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Dear editor,

The analysis of captured 1D time-series sequences has been

a challenge in engineering research such as sensing for a long

time. 1D time series often exhibit more abstract and com-

plex characteristics in engineering. For example, continuous

or pulsed ultrasound is often used in ultrasonic detection [1]

to transmit and receive energy in the medium to assess the

location of damage or the degree of wear in the workpiece to

be measured. However, because small damage in the work-

piece is often invisible, only the temporal signals received

by the sensor can be used to detect and study the dam-

age. Ultrasonic signals exhibit complex characteristics dur-

ing the propagation of the workpiece. Therefore, analyzing

the time-series signal effectively is the basis for improving

the ability of sensing and monitoring.

Traditional methods of signal analysis are often based

on complex physical models built manually [2, 3]. However,

these methods may bring large errors, especially when the

structure of the workpiece is very complex. With the devel-

opment of deep learning, artificial intelligence networks are

receiving increasing attention in the processing of time-series

signals. The training of a good deep learning model often

requires the support of big data [4] (easily collected and con-

taining samples of tens of thousands of orders of magnitude),

but this is difficult for some specific tasks. Damage detec-

tion, for example, is often an abrupt and lengthy process in

reality. It is not realistic to collect thousands of samples.

The overfitting problem in the deep learning model caused

by limited data sets is a very common problem. Therefore,

it is essential to consider data augmentation. Data augmen-

tation has been demonstrated to be an effective method for

improving model generalization and overcoming the overfit-

ting problem.

Two data augmentation techniques, random scale-

cropping and random erasing, are proposed to improve the

performance of the classification model for complex signal

sequences sampled in practice, in order to overcome the

generalization challenges associated with insufficient train-

ing data and complex signal characterization. As shown

in Figure 1, in order to acquire optical time-domain signals

with complex characterization, a high-sensitivity fiber Bragg

grating (FBG) sensing system is used to acquire ultrasound

signals for different damage cases. Next, the collected data

are processed for data augmentation, which is evaluated in

the deep learning models.

The actual input signal is a combination of a series of

short sequences of events. And types and sorts of events

that occur on the sequence determine the class of signal. In

practice, however, a well characterized sequence signal may

not always be collected. Environmental noises and temper-

ature variations can also affect the sensitivity of the sensor.

The neural network might mistake the noise as a classifica-

tion criterion and ignore the characteristics of the key events

occurring sequence. In this situation, the model will get in-

accurate results in the test set.

To overcome this problem, a strategy of random scale-

cropping on the original samples is proposed in this study.

It enables the resampling of a dataset. The model reads

only a portion of the events for all samples as well as the

sampling process is completely random. There are many

sampling possibilities for each sample and hence the dataset

can be expanded very large. For the test set, it will elimi-

nate the situation that the test data sequence cannot be ac-

curately identified due to incomplete performance. At this

time, all the samples participating in the training are in-

complete. The translation invariance of a one-dimensional

convolutional neural network (1D-CNN) will pay more at-

tention to the sequence of key events in training rather than

simply remembering the exact time of them. Another ad-

vantage of the randomly cropped sequence is that the back-
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Figure 1 Schematic diagram of signal acquisition, signal enhancement, and model design.

ground noise is suppressed in some way. Low probability

noise does not show up in all processed samples. The test

samples will not be misclassified because they do not contain

such noise.

Another problem will be brought out by the event com-

plexity of the original signal sequence when measuring sig-

nals in practice, which also needs to be concerned. Some

waveforms generated by different events may be overlapped

with each other, leading to blurred signals. In addition,

some of the events represented on the sequence are unnec-

essary (e.g., noise), so a strategy is intended to make the

neural network focus on more general and important char-

acteristics of the signal.

Random erasing of the input signal can overcome the

above problem to some extent. When the input signal is

poorly characterized by an event somewhere, random eras-

ing some signals may prevent the model from overfitting to

that feature by forcing it to learn other characteristics of

the sequence. The model can decide on the most positive

characteristics by “voting” on the entire training set. Let

the input time-series sequence be represented as x and the

output after the model as y. The probability distribution

is jointly determined by the input sequence x and the mask

vector µ:

p̃(y|x) =
∑

µ

p(µ)p(y|x, µ), (1)

where the mask vector µ ∼ p(µ), which consists of two val-

ues 0 and 1. It acts on the input sequence x and randomly

determines whether a certain part of the input is erased or

not. The optimization objective of the model then becomes

J(θ) = −Ex,y∼p̂data
log p̃(y|x). (2)

After random erasing, the inputs become sparse natu-

rally. Events and characteristics with a high probability of

occurrence throughout the representatively sparse training

set will be more likely to be learned by the neural network

model. The overfitting problem will be solved while a mi-

nority of characteristics is discarded.

Experiment and results. We have built the experimental

setup shown in Figure 1 to acquire the ultrasound signal, and

the main sensing unit used is the π-shift FBG with higher

sensitivity. The central wavelength of the laser output is

adjusted in real time through the method of proportional-

integral-derivative control strategy to ensure that it is al-

ways in the linear region of FBG reflection peak [5]. The

reflected light from FBG is detected by a balanced photode-

tector (BPD), which can effectively improve the sensitivity

of the optical sensing system while suppressing the noise [6].

The experimental data were divided into a training set and

a test set in the ratio of 8:2. The performance in the CNN

model improved after data augmentation was applied, with

the classification accuracy rising from 51.19% to 90.46%.

The specific experimental setup and results are shown in

Appendix B.

Conclusion. In this study, the problem of inadequate or

uneven data collection is studied. A small sample dataset

tends to cause overfitting of deep learning models, which

limits the application of deep neural networks in engineer-

ing. To overcome this problem, data augmentation methods

of random scale-cropping as well as random erasing are pro-

posed. The results show that with the combination of the

above methods, the model exhibits excellent classification

performance with an accuracy of 90.46%. Further, the data

augmentation methods proposed in the study have the po-

tential to become general solutions in many fields besides

fiber sensing, which guarantees that deep learning models

can be effectively applied in engineering practices.

Acknowledgements This work was supported by National
Natural Science Foundation of China (Grant Nos. U1833104,
61735011).

Supporting information Appendixes A and B. The sup-
porting information is available online at info.scichina.com and
link.springer.com. The supporting materials are published as
submitted, without typesetting or editing. The responsibility
for scientific accuracy and content remains entirely with the au-
thors.

References

1 Liang G L, Ma W, Wang Y L. Time-space transform: a

novel signal processing approach for an acoustic vector-

sensor. Sci China Inf Sci, 2013, 56: 042313

2 Lympertos E M, Dermatas E S. Acoustic emission source

location in dispersive media. Signal Processing, 2007, 87:

3218–3225

3 Sousa K M, Dreyer U J, Martelli C, et al. Dynamic ec-

centricity induced in induction motor detected by optical

fiber Bragg grating strain sensors. IEEE Sens J, 2016, 16:

4786–4792

4 Zhang W T, Jiang J W, Shao Y X, et al. Snapshot boost-

ing: a fast ensemble framework for deep neural networks.

Sci China Inf Sci, 2020, 63: 112102

5 Liu Z Z, Zhang X Z, Jiang J F, et al. Stabilization of high

sensitivity optical fiber AE sensing for long-term detection.

Optical Fiber Tech, 2021, 61: 102391

6 Wu Q, Yu F M, Okabe Y, et al. Application of a novel

optical fiber sensor to detection of acoustic emissions by

various damages in CFRP laminates. Smart Mater Struct,

2015, 24: 015011

info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-013-4827-4
https://doi.org/10.1016/j.sigpro.2007.05.010
https://doi.org/10.1109/JSEN.2016.2554885
https://doi.org/10.1007/s11432-018-9944-x
https://doi.org/10.1016/j.yofte.2020.102391
https://doi.org/10.1088/0964-1726/24/1/015011

