd = sin(t) + cos(0.5t) with guaranteed predefined performance when the plant operating in multiple
different control situations. The initial condition is chosen as [x1(0), x2(0)]

T = [1, 0]T. In this simulation,
from (4), we have −̟ρ(t) < e1(t) < ̟ρ(t), where ̟ = ̟ = 1, the performance function is given as
ρ(t) = (1− 0.05)e−1.2t + 0.05. The observer is defined as

{

rς̇1 = ς2,

rς̇2 =−h1ς2−ς1+y(t),
(57)

where h1 = 2, r = 0.01. According to transformation (11), the transformed system states ~1 = x1 and

~2 = ẋ1 = fk
1 (x1, x2) (k = 0, 1, 2). Then, from (57), the state estimate is ~̂ = [ς1, ς2/r]

T.

5.1 Simulation of identification

In the first identification phase, the adaptive controller uk = −c2ζ2+Ŵ kT

U S(Z) (as given by (28)) and the
corresponding virtual control law α2 = −c1ζ1 + ρ̇(t)/ρ(t)e1+ ẏd are used to achieve learning in the stable
adaptive control process, where ζ1 is defined in (9), ζ2 = ς2/r − α2f , the first-order filter is designed as
τ2α̇2f +α2f = α2 with τ2 = 0.01. The weight update law is given by (29), and the NN input Z = [x̄T

2 , ν]
T,

where υ = −α̇2f + ζ1. In the simulation studies, we construct the Gaussian RBF NN W kT

U S(Z) using
1053 nodes, with the centers ξi evenly spaced on [−3, 3]× [−3, 3]× [−4.5, 4.5], the widthes are designed
as ηk1 = ηk2 = ηk3 = 0.75, the design parameters are chosen as c1 = 4, c2 = 8, Γk

U = 8 and σk
U = 0.0001,

and the initial weights are set as Ŵ k
U (0) = 0, k = 0, 1, 2.

Simulation results for the first identification phase are given in Figures 3–8. Due to space limitations,
only the simulation results of pattern 0 (i.e., k = 0) are shown here. The simulation results of the other two
patterns are similar to these. From Figures 3 and 4, it is seen that the system output tracks the reference
trajectory well. Figure 4 shows the output tracking error with and without PP, respectively. The con-
vergence of partial neural weights Ŵ 0

U is demonstrated in Figure 5. Based on (31), excellent convergence

of the neural weights can be obtained when t = [280, 300] s, and we have W̄ 0
U = meant∈[t0280,t

0
300]

Ŵ 0
U (t).

Through DL, the implicit desired control dynamics u∗0(Z) of the plant can be accurately identified by

the learned constant RBF NN W̄ 0T

U S(Z), as shown in Figure 6. Using the learned knowledge, a set of
pattern-based candidate controllers as given by (33) is constructed. Under the experience-based con-
troller, it is seen from Figure 7 that improved tracking performance can be achieved and the PP is still
satisfied.

In the second identification phase, we assume that the plant is initially operating in pattern 0 (which
is regarded as the current normal control situation) and is controlled by u0 (as given by (33), k = 0).
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Figure 3 (Color online) System output y and reference signal

yd.

Figure 4 (Color online) Tracking error e1 of ANC and PP
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Ŵ 0
U .
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Figure 8 (Color online) Partial parameter convergence Ŵ 0,1

F
.

Based on the design in Subsection 3.2, in this simulation, we construct the Gaussian RBF network

W s,kT

F SF (ZF ) using 1053 nodes, with the centers ξi evenly spaced on [−3, 3]× [−3, 3]× [−4.5, 4.5], and
the width is 0.75. The design parameters are set as ak = 4, Γk

F = 5, σk
F = 0.0001. The initial weights

Ŵ s,k
F = 0, s = 0, 1, 2, k = 0, 1, 2, and the initial states [x1(0), x2(0)]

T
= [1, 0]

T
.

The simulation results of the second identification phase for pattern 1 under u0
L are given in Figures 8

and 9. Figure 8 illustrates the convergence of partial neural weights Ŵ 0,1
F , we can see that excellent

convergence can be achieved in the last 20 s, and it is obtained that W̄ 0,1
F = meant∈[t′280,t

′

300]
Ŵ 0,1

F (t).

Through DL, the unknown nonlinear dynamics F 0,1(x̄2, u
0
L) (as defined in (34)) is accurately identi-

fied by the learned constant NN W̄ 0,1T

F SF (x̄2, u
0
L), as shown in Figure 9. In the same way, all the

unknown nonlinear dynamics F s,k(x̄2, u
s
L), k = 0, 1, 2, s = 0, 1, 2 are accurately identified by constant
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NNs W̄ s,kT

F SF (x̄2, u
s
L). By the way, the tracking performance will be poor while the operating plant

is controlled by the non-matching controller, for example, the plant operating in pattern 1 but is

controlled by u0
L, as illustrated in Figure 10. Using the learned constant NNs W̄ s,kT

F SF (ZF ), a set
of dynamic estimators representing different control situations (as given by (41)) is constructed as
˙̄
~k2 = −b(~̄k2 − ς2/r) + W̄ s,kT

F SF (ZF ), s = 0, 1, 2, k = 0, 1, 2.

5.2 Simulation of recognition and pattern-based control

In this simulation, the changing sequence of the control situation (pattern) is set as 0 (0 < t 6 50) →
2 (50 < t 6 100) → 0 (100 < t 6 150) → 1 (150 < t 6 200) → 2 (200 < t 6 250). The plant is originally
operating in pattern 0, and due to some reasons, the control situation may change abruptly at an unknown
moment. When the jth (j ∈ {0, 1, 2}) control situation (which has been trained in the identification
phase) recurs, by comparing the constructed dynamic estimators (41) with the monitored system (34),
the recognition residual systems as given by (42) are obtained, where k = 0, 1, 2, j ∈ {0, 1, 2}, s ∈ {0, 1, 2},
the design parameter b = 4.

When the control situation changes, the corresponding average L1 norms ‖~̃k2(t)‖1 (k = 0, 1, 2) change
accordingly. Because there is only one dynamical subsystem in the transformed system (34), only one
set of residuals is needed for comparison to achieve rapid recognition, as shown in Figure 11. From
Figure 11, it is seen that the first change of the control situation is recognized at t = 51.1 s, and then
the experience-based candidate controller u2

L corresponding to the pattern 2 is selected. As analyzed in

Subsection 4.2, a high-gain controller u2′

L (as given by (45)) is first implemented for pattern 2 at time 51.1
s for a short period of time, such that the neural inputs embedded in u2

L enter into the approximation
region Ω2

Zd
rapidly, and then u2

L is selected at time 52 s to achieve superior tracking performance. The

design parameters in (45) are set as c1 = 3, c2 = 7, ch1 = ch2 = 20. In the same way, other changes are
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rapidly recognized and the corresponding experience-based candidate controller is correctly selected, as
shown in Figures 11 and 12. It is seen from Figure 12 that the correct experience-based controller can
be selected rapidly after the change of the control situation. In the entire pattern-based control process,
Figure 13 shows the control signal u, and the control performance is illustrated in Figure 14. From
the simulation results, it is clear that based on the proposed pattern-based intelligent control scheme,
guaranteed stability and improved control performance can be achieved.

Remark 4. It is seen from Theorems 1 and 3 that the tracking and approximation performance is
related to the selection of design parameters, including control gain ci, NN parameters ξi, ηi, and l,
observer parameters r and hi, weight update parameters ΓU , σU . The choice of observer parameters
needs to satisfy the conditions in Lemma 1, and the choice of other parameters needs to meet the design
requirements in theorem analysis. However, the values, such as the upper and lower bounds of gi(·),
ideal neural weight ‖W ∗‖, and ideal approximation error κ∗, are generally unknown, so it is difficult
to directly calculate the specific values of the design parameters. For NN parameters, theoretically, in
order to achieve good tracking and approximation performance, the center ξi, the width ηi, and the node
number l of the RBF NN are appropriately chosen so that all neurons cover the entire NN input trajectory.
However, how to select these parameters to achieve the optimal tracking and approximation performance
is still an open problem. In the simulation studies, the parameters are tuned by a trial-and-error method.

Remark 5. For the proposed pattern-based control scheme, both in the phase of construction of can-
didate controllers and in the pattern recognition phase, the complexity of the control design has been
significantly reduced. From the implementation point of view, for an n-order system, only one NN unit is
used to construct the controller, which avoids the recursive analysis process in the PE condition verifica-
tion process of the neural network. In the pattern recognition phase, only one set of dynamic estimators
needs to be constructed to achieve accurate classification for each control situation, which avoids the
NN training of each subsystem of the original system (1), and by comparing one set of residuals, sudden
changes in control situation can be rapidly recognition, as shown in Figures 11 and 12. As a result,
based on the proposed scheme, autonomous learning, decision-making, and high-performance control can
be realized in a simpler way. In addition, from the computational point of view, the constructed can-
didate experience-based controller does not need to adjust any estimated parameters online, and only
one NN unit is used for each pattern, which brings numerous benefits in terms of the computational
burden. For example, in both ANC and LC of pattern 0, the simulation time is set to 300 s on the same
computing device, and the running time is 85 and 29 s, respectively. Using the method in the previous
studies (e.g., [30, 38]), the running time is 199 and 105 s, respectively. Therefore, compared with the
ANC method in this paper, the LC scheme saves nearly 2/3 of the time, and compared with the existing
methods, it saves more than 70% of the time, and the calculation efficiency is significantly improved.

6 Conclusion

This study has proposed a pattern-based intelligent control scheme for pure-feedback systems with PP.
In the first identification phase, the original pure-feedback system is simplified into a normal nonaffine
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system by a state transformation technique. Based on PP combined with an error transformation method,
the proposed HGO-based ANC approach for each control situation not only achieves guaranteed system
stability and prescribed tracking control performance using only one NN approximator but also realizes
the real learning capability. Accurate identification of the closed-loop dynamics of the transformed system
is obtained, an experience-based controller is developed using learned knowledge to achieve improved
control performance, and a bank of pattern-based candidate controllers is constructed for different control
situations. In the second identification phase, with the HGO, the unknown dynamics of the transformed
system is accurately identified, and only one set of dynamic estimators needs to be constructed for the
classification of different control situations. In the recognition phase, by comparing the set of dynamic
estimators with the monitored system, the change of the control situation at an unknown time can be
rapidly recognized based on the minimum residual principle using only one set of residuals. Finally, in the
pattern-based control phase, according to the recognition results, the correct candidate experience-based
controller is selected to control the plant for superior control performance. The simulation results verified
the efficacy of the proposed approach. This study provides a simple general framework for pattern-based
control with multiple control situations. Moreover, problems in actual systems, such as input saturation
and unknown control directions, which are also important issues, have not been considered. The analysis
and design of pattern-based learning and control with input saturation and unknown control directions
will be a challenging opportunity for future work.
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Appendix A Proof of Theorem 1
In this proof, the convergence of the tracking error e1 with PP (4) is achieved for different control situations, and then accurate

identification/learning of the transformed implicit desired control dynamics is further obtained in the stable adaptive control

process.

(1) Consider the Lyapunov function candidate as

V k
ζ =

ζ2
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+
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i +
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It is easy to see that V k
ζ is positive definite. By combining (19), (20), (23), (29), and (30), we have
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According to Lemma 1 in [27], for the bounded S(Z), there is a limited positive constant s∗ satisfying ‖S(Z)‖ 6 s∗. By combining

Assumption 1, Lemma 1, (19), and the Young’s inequality, we have
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Noticing that W̃k
U = Ŵk

U − W∗k
U and ‖Φi‖ < Mi, we have −σk
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By substituting (A3) and (A4) into (A2), we have
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where k
k = σk

U‖W∗k
U ‖2 + κ∗k2/4cn1 + r2/4(H2

2/c11 +H2
n+1/cn2) + (n− 1)ω. The corresponding design parameters are chosen as
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with Ξ being a positive design constant, and the time constant is chosen inductively as 1/τi+1 = Ξ + 1/4 + M2
i+1/4ω. Let

γ = min{2̺Ξ, 2Ξ} and we have
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Then, the following inequality holds:
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Therefore, by combining (A1) and (A7), ζi (i = 1, 2, . . . , n), yj+1 (j = 1, 2, . . . , n−1), and W̃k
U are uniformly bounded. Furthermore,

we obtain that Ŵk
U is bounded due to Ŵk

U = W∗k
U + W̃k

U as well as the boundedness of Wk
U . Since ζ1, xd,1, and xd,2 are bounded

and e1 = x1 − xd,1, x1 and α2 are bounded. Owing to the boundedness of y2 and y2 = α2f − α2, one has that α2f is bounded.

Furthermore, since ζ2 is bounded and ζ2 = ς2/r − α2f , we obtain that ς2/r is bounded. Based on Lemma 1, ς2/r converges to ~2;

thus, it follows that ~2 is bounded. According to (11), we have that x2 is bounded. In the similar way, we can obtain that the

states xi, ~i, i = 3, 4, . . . , n and the control uk (k ∈ {0, 1, 2, . . . , N}) corresponding to the kth control situation are all bounded.

Furthermore, by combining (A1) and (A7), we can obtain that, given any ε >
√

2kk/γ, there exists a finite time Tk such that,

for all t > Tk, the unconstrained error ζ1 satisfies |ζ1| 6 ε. That is, ζ1 can converge to a small region around zero in a finite

time Tk since ε can be made arbitrarily small by appropriately choosing the design parameters. By recalling (4) and (6), we can

conclude that the system output tracking error e1 will converge to a small region around zero in a finite time Tk according to PP

(4).

(2) Accurate convergence of the estimated parameters commonly requires the satisfaction of PE condition1), which is also the

basic factor for the occurrence of learning [2]. In this part, accurate convergence of the estimated neural weight Ŵk
U to the ideal

weight W∗k
U will be obtained. To solve this issue, on the basis of results in [24], a partial PE condition of Sζ(Z) is required.

Therefore, we need to verify first that all the signals in Z = [x̄T
n , ν]T are recurrent. From step (1) of this proof, e1 = x1 − xd,1

converges to a small region around zero with PP (4) for t > Tk; thus, x1 will be a recurrent signal with the same period as the

recurrent reference signal xd,1. According to the exponential convergence of ζ1, e1 and y2, from (17), we can conclude that α2

follows the recurrent signal xd,2. Because y2 = α2f − α2, α2f also becomes a recurrent signal with the same period as α2. Due to

the exponential convergence of ζ2 and ζ2 = ς2/r − α2f , ς2/r becomes a recurrent signal with the same period as α2f . Thereafter,

based on Lemma 1, ~2 becomes a recurrent signal with the same period as ς2/r. From the system transformation as given by (11),

we can conclude that x2 is also a recurrent signal. Similarly and recursively, the states xi (i = 3, 4, . . . , n) and ν are all recurrent

signals. From the above analysis, we obtain that the NN input Z = [x̄T
n , ν]T is recurrent, and then the partial PE condition of the

regressor subvector Sζ(Z) is established.

By employing the localized RBF network along the recurrent trajectory Z(t) (t > Tk), and combining (30) and (29), we have
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,

where Sζ(Z) denotes the subvector of S(Z), consisting of Gaussian basis functions close to the trajectory Z(t), and ŴUζ denotes

the corresponding NN weight subvector. Furthermore, the subscript (·)ζ̄ denotes the region far away from the trajectory Z(t); thus,

we obtain that |ŴkT

Uζ̄
Sζ̄(Z)| is small. κk

ζ = W̃kT

Uζ̄
Sζ̄(Z) − κk denotes the neural approximation error along Z(t) with |κk

ζ | being

close to |κ∗k|. Since ζn−1 exponentially converges to the vicinity around zero, |rφ(n+1) + ζn−1| can be very small by selecting a

small enough r. Letting ζ̄ = ζn/G
k
max, Eq. (A8) can be rewritten as the following linear time-varying (LTV) system form with a

small perturbation:
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where κ′
k

ζ = (Gk
χκ

k
ζ − rφ(n+1) − ζn−1)/G

k
max. According to Assumption 1, the convergence of ζn−1, κ′

k

ζ , and σk
UΓk

UζŴ
k
Uζ

can be very small by choosing enough small r and σk
U . Noticing that Sζ(Z) satisfies the partial PE condition, according to

Definition 1 of [27], Gk
χS

T
ζ (Z)/Gk

max also satisfies the PE condition. Define Ak(t) = −cnG
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χ and select Pk(t) = Gk2

max/G
k
χ. Then

Ṗk + PkAk + AkT
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χG
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max. From step (1) of this proof, x̄n, Ŵ
k
U , and uk are bounded. By combining

1) Narendra K S, Annaswamy A M. Stable Adaptive Systems. Upper Saddle River: Prentice Hall, 1989.



Zhang F K, et al. Sci China Inf Sci January 2023 Vol. 66 112202:22

0 < Gk
min 6 Gk

χ 6 Gk
max and (25), there is a constant Ḡk satisfying |Ġk

χ| 6 Ḡk. Therefore, we can easily obtain 2cn + Ġk
χ/G

k2

χ > 0

by selecting an appropriate cn. Furthermore, according to Lemma 1 in [26], exponential stability of (A9) is achieved and W̃k
Uζ

converges to the vicinity around zero with the convergence region being determined by κ′
k

ζ and σk
UΓk

UζŴ
k
Uζ , which both are small

values. That is, Ŵk
Uζ could converge accurately to a small region around the ideal W∗k

Uζ . And then, accurate identification/learning

of u∗k(x̄n, ν) is obtained by ŴkT

Uζ Sζ(Z) and W̄kT

U S(Z) as

u∗k(x̄n, ν) = ŴkT

Uζ Sζ(Z) + κk
ζ = W̄kT

U S(Z) + κ̄k, (A10)

where κk
ζ and κ̄k are close to κ∗k, and W̄kT

U S(Z) denotes the constant NN as given by (31).
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