
SCIENCE CHINA
Information Sciences

January 2023, Vol. 66 112104:1–112104:20

https://doi.org/10.1007/s11432-021-3406-5

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 info.scichina.com link.springer.com

. RESEARCH PAPER .

LPW: an efficient data-aware cache replacement
strategy for Apache Spark

Hui LI1,2, Shuping JI1, Hua ZHONG1*, Wei WANG1,2,3,4*, Lijie XU1,2,3,4,

Zhen TANG1, Jun WEI1,2 & Tao HUANG1

1State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China;
2University of Chinese Academy of Science, Beijing 100049, China;
3Nanjing Institute of Software Technology, Nanjing 210000, China;

4University of Chinese Academy of Sciences, Nanjing 210008, China

Received 27 April 2021/Revised 2 November 2021/Accepted 9 December 2021/Published online 26 December 2022

Abstract Caching is one of the most important techniques for the popular distributed big data processing

framework Spark. For this big data parallel computing framework, which is designed to support various

applications based on in-memory computing, it is not possible to cache every intermediate result due to

the memory size limitation. The arbitrariness of cache application programming interface (API) usage,

the diversity of application characteristics, and the variability of memory resources constitute challenges to

achieving high system execution performance. Inefficient cache replacement strategies may cause different

performance problems such as long application execution time, low memory utilization, high replacement

frequency, and even program execution failure resulting from out of memory. The cache replacement strategy

currently adopted by Spark is the least recently used (LRU) strategy. Although LRU is a classical algorithm

and has been widely used, it lacks consideration for the environment and workloads. As a result, it cannot

achieve good performance under many scenarios. In this paper, we propose a novel cache replacement

algorithm, least partition weight (LPW). LPW takes comprehensive consideration of different factors affecting

system performance, such as partition size, computational cost, and reference count. The LPW algorithm

was implemented in Spark and compared against the LRU as well as other state-of-the-art mechanisms. Our

detailed experiments indicate that LPW obviously outperforms its counterparts and can reduce the execution

time by up to 75% under typical workloads. Furthermore, the decreasing eviction frequency also shows the

LPW algorithm can generate more reasonable predictions.

Keywords Spark, memory, cache replacement, least partition weight, data-aware

Citation Li H, Ji S P, Zhong H, et al. LPW: an efficient data-aware cache replacement strategy for Apache Spark.

Sci China Inf Sci, 2023, 66(1): 112104, https://doi.org/10.1007/s11432-021-3406-5

1 Introduction

In recent years, the entity, big data is widely used in various fields. Meanwhile, it brings true value
to society. For example, it was reported that government departments could save more than $149 bil-
lion by using big data techniques in developed European economies, excluding the use of big data to
prevent fraud and increase tax revenue1). To support various large-scale data processing applications,
big data analysis frameworks play a fundamental role in such applications. Many big companies invest
significant resources in developing and utilizing big data analysis frameworks, such as Twitter2), Face-
book3), Google4) and Alibaba5)6). To adapt to different big data processing application scenarios, many
big data processing frameworks have been developed, including but not limited to, Apache-Hadoop [1],

*Corresponding author (email: zhonghua@iscas.ac.cn, wangwei@otcaix.iscas.ac.cn)

1) https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/big-data-the-next-frontier-for-innovation.

2) http://bahir.apache.org/docs/spark/current/spark-streaming-twitter/.

3) https://databricks.com/blog/2016/08/31/apache-spark-scale-a-60-tb-production-use-case.html.

4) https://www.zdnet.com/article/google-announces-kubernetes-operator-for-apache-spark/.

5) https://github.com/alibaba/SparkCube.

6) https://alibaba-cloud.medium.com/setting-up-spark-on-maxcompute-171b06c7049a.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-021-3406-5&domain=pdf&date_stamp=2022-12-26
https://doi.org/10.1007/s11432-021-3406-5
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-021-3406-5
https://doi.org/10.1007/s11432-021-3406-5

Li H, et al. Sci China Inf Sci January 2023 Vol. 66 112104:2

Tachyon [2], ApacheTez [3], Storm7), GridGain8), and Spark. Among them, Spark is one of the most
popular frameworks due to its high performance, good scalability, and user-friendly interface. Spark is
a distributed in-memory computing solution. Compared with the disk-based solutions, such as Apache
Hadoop, Spark is much faster. This difference is largely because Spark can cache the intermediate cal-
culation results in memory and eliminate frequent disk accessing and network transmission [4]. It means
the caching mechanism plays an important role in improving the performance of Spark.

Spark provides the resilient distributed dataset (RDD) [5] data structure, which is a fault-tolerant
collection of elements that are partitioned across a set of machines on which operations can be performed
in parallel. When a programmer uses Spark to process big datasets (stored as RDD), the programmer
can use the persist and unpersist application programming interface (API) to cache data in memory or
release cached data from memory. However, without good knowledge of the application workloads and
the available resources of the Spark cluster, a programmer may invoke these APIs in an unreasonable
way [6]. Due to the diversity of cluster resources and application characteristics, unreasonable utilization
of caching would bring performance issues, such as insufficient memory resource allocation, data loss,
job execution failure, frequent cache replacement, long execution time, and even worse, cluster crashing.
These types of problems have often been reported in the open-source Spark community. For example,
in SPARK-164409), in the Word2Vec.fit() function, excessive memory consumption on the driver will
happen when hundreds of continuous training jobs are running. SPARK-1428910) points that a single
eviction strategy might not be enough and may cause expensive time cost. In SPARK-1750311), caching
all data easily causes memory extension and even can cause a memory leak problem. For these issues,
specific solutions are proposed. For example, for the SPARK-14289 issue, one of the proposed solutions
is called LCS [7]. The key idea of LCS is to use the RDD recovery time cost as the basis for replacement.
This design means that when insufficient memory exists, the RDD with the lowest recovery cost will be
eliminated from memory. LCS strategy can solve the SPARK-14289 issue; meanwhile, it shows better
performance than the default least recently used (LRU) strategy under some scenarios. However, it
does not consider many other important factors, such as reference count, memory space occupied of
partitions. As a result, its generalization capacity is limited. These reported issues also suggest that even
experienced programmers may not use caching in a suitable way. The need for memory varies widely
during applications running, and unreasonable configurations often cause many unnecessary performance
issues. Many developers are facing significant challenges to achieve high performance for critical business
tasks when using Spark to process big data with given limited hardware resources. It means timely
deletion of cached data from the memory could be helpful and only caching reasonable data in memory
plays an important role in guaranteeing the efficiency of applications and memory utilization.

In a nutshell, Spark users usually try to cache the data in memory for re-use to speed up task execution.
Under many situations, too much redundant data could be cached and the memory gradually exhausts.
When the memory is not enough, the cache replacement mechanism of Spark, specifically the LRU
strategy, starts to work. This process is similar to garbage collection in the Java virtual machine.
However, the problem is more complex for Spark. Because Spark needs not only to collect the unused
memory but also to collect the data that is potential to be reused in the future. The randomness of
cache usage creates a chaotic situation for data analysis. A challenge is that we cannot easily know which
cached data is most suitable to be replaced. The LRU strategy adopted by Spark is simple and has been
widely used. However, it does not work well under lots of scenarios. Let us illustrate limitations of LRU
by using a simple example. In Spark, a RDD may contain a number of partitions distributed in different
hosts. To boost performance, the caching mechanism of Spark works at a RDD level. Suppose we have
two partitions, pai and pbj , belonging to two different RDDs. They are sequentially cached in the same
node. The times for computing these two partitions are 1 hour and 5 min, respectively. Both partitions
will be used in the future. When the cache memory of that node is used up while another partition pck
needs to be cached, based on the LRU algorithm, the partition pai will be evicted from cache to release
memory. However, this is obviously a hasty decision considering the big computing time differences of
the pai and pbj partition: replacing pbj is more reasonable than replacing pai. There are also scenarios
where we should focus on other factors, for example, when the computing times of the pai and pbj are

7) http://storm.apache.org/.

8) https://www.gridgain.com/.

9) https://issues.apache.org/jira/browse/SPARK-16440.

10) https://issues.apache.org/jira/browse/SPARK-14289.

11) https://issues.apache.org/jira/browse/SPARK-17503.

Li H, et al. Sci China Inf Sci January 2023 Vol. 66 112104:3

Table 1 Popular cache replacement strategies

Cache replacement Frequency Recency Reference count Occupied space Computation cost

Random % % % % %
FIFO % " % % %
LRU % " % % %
LFU " % % % %
LRC % % " % %
LPW " % " " "

---MemoryUsed (Bytes)--- Load (Loads/Procs)
---Network (Bytes/s)

0 400 800 1200 1600
−0.5

0.0

0.5

1.0

1.5

2.0

0 400 800 1200 1600

0.00

0.04

0.08

0.12

0.16

0 350 700 1050 1400

2.9120

2.9122

2.9124

2.9126

2.9128

0 400 800 12001600

1.380

1.440

1.500

1.560

1.620---

 S

V
D

CPU (%)
×1010 ×104

Figure 1 Execution metrics of the SVD application.

0

12.5

0 0
0.00

1.25
1.25

1.00

0.75

0.50

0.25

1.00

0.75

0.50

0.25

S
V

M

10.0

7.5

5.0

2.5

0.0

4000 8000 12000 16000

72.5

58.0

43.5

29.0

14.5

0.0

3500 7000 10500 14000 3500 7000 10500 14000 0 3500 7000 10500 14000

×1011

×108

Figure 2 Execution metrics of the SVM application.

similar. So, considering different factors in a unified way is very necessary.
The LRU algorithm presents limitations because it does not consider diverse factors affecting the

caching performance. Based on our observation, at least four important factors need to be considered
when deciding which partition should be replaced: (1) frequency, (2) reference count, (3) occupied space
and (4) computation cost. Here, frequency means the period in which data would be accessed again.
Reference count indicates the number of times data would be accessed. Occupied space is defined as the
size of the block. Computation cost is defined as the processing time of the block. LRU only considers
recency. A number of other widely used cache replacement algorithms, such as Random, first in first out
(FIFO), least frequently used (LFU) and the recently proposed least reference count (LRC) [8] algorithm,
only consider a single, at most two factors. As shown in Table 1, Random does not consider any factor,
FIFO only considers recency, LFU only considers frequency, and LRC only considers the reference count.
To overcome the limitations of these existing solutions, we propose a new cache replacement algorithm,
called the least partition weight (LPW). The goal of the LPW is to minimize the total execution time
of different applications. The key idea of LPW is to design a novel unified weight model to evaluate the
necessity of caching for each partition. The weight model is calculated based on the analysis of various
factors such as computation cost, reference count and partition dependency.

Considering the diversity of different applications is very important. Here we use the singular value
decomposition (SVD) and support vector machine (SVM) application from HiBench as the examples to
show the diversity of the application workloads and the necessity to consider different factors. Figures 1
and 2 show the execution metrics for SVD and SVM, respectively. The selected execution metrics
include CPU, Load, MemoryUsed, and Network. In this situation, CPU indicates the percentage of CPU
utilization that occurred while executing at the user level. Load represents the average workload per

Li H, et al. Sci China Inf Sci January 2023 Vol. 66 112104:4

minute (at one minute increments). MemoryUsed refers to the amount of used memory. The network
represents the number of bytes transferred per second. For the SVD and SVM applications, 0.19 and
107.3 GB data were used as inputs, respectively. The Spark cluster contains four machines and is
executed in the Standalone mode. The execution metrics are collected every 45 s. As shown in these two
figures, different application workloads could exhibit very different execution behaviors. For example,
compared with SVD, the CPU, Load, MemoryUsed, and Network cost are higher for SVM. For SVD, the
MemoryUsed footprint fluctuated during execution.

Our proposed LPW algorithm tries to consider the diversity of different applications and the poten-
tial continuous variability of memory resource requirements for a single application. LPW dynamically
calculates the weight to predict the most appropriate data for making the optimal caching decision. The
online replacement decision could be made according to current memory resources to optimize the cache
management mechanism of Spark. Specifically, in this paper, we made the following contributions.

• A number of factors that could profoundly affect the execution efficiency of different applications on
Spark, such as the cache partition data size, the number of reference count and the calculation cost were
analyzed.

• Based on the analysis, the partition weight model and the LPW algorithm were proposed targeting
to reduce the overall program execution time by selecting reasonable data to be replaced.

• The LPW algorithm was implemented in Spark and comprehensive experiments were conducted to
evaluate the performance. Detailed experiments indicate that LPW could help improve the performance
for a variety of applications and obviously outperform its counterparts.

The rest of this paper is organized as follows. Section 2 reviews related background including the
Spark programming model, memory management mechanism, and the LRU cache replacement algorithm
in Spark. Section 3 illustrates our motivation to design a new cache replacement algorithm. Section 4
proposes the partition weight model after analyzing different factors affecting the partition calculation.
The LPW cache replacement algorithm is also presented in this section. The implementation of our
solution on the Spark platform is discussed in Section 5. Comprehensive evaluation results are reported
in Section 6. Section 7 surveys related work and Section 8 concludes this paper.

2 Background

In this section, we briefly present the background for caching in the Spark framework. Specifically, the
programming model of Spark is discussed. After that, Spark’s memory management mechanisms are
described. Finally, the LRU algorithm, which is adopted by Spark for cache replacement is reviewed.

2.1 Spark programming model

RDD is a core concept of Spark, which refers to an immutable data structure that can be divided into
multiple partitions. These partitions can be computed in parallel and are stored in memory or on disk of
different nodes of the cluster. Two types of operations can be executed on RDD: transformation (such as
map, filter, and reduceByKey) and action (such as count, first, and saveAsTextFile). A transformation
operation creates a new RDD from the existing RDDs, while an action operation returns the result after
running some computation on a RDD. A Spark job is composed of a series of transformation and action
operations. Transformation operations are executed in a lazy way, while action operations are executed
in an instant way. Transformation means only when an action operation on a RDD is encountered, are
the dependent transformation operations generating that RDD kicked off.

Let us illustrate this process through a simple example as shown in Figure 3. Figure 3(a) presents a
segment of source code while Figure 3(b) portrays the corresponding RDDs in addition to their depen-
dency relationship. Since two action operations exist, there are two execution workflows. One is formed
by the action A0 in Figure 3(b) that corresponds to line 4 in Figure 3(a), and the other one is formed
by the action A1 that is corresponding to line 9. In this example, each execution workflow contains
a number of transformation operations such as flatMap, filter, reduceByKey, and join. The execution
workflow triggered by A0 can be represented as {input → file → words}. In Figure 3(b), the words RDD
is marked as persisted since the persist operation is called at line 3 in Figure 3(a). The partitions of the
words RDD are distributed at different nodes of the cluster. The execution workflow triggered by A1

can be expressed as {words → pairs; pairs → results; pairs → filtered; · · · → counts}. The pairs RDD

Li H, et al. Sci China Inf Sci January 2023 Vol. 66 112104:5

file

words
P

input

.count()

pairs

filtered

.first()

flatMap

map

filter + reduceByKey
reduceByKey

counts

results

join

P

1: val file = sc.textFile(“hdfsPth…")

2: val words =file.flatMap(x=>x.split(" "))

3: words.persist(StorageLevel.MEMORY_ONLY)

4: words.count()

5: var pairs= words.map(word=>(word,1)).cache()

6: val filtered = pairs.filter(item =>

7: item._1.startsWith("a")).reduceByKey(_+_)

8: val results=pairs.reduceByKey(_+_)

9: val counts=results.join(filtered).first()

10: println("counts"+counts.toString())

11: words.unpersist()

12: pairs.unpersist()
A

1

A
0

(a) (b)

Figure 3 (Color online) Code segment (a) and execution graph example (b).

Table 2 Execution time of Bayes given different spark.memory.fraction and executor memory configurations

spark.memory.fraction ExecutorMemory = 15 GB ExecutorMemory = 30 GB

0.1 8000.934 2232.523

0.3 7834.907 7929.69

0.6 2159.869 7904.824

0.9 8980.962 7895.035

is also marked as persisted since the cache operation is invoked at line 5 in Figure 3(a). For the second
execution workflow, the words RDD could be directly re-used. After the execution of the second workflow
triggered by A1 is completed, partitions of the pairs RDD could also be persisted in the memory.

2.2 Spark memory management

A typical Spark cluster contains a master node and several worker nodes. Each worker node has an
executor, which is used to manage memory and execute tasks. The memory managed by an executor can
be mainly divided into two types: storage memory and execution memory. Cache-related operations, such
as persist, cache, and broadcast consume the storage memory, while the other operations, such as shuffle,
join, and sort will take up the execution memory. The configuration spark.executor.memory is used to
determine the total size of an executor’s available memory, while the configuration spark.memoryFraction
is used to decide the ratio of the storage memory. For example, if the value of spark.memoryFraction
is set at 0.5, the executor can use a maximum of 50% of the memory for caching. The remaining 50%
of the memory will be used to store the dynamically created temporal objects during the execution of
different tasks. spark.memoryFraction is an important configuration that could significantly affect the
performance of the whole system. However, due to the diversity of the workloads, it is often hard to
provide an ideal configuration value. A different setting might cause severe performance problems such
as longer delays in executing the task. Even in the same application with a different configuration, the
performance can be different. We conduct an experiment using 70 GB data size as input for Bayes
workload deployed in a cluster with four nodes. The result is shown in Table 2. The performance is good
given a configuration spark.memoryFraction value of 0.6 under the executor memory value of 15 GB,
while performance is poor under the executor memory value of 30 GB. The execution time increases by
about 3 times, from 2159 to 7904 s. By running more experiments, we found that the best performance
occurs when the executor memory value is set as 30 GB and the value of spark.memoryFraction is set as
0.1.

In this experiment, we also analyze the cache replacement that happened on different work nodes.
Specifically, we record the cache replacement frequency on each worker node. The result is shown in
Figure 4. The red vertical line indicates that the replacement occurs. The blue line shows the free
memory size after a block eviction. Compared with slave1, more frequent replacements occur on the
nodes (slave2 and slave3). In real-world applications, since the storage memory is often not enough to
cache all intermediate computing results, frequent cache replacement may happen.

Li H, et al. Sci China Inf Sci January 2023 Vol. 66 112104:6

0
0

3000

2500

2000

1500

1000

500

10 20 30 40 50 60 70 80 90 100 0
0

3000

2500

2000

1500

1000

500

10 20 30 40 50 60 70 80 90 100 0
0

3000

2500

2000

1500

1000

500

10 20 30 40 50 60 70 80 90 100

freeMem (MB) Block size (MB) freeMem (MB) Block size (MB) freeMem (MB) Block size (MB)

Time (s) Time (s) Time (s)

(a) (b) (c)

M
em

o
ry

 s
iz

e

Figure 4 (Color online) Free memory and eviction happened in slaves. (a) Slave1; (b) slave2; (c) slave3.

1: var g=sc.parallelize("hdfs://…")

2: for (i<-1 to N) do:

3: var prevg=g

4: var g=function1(g, i)

5: g.persist()

6: g.first()

7: prevg.unpersist()

8: end for

9: var result=g.first()

1: var g= sc.parallelize("hdfs://…")

2: for (i<-1 to N) do:

3: var g=function1(g, i)

4: g.persist()

5: g.first()

6: end for

7: var result=g.first()

(a) (b)

Figure 5 (Color online) Code segment for an example with cache API. (a) Native version; (b) improved version.

Inappropriate configuration settings can easily cause performance problems such as frequent cache
replacement. To eliminate this type of problem, an effective cache replacement strategy becomes necessary
and useful. In a nutshell, keeping the most useful data in memory and right evicting other data from
the storage memory is one of the most important techniques for improving the performance of the whole
system.

2.3 LRU in Spark

To manage the limited available memory, Apache Spark uses the LRU eviction strategy as default policy.
The basic idea of LRU is to record each RDD’s access times. When a new data is generated and the
storage memory is not enough to cache the new data, the LRU algorithm will evict the cached partition
belonging to the least recently accessed RDD. It is worth noting that the selected partition and the new
partition cannot belong to the same RDD. This design is to prevent partitions of the same RDD from
looping in and out. LRU’s mechanism of evicting the least recently used data is based on the assumption
that the recently used data is more likely to be reused again. This premise is not appropriate for many
applications as will be shown in Section 3.

3 Motivation examples

Challenges of manual cache controlling. Figure 5 presents an iteration example, which shows
the challenges of solely relying on programmers to manually control the caching and the necessity of
adopting an effective cache replacement mechanism. In this example, we will analyze the limitations of
two different cache-based implementations, as shown in Figure 5(a) and (b), respectively. In Figure 5(a),
the application first loads the data from HDFS and initializes the execution graph (line 1). The iterative
computation then starts, and many new execution graphs are created (lines 2–6). At last, the application
outputs the final result (line 7). To improve the performance and reduce recovery time for fault tolerance,
developers usually cache intermediate data into the memory by calling the persist API (line 4). For each
iteration, a new execution graph would be created. As the number of iterations increases, the number of
caches also increases (g1 → g2 → · · · → gN). In this case, many memory resources are wasted.

A common practice for solving this problem is to add a variable in an ad hoc manner. As shown in
Figure 5(b), Spark users can assign the result of a previous calculation to the variable (prevg in line 3)
and cache the result of the current iteration calculation (line 5). After the current iteration calculation
is finished, prevg will be released from memory by calling the unpersist API (line 7). The advantage
of this approach is that only one intermediate calculation result is cached at any time, indicating that

Li H, et al. Sci China Inf Sci January 2023 Vol. 66 112104:7

prevg=g0

g 1=function(g0,0)

g 1.persist()

g 1.first()

g 0.unpersist()

g1
g1

prevg =g1

g 2=function(g1,0)

g 2.persist()

g 2.first()

g 1.unpersist()

g2

prevg=g2

g 3=function(g2,0)

g 3.persist()

g 3.first()

g 2.unpersist()

g1
g3

result=g4.first()

g4

prevg =g3

g4=function(g3,0)

g 4.persist()

g 4.first()

g 3.unpersist()

g1 g2g0 g3

Real execution process

; ; ; ;

i=0 i=1 i=2 i=3

Figure 6 (Color online) Execution trace of the simple example when some partitions are lost suddenly.

when the (N+1)-th job is finished, the cached result from the N -th calculation iteration will be released.
This seems to be a reasonable solution. However, serious performance deterioration could happen prior
to data losses. Suppose that some data loss happens because of the crash of a work node, which is
very common in large scale Spark clusters. In this case, data recalculation will be triggered according
to Spark’s fault tolerance mechanism. For example, suppose partial data of gN−1 are accidentally lost
before gN is calculated. Spark needs to recompute the data from g0 to gN−1, which could be a very
time consuming process. The application may suffer from severe performance deterioration. Additional
observation about recomputing the data from g0 to gN−1 is shown in Figure 6. Here N is 3. When the
program is running normally, the program can read g3 directly in the memory and perform subsequent
calculations while computing g4. Suppose a buggy scenario that the program is executing the function
g4 = function(g3, 0) occurs, and some partitions of g3 are lost suddenly. The program cannot read g3
directly in the memory since g3 has been lost from the memory. To perform subsequent calculations, the
program needs to calculate g3. When computing g3 in the 2nd iteration, g2 is evicted from the memory.
So, we need to calculate g2, continue to compute until g0 is calculated. All in all, before computing g4,
calculation according to this order {g4 → g3 → g2 → · · · → g0} needs to be performed. So, this process
means this common practice is still not an ideal solution, and a good cache replacement mechanism
is desired for different scenarios. Although evicting cached data according to the LRU would happen,
applications may still suffer inefficient performance issues.

Necessity of considering different factors. Figure 3 is used as an example to show the necessity
of adopting a cache replacement strategy in addition to the necessity of considering different workload
and environment related factors.

Before different features of operators in depth are observed, a simple typical test example is run, and
the execution time is measured. Based on the example in Figure 3, this experiment is run in the local
mode with 8 GB memory and 1 kB text file as input. It could be observed that the execution time of join
operator in Stage3 is nearly 3.7 times more than the time of map operator in Stage2. The calculation
time of these two operators is 70 and 19 ms, respectively. In this case, map belongs to the operator of the
value data type, which merges the elements in each set to form a new set. Another operator join belongs
to the key-value data type, which puts the same key data into a partition. Through our experiments, the
features of operators are shown to be diverse. Thus, a good cache replacement should be fully aware of
the features of operators and then make appropriate replacement decisions.

When the memory is insufficient and blocks need to be replaced, according to the LRC, words will be
retained because of being accessed twice, which may not necessarily improve execution efficiency. This
drawback occurs because the time to calculate words is short and the performance bottleneck lies in the
execution time of the join operator. Another scenario can occur in which the amount of input data is
gigantic, removing the cached words from the memory according to the LRU still could not effectively
solve the performance issues. This issue occurs because the bottleneck lies in calculation of words.
Obviously, either LRC or LRU is difficult to guarantee applications will have a better performance in
complex environments. The advantage of the LRU mechanism to keep reasonable data in memory is not
obvious. In short, application execution is affected by various factors, such as computing resources, and
computation time of operating on blocks. In other words, the calculation time between RDDs is diverse
and the free memory is changing. As a result, predicting future data access based on single historical

Li H, et al. Sci China Inf Sci January 2023 Vol. 66 112104:8

T10

T11

T12

T13 T21

T30

T31

T32

T40

T42
T41

T43

T50

T60

T51

T70
T52

T00

T10

T11

T12

T13 T21

T30

T31

T32

T40

T42
T41

T43

T50

T60

T51

T70
T52

T00

T10

T11

T12

T13 T21

T30

T31

T32

T40

T42
T41

T43

T50

T60

T51

T70
T52

T00

2

2

4

7

4

3

1 hour 1 second

(a) (b) (c)

Figure 7 (Color online) Cache decisions considering different factors. (a) Reference count; (b) computation cost; (c) occupied

space.

information (such as recency, frequency) to make a replacement decision for the big data computing
framework is not effective. A good cache replacement strategy is supposed to be adaptive to various
applications even though they have different characteristics.

4 Our solution

Optimizing memory usage is one of key techniques for improving the Spark application execution per-
formance12)13). Keeping the right data in memory for re-use is an important way to improve memory
utilization and reduce recalculation cost. We design the LPW algorithm to guide Spark to choose the
reasonable data for cache replacement. In this algorithm, the concept of weight to measure the value
of caching a block is proposed. A larger weight indicates that the block is more valuable during the
application execution and is more likely to be reused in the future. Blocks with smaller value are more
likely to be evicted compared to blocks with higher weight value. Many factors could affect the execution
time of Spark applications. In our design, the calculation of weight considers several important factors:
reference count of the block, occupied space, the calculation cost, and the historical execution informa-
tion (pastmod). These factors are comprehensively considered together. Compared with the current LRU
algorithm adopted in Spark, which only considers the recency information of a block, our weight-based
algorithm should be more feasible and effective for many different applications.

4.1 Considering factors

Once an application is submitted to a Spark cluster, one or several jobs will be created and executed. RDD
is the base component for the execution of a job. A triggered job is composed of a series of transformation
operations on a RDD. In this paper, ri is used to represent a RDD, and τ is used to represent a job. The
execution trace of a job can be defined as {r0 → r1 → rj → · · · → rk}. Now suppose two jobs τp and τq

for an application are present. If ri is used in both τp and τq , it is better to keep ri in memory. Figure 7
shows a sample lineage graph on which the vertices represent the RDDs. When a vertex is used by more
than two jobs, it is marked in black. In this figure, the transformation between RDDs is connected by
edges and transformation time is defined by the symbol T . In the following sections, Figure 7 is used as
an example to explain the detailed meaning of different factors and how they can help determine which
is the best cache to replace.

Reference count. When the execution time is the same for different transformation operations, the
completion time of the two jobs will be shown in (1). The first job (left most in Figure 7(a)) Time1
is counted by T00, T10, T11, T12, and T13. The fourth job Time4 is counted by T00, T10, T30, T40, T41,
T42 and T43. It is not difficult to observe that one endpoint of T00 is used by seven jobs and the value
of the reference count is 7. Meanwhile, one endpoint of T50 is used by three jobs, and the value of
the reference count is 3. When not enough memory exists, the best caching replacement decision is to
cache the endpoint of T00 because of the larger reference count. Figure 7(a) shows the optimal caching
according to the reference count.

Time1 = T00 + T10 + T11 + T12 + T13,

Time4 = T00 + T10 + T30 + T40 + T41 + T42 + T43.
(1)

12) https://unraveldata.com/common-reasons-spark-applications-slow-fail-part-1/.

13) https://unraveldata.com/common-failures-slowdowns-part-ii/.

Li H, et al. Sci China Inf Sci January 2023 Vol. 66 112104:9

In short, when the reference count of the RDD is larger, therefore, it is more necessary to cache for
re-use.

Computation cost. The costs between different RDDs are often very different. The detailed execu-
tion time can be easily calculated from the task that completes the calculation of these RDDs. RDDi

and RDDj are the different transformation operators. Suppose that it will take one hour to calculate
RDDi while the cost of RDDj is only one ten minute. In this situation, RDDi denotes the end vertex of
T10. RDDj denotes the end vertex of T40. Two jobs consisted of RDDi and RDDj . The completion time
on the partial path of two jobs is shown as

Timem = RDDi.cache() + RDDj ,

Timen = RDDi +RDDj .cache(),
(2)

where RDDi.cache() and RDDj .cache() denote caching their respective data into the memory. As shown
in (2), Timem would be longer than Timen when the calculation time of the RDDi is larger. It is
obvious that, caching RDDi rather than caching RDDj in memory is beneficial for improving execution
efficiency. A larger computation cost implies the need for a longer calculation time. The best caching
replacement decision for this example is to keep the end vertex of T10 because of the larger computation
cost. Figure 7(b) shows the optimal caching according to the computation cost. In short, the computation
cost of the RDD is smaller and more likely to be evicted for releasing memory.

Occupied space. RDDs are divided into partitions that are distributed on each node as blocks
occupying memory. Based on the example in Figure 3, experiments with caching all data are performed.
With an input data size of 50 GB, we find that different cached partitions belonging to the pairs occupy
different memory sizes. One partition is 72.1 MB and another one is 1281.1 MB. The larger the space
occupied by the partition is, the less the necessity to cache the block is. Excessively abundant data
occupy a significant portion of storage space, which may easily waste considerable memory resources and
even slow down the execution efficiency. Evicting the partitions occupying a large space in memory can
help decrease the application execution time. Suppose the block size of the end vertex of T50 is much
larger than other blocks. Figure 7(c) shows the optimal caching according to the occupied space.

Pastmod. Blocks frequently used in past jobs are more likely to be accessed during subsequent job
calculations. If data have been accessed more frequently during the previous period of time, this data is
more likely to be used again in the future. Pastmod indicates the reference count of the partition which is
computed in the completed job. For example, 10 jobs have been executed before the 11th job is executed,
and P13 is used in 5 jobs that have been executed, and then the value of pastmod is calculated by 5/10
to get 0.5.

Overall, evicting the suitable data block in a timely manner when the memory is not enough is a
key technique for optimizing memory usage and improving performance. As shown in the example in
Figure 7, we should comprehensively consider many factors to make a good cache replacement decision.

4.2 Partition weight model

All factors mentioned in the above section were comprehensively considered in this study. To identify
the valuable partition that needs to be kept in memory, the weight of a partition is calculated. For a
partition partitioni, the formula to calculate its weight is shown as

weighti =
costi × refi × (1 + pastmodi)

sizei
, (3)

where costi is the execution time to calculate a partitioni; refi is the number of jobs that depend on the
current partition; pastmodi is the reference count of the partition which is computed in already finished
jobs; sizei is the memory space size to store the current partition.

4.3 LPW algorithm

Our proposed LPW algorithm is designed to adapt to different Spark applications, which are executed
based on in time data perception and dynamic adjustment. Algorithm 1 illustrates the pseudocode of
the algorithm to identify reasonable partitions for the cached blocks in memory. The variable partition
denotes the new block needed to be cached in memory. The variable cachedParts is a list of data blocks
that are already cached in memory. The variable freeMem represents the remaining memory of the node.

Li H, et al. Sci China Inf Sci January 2023 Vol. 66 112104:10

Insert P
jk

Enough

memory?

Enough

memory?

Weight (P−P
j
)=0?*

Cache

R
1
{P

11
, P

12
, ...P

1m
}

R
2
{P

21
, P

22
, ...P

2n
}

R
j
{P

j1
, P

j2
, ...P

jt
}

R
i
{P

i1
, P

i2
, ...P

is
}

R
1
{P

11
, P

12
, ...P

1m
}

R
2
{P

21
, P

22
, ...P

2n
}

R
j
{P

j1
, P

j2
, ...P

jt
, P

jk
}

R
i
{P

i1
, P

i2
, ...P

is
}

R
1
{P

11
, P

12
, ...P

1m
}

R
2
{P

21
, P

22
, ...P

2n
}

R
j
{P

j1
, P

j2
, ...P

jt
, P

jk
}

R
i
{P

i1
, P

i2
, ...P

iw−1
, P

iw+1
, P

is
}

Cache

Cache

P
qw

 = Minimum{Weight(P)}

& Weight(P
qw

) ≠ 0 & q≠j
Set Weight(P

qw
) = 0 & q=i

Discard cache P
jk

Recover weight (P)

End

Update weight (P
jk
)

Update weight (P
jk
)Evict P

iw

No

No
No

Yes

Yes

Yes

Figure 8 (Color online) The replacement process of cache replacement strategy with LPW.

The variable pWeight denotes the weight value of each data block cached in memory. First, if the partition
is found in cachedParts, the data do not need to be cached since the block is hit (lines 1–4). The free
memory and the weight in the pWeight (lines 13–15) were updated. Second, the weight value of each
partition is calculated (line 5). The calculation method is shown in (3). During the replacement process,
the weight value of partition is sorted in ascending order and added the sorted weight to the pQueue
(lines 6–8). Before making a decision to cache, LPW continues to check whether the space is enough
when currPart is removed from memory (lines 9–12). In the beginning, the partition from memory with
the smallest weight in pWeight is removed and free memory space is tracked to cache partition. If enough
space is available to cache partition, LPW would stop to evict block from memory and update the value
of pWeight and cachedParts (lines 13–15).

Algorithm 1 can be used to traverse the cached partition to find a most suitable partition to be replaced,
based on the prediction of which data blocks have high probabilities to be reused. To make the algorithm
more defined, we use Figure 8 as a flow chart to elaborate the execution details of the LPW algorithm.

Algorithm 1 lpwRep(cachedParts, partition, freeMem)

1: if partition ∈ cachedParts then

2: return cachedParts[partition];

3: break

4: end if

5: weight ← Compute(partition);

6: if freeMem < partition.size then

7: pQueue ← SortByWeight(cachedParts);

8: end if

9: while freeMem < partition.size do

10: currPart ← pQueue.pop();

11: freeMem + = currPart.size;

12: end while

13: cachedParts.add(partition);

14: freeMem - = partition.size;

15: pWeight.add(partition);

A weight table named Weight(Pjk) is constructed and maintained the weight of each partition. Note
that, all initial weights in the table are zero at the beginning. Suppose a new block Pjk that belongs to

Li H, et al. Sci China Inf Sci January 2023 Vol. 66 112104:11

RDDj needs to be cached. LPW would first check free memory space after which it would directly add the
new partition into memory and update the weight value of the weight table if enough space is available.
A new cachedParts would then be generated. A list of cached data blocks Rj{Pj1, Pj2, . . . , Pjt} would
also be updated to become Rj{Pj1, Pj2, . . . , Pjt, Pjk}. If enough space is not available to put Pjk, the
block with the smallest weight value (not zero) would be fetched from the table and they do not belong
to the same RDD. The formula can thus be expressed as shown below as Pqw = Minimum{Weight(P)}
& Weight(Pqw) 6= 0 & q 6= j. The weight value of the partition is set with its minimum at zero and
moves to waitingList. Spark continued to check whether enough space is available to cache Pjk. LPW
continues to search for the smallest weight block and the value is not zero. More and more space
is obtained by releasing partitions in the waitingList. In detail, after the partition Piw is chosen for
eviction, enough space can be finally obtained to cache Pjk, and then partitions could be deleted from
waitingList while concurrently, evicting them from the memory and updating the value of Pqw in the
weight table. A new cachedParts is generated and a list of cached blocks Rj{Pj1, Pj2, . . . , Pjt} is updated
to Rj{Pj1, Pj2, . . . , Pjt, Pjk}. Meanwhile, because of the eviction of Piw, Ri{Pi1, Pi2, . . . , Pis} changes to
Ri{Pi1, Pi2, . . . , Piw−1, Piw+1, Pis}. Note that, when Piw is replaced from the memory, it is also directly
removed from the weight table. If all partitions which do not belong to the same RDD with Pqw are
released, enough space is still not available to cache Pjk, then give up caching Pjk and recover the value
of the weight table. In Figure 8, P ∗j indicates the weight value of all partitions except Pjk.

4.4 A simple example for LPW

A simplified example of a self-adaptive scenario in pseudocode is given below. The initial value of the
weight table is zero. In Figure 9, five partitions {P11, P12, P21, P22, P23} are cached and located on the
same node. Partitions P11 and P12 belong to RDD1, and other partitions such as P21, P22 and P23 belong
to RDD2. New data P13 is to be cached. The total memory size of the worker Totalmem is initialized to
500 MB.

In Figure 9(a), the memory space of P13 is 180 MB (Sp13 = 180 MB) and the cached sequence pQueue
is {P11, P12, P21, P22, P23}. The remaining memory could be easily calculated according to the formula
Freemem = Totalmem−SR1−SR2 to obtain enough free memory space (150 MB). We compare free memory
size with P13 space and find that not enough space for caching P13 data exist (Freemem < Sp13). Thus,
replacement process starts. First, Spark traverses the partition weight table and selects partitions where
P13 does not belong to the same RDD. The pre-selection list {P21, P22, P23} is obtained. Second, Spark
searches for the minimum weight value among the list and finally selects P22 as a block to be replaced.
Third, the weight value of P22 is set to zero and moves to the waitingList. The remaining memory is
updated to 200 MB according to formula Freemem = Totalmem − SR1 − Sp21 − Sp23 + Sp22. Free memory
size is continuously updated with P13, and it is found that enough space to cache P13 is available. Finally,
the replacement decision according to LPW is made: P22 is selected for eviction from memory to cache
P13. We get a new cached sequence pQueue {P11, P12, P13, P21, P23} and the remaining memory of the
node Freemem is changed to 20 MB.

We continue to observe another situation. As shown in Figure 9(b), P13 still represents a new
data to be cached. The memory space occupied by P13 is 400 MB and the cache sequence pQueue
is {P11, P12, P21, P22, P23}. First, Spark checks if enough memory to store P13 is available, and then
begins to traverse the partition weight table and find the pre-selection list {P21, P22, P23}. Second, the
weight value of the minimum P22 is set to zero and moves to the waitingList. The remaining memory
is calculated using the equation Freemem = Totalmem − SR1 − Sp21 − Sp23 + Sp22 to yield 200 MB. In
this situation, not enough memory is available to cache P13. We continue to choose the minimum weight
value as 0.2. Partition P23 is chosen for eviction after which the free memory size is changed to 250 MB.
The weight value for each partition is also updated to {0.1, 0.1, 0.5, 0.0, 0.0}. Third, P21 is selected
sequentially from the pre-selection list {P21}. Fourth, the remaining memory is computed using the
equation Freemem = Totalmem − SR1 + Sp21 + Sp23 + Sp22, which increases to 350 MB from 250 MB.
Although all partitions consisting of P21, P22 and P23 are all released, there is still not enough memory
to cache P13. Finally, the replacement decision according to LPW is made: giving up caching P13 and
resetting the weight value to the initial value {0.1, 0.1, 0.5, 0.1, 0.2}.

Li H, et al. Sci China Inf Sci January 2023 Vol. 66 112104:12

P11

100 MB

P21

100 MB

P12

50 MB

P22

50 MB

P13

180 MB

P23

50 MB

R
1

R
2

R
1

R
2

P11

100 MB

P21

100 MB

P12

50 MB

P22

50 MB

P13

400 MB

P23

50 MB

(b)

(a)

WaitingList

P11

0.1

0.1

0.1

0.1

0.1

0.1

0.5

0.5

0.5

0.1

0.0

0.0

0.2

0.2

0.2 0.2

P12 P13P21 P22 P23

P22

WeightList

P11

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.5

0.5

0.5

0.5

0.1

0.1

0.0

0.0

0.0

0.0

0.00.0

0.2

0.2

0.2

P12 P21 P22 P23

WeightList WaitingList

P22

P22

P23

P23 P21

P22

Figure 9 (Color online) Cache replacement example of LPW. (a) 180 MB; (b) 200 MB.

Cost

DAGScheduler

BlockManager

master

BlockManagerSlave

Executor

RefCount

BlockManagerSlave

task0

task1

MemoryStore
MemoryStore

Manager

RefCount

Executor

Driver

P
03

P
13

P
0m

P
1n

Cost

task0

task1

P
01

P
11

P
02

P
12 Evict

Evict

Monitor Monitor

2. Decision Maker: calculate the

weight of each cached partition and

make a replacement decision.
3. Execution module: evict

data and update the weight.

1. Profiler: collect the reference

count, computation cost and the

other historical information.

Figure 10 (Color online) System architecture of the LPW solution.

5 Implementation

LPW first collects information by modifying Spark implementation and then calculates the weight value
online on executors. After applications are submitted to Spark Cluster, DAGScheduler would divide
directed acyclic graph (DAG) of applications into different stages after which each stage will be divided
into multiple tasks, which will be assigned to executors for execution by TaskScheduler. It is not difficult
to obtain a lineage graph from the DAGScheduler, which provides an opportunity to design a data-
aware cache replacement strategy that considers the characteristics of applications. By default, RDDs
are divided into multiple partitions on executors of the cluster by hash partitions and then handed over
to Tasks on Worker nodes. For example, partitions such as P01, P02 of RDD1 are in Worker1 and the
rest partitions are located in Worker2. Partitions such as P01, P12 of RDD2 are located in Worker1 and
the remaining partitions are located in Worker2. We first present system architecture that enables the
implementation of the LPW in Spark and then elaborate on the implementation details. For comparison,
LRC in Spark is also prototyped. Figure 10 shows an architecture overview of LPW. Our extended
modules are shown in the shaded box. The Manager module is located on the Driver node, and the
Monitor modules are distributed on Executor nodes.

Li H, et al. Sci China Inf Sci January 2023 Vol. 66 112104:13

Table 3 Key APIs for LRW implementation

Key API Location Description

putOrUpdateWholeBlock MemoryStore.scala Update the weight value of the partition

updateRef MemoryStore.scala Update local RefCount

updateCost MemoryStore.scala Update local cost of the partition

calculateWeight MemoryStore.scala Calculate the weight for each partition

broadcastRef BlockManagerMasterEndpoint.scala Send RefCount to the BlockManagerSlave on the worker

profileRefCountStageByStage DAGScheduler.scala Calculate RefCount that needs to be cached in a single job

profileRefCountOneStage DAGScheduler.scala Calculate RefCount that needs to be cached in a single stage

handleJobSubmitted DAGScheduler.scala Calculate RefCount

calculateTrueTime ShuffleMapTask.scala ResultTask.scala Get the calculation time of a partition

Table 3 summarizes the key APIs for LPW. Here, the implementation details are introduced, including
system architecture for the overall design and key APIS for information collection. All modules in this
experiment are based on existing modules of Spark. The DAGScheduler module on the Driver node
learns the dependency relationship between RDDs, allowing us to obtain the reference count (RefCount)
which defines the number of times on which each RDD is relied during the calculation. RefCount is sent
to WorkerManager BlockManagerSlave through BlockManagerMasterEndpoint. The BlockManagerSlave
on the Worker is to keep sending heartbeats to the BlockManagerMaster to update the block (partition)
information. Once the BlockManager object is created, it will also create a MemoryStore to manage the
Block information. By instrumenting MemoryStore.scala, the size of the partition and the time spent in
calculating could be obtained. The number of times on which each RDD is relied on in the completed
job calculation is obtained and used to calculate the partition weight according to the model. The weight
is calculated and saved in the worker in which the corresponding task is executed. After each job is
completed and when the dependency count information of the new job is passed to the MemoryStore,
the MemoryStore will record its current dependency information such as the number of times RDD
is referenced in the previous job and receives the new dependency information. Whenever insufficient
memory on the Worker is found, the MemoryStore will send the data of the current node and select the
appropriate partition to complete the replacement by using LPW decision information. An RDD with
more than one partition is distributed on each node in the cluster. The life cycle of the RDD is the
period from the first job to the last job that relies on the partition to complete the calculation. The
computation cost of a partition contains calculation time and communication time. The ShuffleMapTask
and ResultTask on the workers in the cluster record the running time of each task and the calculation
cost of each partition can be obtained through code instrumentation. The BlockManager is used to
manage data in Spark. We can obtain the size of memory space occupied by partitions by monitoring
the API. The BlockManager on each worker makes the replacement decision based on weight and sends
information to Driver.

6 Evaluation

In this section, we evaluate the performance of our proposed LPW algorithm by using the Hibench [9]14)

benchmark, which contains a number of typical application workloads. Through several experiments, we
try to answer the following three questions.

RQ1. Can LPW effectively address the performance issues faced by applications under the environment
with limited memory resources?

RQ2. Compared to existing solutions, can LPW obviously speed up the execution of Spark applica-
tions?

RQ3. Does LPW introduce extra overhead during the execution of different Spark jobs?

In the following sections, we review the hardware and software environment used to run experiments.
Second, the distribution and characteristics of our adopted workloads are presented. Third, the detailed
evaluation results are presented. Finally, a brief analysis of the characteristics of our proposed LPW
algorithm is provided.

14) https://github.com/Intel-bigdata/HiBench.

Li H, et al. Sci China Inf Sci January 2023 Vol. 66 112104:14

Table 4 Hardware and software environment

Hardware/Software configuration Detail

CPU Model 16 * Intel(R) Xeon(R) Bronze 3106 CPU

CPU FREQUENCY 1.70 GHz

RAM 64 GB

DISK 4 TB (1.9 TB for HDFS)

OPERATING SYSTEM CentOS Linux release 7.3.1611 (Core)

SPARK VERSION 2.2.3

SCALA VERSION 2.11.12

JDK VERSION 1.8.0 131

HADOOP VERSION 2.7.7

6.1 Environment

Our experiments are running on a Spark cluster with four machines. Each machine has 64 GB of memory
and an Intel(R) Xeon(R) Bronze 3106 processor with 16 cores. The CPU frequency is 1.70 GHz. The
disk size is 4 TB, among which 1.9 TB are configured as HDFS. The installed operating system is
CentOS. The version of the installed Spark is 2.2.3, on which our LPW algorithm is implemented. In our
experiments, the Spark’s built-in LRU algorithm and the latest LRC algorithm are used as a baseline
to compare with our proposed LPW. In our Spark cluster, one machine is set as the master node, and
the left three machines are set as slave nodes. During experiments, the tested applications are submitted
to the cluster. The applications are run on the Standalone deploy mode. The hardware and software
configuration details of our experiment environment are also shown in Table 4.

6.2 Workloads

To observe system performance with different cache replacement policies, our experiments are conducted
with benchmarks having different characteristic workloads. In this subsection, the popular Hibench
benchmark is chosen and system performance is evaluated. Hibench is an open-source big data benchmark
tool including various application categories, such as micro, ml (Machine Learning), SQL, GraphX, and
Websearch. It can be used to evaluate the speed, throughput, and system resource utilization of different
big data frameworks. The sparkbench framework is chosen as our experimental framework. In total,
there are 19 workloads in HiBench (V7.0). Specifically, we use two rules to select these 7 workloads
for our evaluation. First, we select the workloads that are highly relied on the cache mechanism. We
use the command grep -rn ’.cache(’ and grep -rn ’.persist(’ to search each workload which call cache or
persist API. Second, for each algorithm, we also keep one. For example, /ml/DenseKmeans.scala and
/dal/Densekmeans.scala both implement the KMeans algorithm. We only choose the first one in our
experiments. To differentiate from these applications, seven typical applications are finally obtained from
HiBench Benchmark as our experimental objects.

HiBench supports the generation of input data with different scales, such as tiny, huge, large, and
gigantic-scale. To simulate big data scenarios as much as possible, larger and above data scale as input is
selected. We calculate the input data size for each workload, as shown in the fourth column of Table 5.
More details about Hibench are elaborated in Table 5. For the seven workloads (C1–C7), we find cache or
persist API is called. The column 3 in Table 5 (category) shows the application category. It can be seen
that cache or persist API is widely used in iterative scenarios, such as Machine Learning and GraphX.
The last column shows some other important input parameter configurations required for applications to
run.

6.3 Evaluation results

For each workload, these workloads in cluster configured with different executor memory and driver mem-
ory are deployed. Applications are run many times in the Standalone mode, and then use the average
execution time. The system performance of each workload is observed and tested under different cache re-
placement strategies. The other configuration parameters are the default value, such as MemoryFraction,
which is set to 0.6. Execution time, speed up and eviction frequency under different cache replacement
strategies are compared.

Li H, et al. Sci China Inf Sci January 2023 Vol. 66 112104:15

Table 5 Summary of workloads for Hibench

ID Category Workload Input data size (GB) Parameter configurations

C1 Websearch Pagerank 2.79 pages = 5000000; num iterations = 3

C2 GraphX Nweight 0.29 edges = 10000000; degree = 3; max out edges = 30

C3 Machine Learning Kmeans 37.41 dimensions = 20; num of samples = 200000000

C4 Machine Learning LogisticRegression 37.25 examples=10000; features = 100000

C5 Machine Learning PCA 0.22 examples = 1000; features = 1000

C6 Machine Learning SVM 107.3 examples = 120000; features = 300000

C7 Machine Learning Bayes 70.14 pages = 20000000; classed = 20000; ngrams = 2

SVM BayesKmeansLogisticRegressionNweight PCAPagerank

0

1200

2400

3600

4800

6000

7200

14000

15000

16000

17000

E
x
ec

u
ti

o
n
 t

im
e

(s
)

LRU LRC LPW

Figure 11 (Color online) Execution time for different workloads with 15 GB of executor memory and driver memory.

Application execution time. A set of experimental results under the configuration of 15 GB
executor and driver memory are summarized. First, the execution time of each application under different
cache replacement policies, i.e., LRU, LRC, and LPW is observed. The overview result is shown in
Figure 11.

As we all know, the configuration of cluster parameters has a great impact on the performance of
the application. The execution time of workloads against different spark.memoryFraction (from 0.1 to
0.9) is measured, and results are depicted in Figure 12. To answer RQ1, LPW effectively addresses
the performance issues faced by applications, especially in the limited resource. Compared with LRC,
application Nweight have poor performance especially in smaller spark.memoryFraction, such as 0.1 and
0.3 as shown in Figure 12(a). This is because the nweight has only 1 job. When the only one job is
executed, the advantage of reusing cached data is not obvious. However, when the LogisticRegression
application with 44 jobs and Bayes with 9 jobs are executed, the cached data is relied on by many jobs.
The performance has been greatly improved.

SpeedUp. Next, speedup and average execution time of all workloads having cache or persist API in
HiBench test suites in-depth were observed. The experimental results are shown in Table 6. It can be seen
that Kmeans, LogisticRegression, and Bayes show good performance under the configuration of 15 GB
executor memory and driver memory. The other parameter configuration of the experimental results is
default. This technique saves more than 45.80% time over LRU. The performance improvement of Bayes
is the most noticeable, which can be up to 74.87% higher than LRU. Caching reasonable data reduces the
execution time for some typical applications. It should be noted that some applications in HiBench have
good improvement because of the memory-intense feature. It is common for iterative scenarios such as
Kmeans and LogisticRegression to cache input data in memory before model training. These distributed
applications repeatedly perform the same calculation on different data. For answering RQ2, LPW can

Li H, et al. Sci China Inf Sci January 2023 Vol. 66 112104:16

1000

800

600

400

200

0

E
x
ec

u
ti

o
n
 t

im
e

(s
)

E
x
ec

u
ti

o
n
 t

im
e

(s
)

E
x
ec

u
ti

o
n
 t

im
e

(s
)

LRU LRC LPW LRU LRC LPW LRU LRC LPW
4800

4000

3200

2400

1600

800

0

3500

2800

2100

1400

700

0
0.1 0.3 0.6 0.9 0.1 0.3 0.6 0.9 0.1 0.3 0.6 0.9

Nweight LogisticRegression Bayes

(a) (b) (c)

Figure 12 (Color online) Execution time under the LPW, LRU and LRC. (a) Nweight; (b) LogisticRegression; (c) Bayes.

Table 6 Execution time and speedup with different cache replacement strategies under 15 GB executor memory

Workload LRU (s) LRC (s) LPW (s) SpeedUp-LRC (%) SpeedUp-LRU (%)

Pagerank 7921.324 5760.366 2047.133 27.28 74.16

Nweight 541.5135 618.2463 543.3262 −14.17 −0.33

Kmeans 1385.608 570.9917 541.4555 58.79 60.92

LogisticRegression 4677.865 4044.374 2535.377 13.54 45.80

PCA 1829.108 1953.538 1805.344 −6.80 1.30

SVM 14540.98 15981.48 14299.84 −9.91 1.66

Bayes 2154.762 570.9917 541.4555 73.50 74.87

0

E
x
ec

u
ti

o
n
 t

im
e

(s
)

E
x
ec

u
ti

o
n
 t

im
e

(s
)

LogisticRegressionPagerank Bayes SVM

500

1000

1500

2000

2500

3000

3500

PCA Nweight Kmeans

21000

18000

15000

12000

9000

6000

3000

LRU LRC LPW LRU LRC LPW

Figure 13 (Color online) Execution time for workloads with different cache replacement policies.

effectively speed up the execution of Spark applications compared to LRU and LRC.

To verify the effectiveness of our cache replacement algorithm in-depth, we focus on selecting workload
having cache API. The seven workloads of Hibench are chosen. Figure 13 sketches out the results.
To answer RQ3, LPW is lightweight without bringing extra overhead for the performance of Spark
applications without cache or persist API. For these seven different characteristics of workloads, we can
see that when compared with LRU, these applications have better performance. Especially, in the case of
LogisticRegression (LR) and Bayes, they have excellent performance. To answer RQ2, LPW can speed
up the execution of Spark applications compared to the LRU and the other state of solutions such as
LRC.

Eviction frequency. The efficiency of LPW can also be illustrated from evicting frequency. Less
eviction frequency for the same application under the same configuration exists. For example, the number
of evictions for Bayes workload under different cache replacement policies is further summarized. As
shown in Table 7, during the entire application execution process, the total number of replacements that
occur decreases. LRU has 3958 evictions and LRC has 3718 evictions, while LPW had 3685 replacements.
Additionally, the frequency of replacement on each node is also reduced. For Node 1, the number of
evictions is 1376 under LRU, while the replacement number under LRU is 1185, indicating that our
method LPW can effectively predict hot spot data to cache without causing frequent replacement.

Compared with LRU and LRC, LRW presents good advantages in workloads such as graph computing

Li H, et al. Sci China Inf Sci January 2023 Vol. 66 112104:17

Table 7 Eviction numbers of Bayes with different cache replacement policies

Cluster-NodeID LRU LRC LPW

Node 1 1376 1227 1185

Node 2 1391 1346 1376

Node 3 1191 1145 1124

Total 3958 3718 3685

1. ……

2. val pairs=inputRDD.cache()

3. val rawFiltered=pairs.filter(item=> item._1.startsWith("i")).cache()

4. val fineFiltered = rawFiltered.filter(item =>

5. item._1.startsWith("id")).cache()

6. val fineResults = fineFiltered.reduceByKey(_+_)

7. val rawResults=rawFiltered.reduceByKey(_+_)

8. val counts=rawResults.union(fineResults)

9. println("counts===="+counts.first().toString());

10. pairs.unpersist()

…

pairs

rawFiltered

fineFiltered

fineResults

rawResults

counts

A
0

P

.first()

P

P

(a) (b)

Figure 14 (Color online) Code segment (a) and corresponding lineage graph (b).

and machine learning. The main reason is that these applications call the cache or persist API, when the
optimal partitions are selected for replacement.

6.4 Analysis and discussion

Compared with existing cache replacement algorithms, the extra overhead introduced by our proposed
LPW algorithm is quite small. Only the newly introduced factors are collected and maintained. The
calculation time for these factors is negligible. For example, when a job is executed, the time to compute
a partition and the space needed to store that partition can be gotten easily. For the reference count
factor, some network overhead is needed, since the reference count of a RDD needs to be synced from the
master to the slaves. However, this overhead is also very small since this reference count information only
has several bytes of data. These factors for different partitions are maintained in an in-memory table.
The formula to calculate weight of different partitions is simple, and the consumed time is negligible.

We select typical and popular open-source Spark applications in Github. Experiments show that LPW
is promising in identifying hot data for Spark applications. A challenge in efficient cache replacement is
to select important factors affecting performance. Our studied factors, also known as, computation cost,
reference count, and block size, are representative and important. The arbitrariness of cache API usage,
the diversity of application characteristics, and the variability of memory resources construct challenges
for efficient system performance. LPW can dynamically be aware of hot data and provide a wise decision
to improve performance for various workloads.

An independent evaluation to evaluate LPW is provided as shown in Figure 14. There are three
RDDs that would be cached. Given the same input data and the same workload, parameters such as
executor memory are configured the same. The workload is run in local [9] mode and the memory with
−Xmx = 512 MB. We then observe the execution time and detailed replacement process under the LPW
and LRU. In our experiments, the execution time of the example is 79 and 96 s under LPW and LRU,
respectively.

Logs are collected and analyzed under different cache replacement strategies. Our results are shown
in Figure 15. Under the guidance of the LRU strategy, the cache blocks belonging to paris (RDD3) and
rawFiltered (RDD4) are preferentially eliminated. On the contrary, the decision made by LPW is to
give priority to removing cache blocks belonging to fineFiltered (RDD5). In calculation, when compared
with RDD5, RDD3 and RDD4 are accessed first. According to recency in LRU, blocks of RDD3 and

Li H, et al. Sci China Inf Sci January 2023 Vol. 66 112104:18

rdd_5_7

rdd_5_0

rdd_5_1

rdd_5_2

rdd_5_4

rdd_5_3

rdd_5_5

rdd_5_6

rdd_4_5

rdd_4_3

rdd_4_6

rdd_4_2

rdd_4_7

rdd_4_0

rdd_5_14

rdd_5_12

rdd_5_11

rdd_5_13

rdd_5_10

rdd_5_9

rdd_5_8

rdd_4_13

rdd_4_10

rdd_4_9

rdd_4_8

rdd_4_12

rdd_4_11

rdd_4_15

rdd_4_18

rdd_5_20

rdd_5_19

rdd_4_19

rdd_5_18

rdd_5_27

rdd_5_24

rdd_5_25

rdd_5_28

rdd_5_29

rdd_4_29

rdd_4_28

rdd_4_25

rdd_4_24

rdd_4_27

rdd_5_32 rdd_4_6

rdd_ 4_1

rdd _5_0

rdd_4_5

rdd_4_6

rdd_4_2

rdd_4_1

rdd_4_7

rdd_4_4

rdd_4_3

rdd_4_15

rdd_4_13

rdd_4_9

rdd_4_16

rdd_4_17

rdd_4_22

rdd_4_21

rdd_4_19

rdd_4_25

rdd_4_26

rdd_4_30

rdd_4_32

rdd_4_1

rdd_5_7

rdd_4_7

rdd_4_6

rdd_4_10

rdd_5_6

rdd_5_10

rdd_4_0

rdd_3_32 rdd_5_1

05
:0

8:
46

05
:1

0:
33

05
:1

0:
40

05
:1

0:
43

05
:1

0:
51

05
:1

0:
59

05
:1

1:
08

05
:1

1:
13

05
:0

8:
59

05
:0

9:
09

05
:0

9:
22

05
:0

9:
27

05
:0

9:
30

05
:0

9:
39 Time

Time

(a)

(b)

Figure 15 (Color online) Cache replacement process under LRU and LPW. (a) Replacement under LRU; (b) replacement process

under LPW.

RDD4 are firstly evicted as shown in Figure 15(a). According to LPW, blocks in RDD5 with the smallest
weight are first eliminated under the LPW as shown in Figure 15(b). When the application is executed,
evicting RDD3 or RDD4 would not be the best choice. Because of the calculation time and other factors,
the weight value of these two RDDs calculated under LPW would be greater than the weight of RDD5.
The optimal choice would be to evict partitions of RDD5. Our experiments show that LPW can guide
Spark to keep the reasonable data to be reused and evict other data for replacement to enhance execution
efficiency.

7 Related work

Cache replacement strategies. Remarkable advancements in identifying factors affecting caching are
ongoing. Many cache replacement strategies, including traditional strategies, such as LFU, FIFO, and
the newer work LRC [8] can be found. GD-Wheel [10], a cost-aware replacement policy can reduce
the total recomputation cost and average latency for web applications. An imitation learning approach
PARROT [11] has been proposed, which automatically learns data access patterns by leveraging Belady
and computing the optimal eviction decision. The LRFU [12] algorithm takes the computational cost
and size of the data block into account but does not consider the number of uses of the data block. The
AWRP [13] algorithm captures the frequency of data usage, but it misses the size of the data block.
LERC [14] stores the relevant blocks of the computing task as a whole and keep them in the memory
thus, omitting the data dependency. The LRC algorithm puts the concept of the number of references
forward. The system monitors the number of references of each data block in the memory of each slave
node. The principle of cache replacement is to remove the data block from the memory with the lowest
number of references. The performance of LRC is better than LRU because it considers the problem of

Li H, et al. Sci China Inf Sci January 2023 Vol. 66 112104:19

data dependency when the program is running. LRC evicts the data that will not be used in subsequent
calculations in time and retains the data that will be used multiple times in the future not considering
the data calculation. For the Spark framework, these algorithms ignore some important factors such as
the data dependency or the computational cost of data. It is often difficult to have better performance
in various scenarios just based on frequency or recency.

Memory optimization solutions. In the data parallel computing framework, caching data is one of
the key technologies for achieving performance improvement. Dache [15] proposed caching intermediate
result to reuse in MapReduce framework. For the Spark framework, Yang et al. [16] showed that the
technology backs up intermediate data in different storage levels for re-use without recalculation to achieve
higher execution efficiency. Many studies have elaborated performance issues caused by persisted data in
memory during data processing. As developers understand the difference in professional knowledge such
as caching mechanism, it brings uncertainty in caching API usage, which further causes performance
problems for the application. In real-world cases, Spark’s typical and representative built-in libraries
such as GraphX [17] and MLlib [18] currently generally have improper use of cache API codes that
cause application performance problems. Memory cache optimization aims to improve the utilization
of data cached in memory during data processing and optimize application execution. Xu et al. [19]
proposed one of the most common reasons for an executor out of memory (OOM) is that developers
always want to cache or load too much information into memory. Ousterhout et al. [20] pointed out that
the increase in bandwidth and the use of SSDs or disk arrays can effectively solve network or disk IO
problems. Memory-based computing frameworks such as Spark have performance bottlenecks mainly in
CPU and memory rather than network overhead or Disk IO and other issues. It is of great significance to
improve memory utilization in big data parallel data processing systems. The MemTune [21] considers
the partial data dependency of the currently running task. In the multi-tenancy scenario, MemTune
traverses all submitted DAG graphs after each computing task is completed, for which the complexity is
relatively large. Stark [22] optimized memory calculations on dynamic data set collections and enforced
data locality to avoid unnecessary data duplication and shuffling, ignoring whether the data is needed for
subsequent calculations. PACMan [23] designed two cache replacement strategies to coordinate access to
distributed caches. The first one cleared a large amount of incomplete inputs to minimize the average
completion time. Another one is to clear infrequently accessed inputs to maximize cluster efficiency.
Data access dependencies about applications are not considered. Ref. [24] was conducted on the analysis
of the temporal and spatial distribution of information such as data references in the entire workflow.
Neutrino [25] captured the data access dependencies between RDDs in different stages of the Spark
application, and adaptively converted or discarded RDDs from different cache storage levels. If the cost
of data calculation is added, it is more meaningful to make appropriate caching decisions for the entire
cluster.

8 Conclusion

Spark is a widely used distributed computing framework for processing big data. Intermediate result
caching is an important mechanism for Spark to achieve high performance. Due to the limitation of
storage memory, the cached data often need to be replaced. As a result, cache replacement strategies
can largely affect the performance of Spark. However, the LRU cache replacement algorithm, currently
adopted by Spark, only considers the least recently accessed and simply evicts the least recently used
data. This mechanism presents limitations for many applications. To overcome the limitations of LRU
and further improve the performance of Spark, we designed a data-aware cache replacement algorithm,
the LPW. In view of the diversity of application characteristics and the continuous variability of memory
usage requirements, the LPW establishes a unified weight model based on factors and calculates the
tracked statistics for the block to identify hot data to be swapped into the memory. The weight is used
as the basis for a replacement decision. Our comprehensive experiments show the effectiveness of LPW
especially for iterative applications. LPW outperformed related algorithms, such as LRU and LRC, with
respect to the execution time and eviction frequency.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant Nos. U20A6003,

61802377, 61872340) and Youth Innovation Promotion Association of Chinese Academy of Sciences.

Li H, et al. Sci China Inf Sci January 2023 Vol. 66 112104:20

References

1 Shvachko K, Kuang H, Radia S, et al. The Hadoop distributed file system. In: Proceedings of Symposium on Mass Storage

Systems and Technologies, 2010. 1–10

2 Li H Y, Ghodsi A, Zaharia M, et al. Tachyon: reliable, memory speed storage for cluster computing frameworks. In:

Proceedings of the ACM Symposium on Cloud Computing, Seattle, 2014. 1–15

3 Saha B, Shah H, Seth S, et al. Apache Tez: a unifying framework for modeling and building data processing applications. In:

Proceedings of International Conference on Management of Data, Melbourne, 2015. 1357–1369

4 Zaharia M, Chowdhury M, Das T, et al. Fast and interactive analytics over Hadoop data with spark. Adv Comput Syst

Assoc, 2012, 37: 45–51

5 Zaharia M, Chowdhury M, Das T, et al. Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster

computing. In: Proceedings of USENIX Conference on Networked Systems Design and Implementation, 2012

6 Li H, Wang D, Huang T Z, et al. Detecting cache-related bugs in Spark applications. In: Proceedings of International

Symposium on Software Testing and Analysis, Virtual Event, 2020. 363–375

7 Geng Y Z, Shi X H, Pei C, et al. LCS: an efficient data eviction strategy for Spark. Int J Parallel Prog, 2017, 45: 1285–1297

8 Yu Y H, Wang W, Zhang J, et al. LRC: dependency-aware cache management for data analytics clusters. In: Proceedings of

Conference on Computer Communications, Atlanta, 2017. 1–9

9 Huang S S, Huang J, Dai J Q, et al. The Hibench benchmark suite: characterization of the MapReduce-based data analysis.

In: Proceedings of International Conference on Data Engineering Workshop, Long Beach, 2010. 41–51

10 Li C, Cox A L. GD-Wheel: a cost-aware replacement policy for key-value stores. In: Proceedings of the European Conference

on Computer Systems, Bordeaux, 2015. 1–15

11 Liu E, Hashemi M, Swersky K, et al. An imitation learning approach for cache replacement. In: Proceedings of the Interna-

tional Conference on Machine Learning, 2020. 6237–6247

12 Lee D H, Choi J, Kim J H, et al. On the existence of a spectrum of policies that subsumes the least recently used (LRU) and

least frequently used (LFU) policies. SIGMETRICS Perform Eval Rev, 1999, 27: 134–143

13 Swain D, Paikaray B, Swain D. AWRP: adaptive weight ranking policy for improving cache performance. Comput Sci, 2011,

3: 2151–9617

14 Yu Y H, Wang W, Zhang J, et al. LERC: coordinated cache management for data-parallel systems. In: Proceedings of Global

Communications Conference, 2017. 1–6

15 Zhao Y X, Wu J. Dache: a data aware caching for big-data applications using the MapReduce framework. In: Proceedings of

International Conference on Computer Communications, 2013. 35–39

16 Yang Z Y, Jia D L, Ioannidis S, et al. Intermediate data caching optimization for multi-stage and parallel big data frameworks.

In: Proceedings of International Conference on Cloud Computing, San Francisco, 2018. 277–284

17 Gonzalez J E, Xin R S, Dave A, et al. GraphX: graph processing in a distributed dataflow framework. In: Proceedings of

USENIX Symposium on Operating Systems Design and Implementation, Broomfield, 2014. 599–613

18 Meng X R, Bradley J, Yavuz B, et al. MLlib: machine learning in Apache Spark. J Mach Learn Res, 2016, 17: 1235–1241

19 Xu L J, Dou W S, Zhu F, et al. Characterizing and diagnosing out of memory errors in MapReduce applications. J Syst

Softw, 2018, 137: 399–414

20 Ousterhout K, Rasti R, Ratnasamy S, et al. Making sense of performance in data analytics frameworks. In: Proceedings of

USENIX Symposium on Networked Systems Design and implementation, Oakland, 2015. 293–307

21 Xu L, Li M, Zhang L, et al. MemTune: dynamic memory management for in-memory data analytic platforms. In: Proceedings

of International Parallel and Distributed Processing Symposium, Chicago, 2016. 383–392

22 Li S, Amin M T, Ganti R, et al. Stark: optimizing in-memory computing for dynamic dataset collections. In: Proceedings of

International Conference on Distributed Computing System, Atlanta, 2017. 103–114

23 Ananthanarayanan G, Ghodsi A, Warfield A, et al. PACMan: coordinated memory caching for parallel jobs. In: Proceedings

of Symposium on Networked Systems Design and Implementation, San Jose, 2012. 267–280

24 Perez T B, Zhou X B, Chen D Z. Reference-distance eviction and prefetching for cache management in Spark. In: Proceedings

of International Conference on Parallel Processing, Eugene, 2018. 1–10

25 Xu E, Saxena M, Chiu L. Neutrino: revisiting memory caching for iterative data analytics. In: Proceedings of USENIX

Workshop on Hot Topics in Storage and File Systems, Denver, 2016. 16–20

https://doi.org/10.1007/s10766-016-0470-1
https://doi.org/10.1145/301464.301487
https://doi.org/10.1016/j.jss.2017.03.013

	Introduction
	Background
	Spark programming model
	Spark memory management
	LRU in Spark

	Motivation examples
	Our solution
	Considering factors
	Partition weight model
	LPW algorithm
	A simple example for LPW

	Implementation
	Evaluation
	Environment
	Workloads
	Evaluation results
	Analysis and discussion

	Related work
	Conclusion

