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The electronic design automation (EDA) community has

been actively exploring machine learning (ML) for very

large-scale integrated computer-aided design (VLSI CAD).

Many studies explored learning-based techniques for cross-

stage prediction tasks in the design flow to achieve faster

design convergence. Although building ML models usually

requires a large amount of data, most studies can only gen-

erate small internal datasets for validation because of the

lack of large public datasets. In this essay, we present the

first open-source dataset called CircuitNet for ML tasks in

VLSI CAD.

VLSI circuit design can be divided into front-end de-

sign and back-end design. The front-end design implements

the functionality of the circuit, and then, the back-end de-

sign transforms the circuit into manufacturable geometries,

i.e., layouts. In advanced technology nodes, the back-end

design is time-consuming because of iterative information

feed-forward and feed-backward between the design stages

during optimization. To accelerate this process, cross-stage

prediction was introduced to replace the original long feed-

back loops between design stages with local loops within

the design stages. As a promising method for fast and accu-

rate cross-stage prediction, ML has been explored for vari-

ous early-stage prediction tasks in the design flow, including

routability and IR drop [1].

Despite the active research on ML for CAD, there re-

main some challenges in this field. There is almost no pub-

lic dataset dedicated to ML for CAD applications because

of license restrictions and domain-specific expertise for data

generation. Meanwhile, the existing datasets obtained from

CAD contests are often incomplete and not designed for

ML applications [2]. The lack of public datasets raises chal-

lenges such as difficulty in benchmarking and reproducing

previous work, limited research scope from limited data ac-

cess, and a high bar for new researchers, which slows down

further advancements in this field. To this end, we present

the first open-source dataset, CircuitNet, which provides

holistic support for cross-stage prediction tasks in back-end

design with diverse samples.

Dataset overview. The statistics of the dataset are sum-

marized in Figure 1. We followed two steps to generate the

dataset: data collection and feature extraction.

Data collection consisted of two stages: logic synthesis

and physical design. In logic synthesis, the RISC-V designs

were mapped from register transfer level (RTL) designs to

gate-level netlists in the 28 nm technology node with Syn-

opsys Design Compiler. Then, the physical design trans-

formed the netlists into layouts with Cadence Innovus. We

improved the diversity of the dataset by introducing differ-

ent settings in logic synthesis and physical design, as shown

in Figure 1(a). These settings contributed to variations in

utilization, routing resources, macro locations, etc., reflect-

ing diverse situations in the back-end design flow. Each de-

sign has 2160 settings, and all the designs have 12960 runs

of the back-end design flow. Eventually, we obtained 10242

layouts after excluding the failed runs.

In feature extraction, features were extracted at vari-

ous design stages to support different cross-stage prediction

tasks, as shown in Figure 1(b). We included both graph-

like features (i.e., gate-level netlists) and image-like features

(i.e., two-dimensional feature maps extracted from the phys-

ical layouts, as the design information can be naturally rep-

resented by image-like data by dividing a layout into tiles

and regarding each tile as a pixel). These features are widely

adopted in the state-of-the-art routability and IR drop pre-

diction models [3–5].

Dataset evaluation. To evaluate the effectiveness of Cir-

cuitNet, we further conducted experiments on three predic-

tion tasks: congestion, design rule check (DRC) violations,

and IR drop. Each experiment adopted a method from re-

cent studies [3–5] and evaluated its result on CircuitNet with

the same evaluation metrics as in the original studies. These
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Figure 1 (Color online) (a) Statistics of designs and variations introduced during data collection; (b) available features, their

extraction stages, and prediction tasks in the experiments.

methods utilized image-like features to train a generative

model, such as fully convolutional networks (FCNs) and U-

Net, by formulating the prediction task into an image-to-

image translation task. A detailed manual about the setup

of these experiments is available on our webpage. Herein,

we briefly introduce our results.

First, for congestion prediction, we used the normalized

root-mean-square-error and structural similarity index mea-

sure as metrics to evaluate pixel-level accuracy. The corre-

sponding results for an FCN based method [3] were 0.040

and 0.80, respectively. Second, for DRC violation predic-

tion, we considered the area under the curve (AUC) of the

receiver operating characteristic (ROC) curve and that of

the precision-recall (PR) curve as the metrics for imbal-

anced learning. The corresponding results for an FCN based

method [4] were 0.95 and 0.63, respectively. Finally, for IR

drop prediction, we evaluated the AUC of the ROC curve

and that of the PR curve. The corresponding results for a

U-Net based method [5] were 0.94 and 0.83. Overall, our re-

sults are relatively consistent with the original publications

and demonstrate the effectiveness of CircuitNet.

Usage. We separated the features shown in Figure 1(b)

and stored them in different directories to enable custom ap-

plications. We provided scripts for preprocessing and com-

bining different features for training and testing used in the

above experiments as references.

Access methods. The user guide and the down-

load link for CircuitNet can be accessed from

https://circuitnet.github.io.
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