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Dear editor,

The multiple-input multiple-output orthogonal frequency

division multiplexing (MIMO-OFDM) is the core of many

advanced Wi-Fi standards, such as Wi-Fi 4, 5, and 6, to

increase the throughput. Operating at the 5-GHz band and

considering the phase tracking of the very high throughput

long training field (VHT-LTF) sequences, MIMO-OFDM re-

ceivers are far more efficient in Wi-Fi 5 and 6 compared

to Wi-Fi 4. Unfortunately, the traditional preamble se-

quences are poor candidates for VHT-LTF sequences in Wi-

Fi 5 and 6 because their peak-to-mean envelope power ratios

(PMEPRs) may increase because of the phase rotation in pi-

lot tones for the phase tracking [1,2]. Hence, new sequences

with low PMEPRs under some specific rotatable index sets

should be considered. According to the design requirement

of preamble sequences used in the phase tracking method

proposed in [3] and applied in Wi-Fi 5 and 6, we propose

a novel class of sequence sets called rotatable sequence sets

(RSSs). This study presents several direct or general con-

structions of low-PMEPR RSSs with different sizes based on

generalized Boolean functions and complementary sequence

sets.

Construction 1: low-PMEPR training sequences for q-th

rotatable pilots. Let m > 2 be an integer and q be a positive

and even integer. Let

f(x) =
q

2

m−1∑

k=1

xπ(k)xπ(k+1) +
m∑

k=1

ckxk + c,

where x ∈ Z
m
2 , ck, c ∈ Zq . Let π be a permutation of

{1, 2, . . . ,m}.

(1) Let a(x) = f(x). For the q-th rotatable index set

Γk = {i : ik = 1}, 1 6 k 6 m, 0 6 i 6 2m − 1, where

ik is the k-th element of the binary representation of in-

dex i and |Γk| = 2m−1, AΓk
is a (q,Γk, 2

m, 2)-RSS for all

k = 1, 2, . . . ,m.

(2) Let a(x) = f(x) + λxπ(t)xπ(t+1), where λ ∈ Zq

and 1 6 t 6 m − 1. For the q-th rotatable index set

Γt = {i : iπ(t)iπ(t+1) = 1}, 1 6 t 6 m − 1, 0 6 i 6 2m − 1,

where it is the t-th element of the binary representation of

index i and |Γt| = 2m−2, AΓt
is a (q,Γt, 2m, 4)-RSS for all

t = 1, 2, . . . ,m− 1.

(3) Let a(x) = f(x) +λxπ(m)

∏
k∈S

xπ(k), where λ ∈ Zq

and S = {s1, s2, . . . , sr−1} is any subset of {1, 2, . . . ,m− 1}

with |S| = r − 1. For the q-th rotatable index set Γ =

{i : iπ(m)

∏
k∈S

iπ(k) = 1}, 0 6 i 6 2m − 1, where ik is

the k-th element of the binary representation of index i and

|Γ| = 2m−r , AΓ is a (q,Γ, 2m, 2r)-RSS.

The details on RSSs and Construction 1 can be found in

Appendixes A and B, respectively.

Note that the upper bound on the PMEPR of RSSs in

Construction 1 increases as the size of the RSS decreases.

The following results give general methods for generating

low-PMEPR RSSs with small rotatable index sets.

Construction 2: general RSS construction methods for

small 4-th rotatable index sets with low PMEPRs. Consider

q = 4 and let (a, b) be a Golay complementary pair (GCP) of

length L with (c,d) its Golay mate and these sequences have

the same energy. Let e = I(a, 0, ξq) and h = I(a, L, ξq). In

addition, let w = (a ‖ c) be a sequence of length 2L and

k = I(w, L, ξq). Then we have the following results:

(1) For the 4-th rotatable index set Γ = {0}, EΓ is a

(4,Γ, L+ 1, 4)-RSS.

(2) For the 4-th rotatable index set Γ = {L}, HΓ is a

(4,Γ, L+ 1, 4)-RSS.

(3) For the 4-th rotatable index set Γ = {L}, KΓ is a

(4,Γ, 2L+ 1, 4)-RSS.

(4) For the 4-th rotatable index set Γ = {0, L + 1} and

m = I(e, L+ 1, ξ4), MΓ is a (4,Γ, L+ 2, 4)-RSS.

The details on Construction 2 can be found in Ap-

pendix C.

The rotatable index sets in Construction 2 are very small

and may not be sufficient for the phase tracking. The follow-

ing result shows two general methods for generating RSSs

from given complementary sequence sets (CSSs), which can

be used to obtain new RSSs with larger sequence lengths

and rotatable index sets.

Construction 3: general methods for constructing q-th

*Corresponding author (email: zzc@swjtu.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-022-3594-8&domain=pdf&date_stamp=2022-11-18
https://doi.org/10.1007/s11432-022-3594-8
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-022-3594-8
https://doi.org/10.1007/s11432-022-3594-8


Zhou Y J, et al. Sci China Inf Sci December 2022 Vol. 65 229302:2

0 5 10 15 20 25 30

SNR (dB)

−34

−32

−30

−28

−26

−24

−22

−20

−18

−16

−14

N
M

S
E

 (
d
B

)

Proposed sequence

m-sequence

ZC sequence

CS

GCS

0 5 10 15 20 25 30

SNR (dB)

−34

−32

−30

−28

−26

−24

−22

−20

−18

N
M

S
E

 (
d
B

)

Proposed sequence

m-sequence

ZC-sequence

GCS

CS

(a) (b)

Figure 1 (Color online) NMSE comparison for various SNRs. (a) Number of subcarriers is 64, Γ = {i : i2i5 = 1}, and the

saturation voltage is 0.646; (b) number of subcarriers is 128, Γ = {i : i1i2i7 = 1}, and the saturation voltage is 0.784.

RSSs from CSSs. For positive integers M , N with M = 2N ,

let S = {s1, s2, . . . , sM} be a CSS of length L, where the

sequences have the same energy. Consider M q-th rotatable

index sets Γm = {{tm1 , tm2 , . . . , tm
dm

} : 1 6 tmi 6 L}, 1 6

m 6 M , where dm is the size of Γm. If for any p ∈ Zq ,

Sp = {sΓ1

1,p , s
Γ2

2,p, . . . , s
ΓM

M,p
} is also a CSS, then we have the

following results:

(1) Let Sk = {sk1 , s
k
2 , . . . , s

k
M}, where s

k
2n−1 = s

k−1
2n−1

♦s
k−1
2n , s

k
2n = s

k−1
2n−1♦ − s

k−1
2n , s

0
m = sm, 1 6 m 6 M ,

and a = sk1 . Then AΓk is a (q,Γk
1 , 2

kL,M)-RSS, where

“♦” denotes the bit-interleaved operation, Γk
1 = Γk

2 =

(2Γk−1
1 − 1)

⋃
(2Γk−1

2 ), Γ0
1 = Γ1,Γ0

2 = Γ2, and k > 1.

(2) Let Sk = {sk1 , s
k
2 , . . . , s

k
M}, where s

k
2n−1 = (sk−1

2n−1 ‖

s
k−1
2n ), sk2n = (sk−1

2n−1 ‖ −s
k−1
2n ), s0m = sm, 1 6 m 6 M ,

and a = s
k
1 . Then AΓk

1

is a (q,Γk
1 , 2

kL,M)-RSS, where

Γk
1 = Γk

2 = Γk−1
1

⋃
(2k−1L+ Γk−1

2 ), Γ0
1 = Γ1,Γ0

2 = Γ2, and

k > 1.

The details on Construction 3 can be found in Ap-

pendix D.

Simulation result. We consider the channel estimation

performances under the least squares estimator of the binary

proposed sequences, complementary sequences (CSs) [4],

Golay complementary sequences (GCSs) [5], Zadoff-Chu

(ZC) sequences, and m-sequences, where the elements in

the rotatable index sets have been rotated by 180◦ as

the preamble sequences for MIMO-OFDM systems over

frequency-selective channels with 5 taps and a soft limiter

power amplifier, where the oversampling rate is 8, and the

length of the cyclic prefix equals the number of subcarri-

ers. In Figure 1, we evaluate the channel estimation nor-

malized mean squared error (NMSE) performances of the

rotated proposed sequences, rotated CSs, rotated GCSs, ro-

tated ZC sequences, and rotated m-sequences of lengths

64 and 128 when the signal-to-noise ratio (SNR) runs over

{0, 1, . . . , 30} dB, and the number of transmit antennas is 8.

As shown, our proposed sequences considerably outperform

the other sequences under the least squares estimator. This

result is obtained because the peak signal powers of those

sequences exceed the limited power of the soft limiter power

amplifier due to the rotation of some elements, which dis-

torts these signals, while our rotated proposed sequences are

unaffected by the power amplifier. The PMEPRs and code

rates of the proposed sequences are compared with those

of the well-known ZC sequences and m-sequences in Ap-

pendix E.
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