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Abstract An unmanned aerial vehicle (UAV) relay network is a promising solution in the next-generation

wireless networks due to its high capacity and unlimited geography. However, because of the openness of

wireless channels and UAV mobility, it is remarkably challenging to guarantee the secure access of UAV

relay. In this paper, we investigate the physical layer authentication (PLA) to verify the identity of the UAV

relay for preventing unauthorized access to users’ information or network service. Unlike most existing PLA

methods for UAV, the proposed PLA scheme fully considers the time-varying of physical layer attributes

caused by UAV mobility, and transforms the authentication problem into recognizing nonlinearly separable

physical layer data. Particularly, we propose a manifold learning-based PLA scheme that can authenticate the

mobile UAV relay in real time by establishing the local correlation of physical layer attributes. The Markov

chain of physical layer data in the time domain is established to evaluate UAV state transition probability

through the proposed diffusion map algorithm. The legitimate UAV and spoofing attackers can always be

authenticated by the different motion states. Performance analysis offered a comprehensive understanding of

the proposed scheme. Extensive simulations confirm that the performance of the proposed scheme improves

over 18% in resisting the intelligent spoofing UAV compared with the traditional methods.
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1 Introduction

The unmanned aerial vehicle (UAV) enabled relay network is a promising solution for throughput im-
provement and service range extension in further networks, especially adapting to the large-scale activity
and disaster-fight [1, 2]. Equipped with specific wireless transceivers, the UAV relay can communicate
with both ground users and base stations [3]. However, due to the openness of wireless channels, the iden-
tity information of the UAV relay can be easily wiretapped by the eavesdropper and further masqueraded
by spoofing attackers [4–7]. The adversarial UAV can amplify and forward the falsified signals to the
ground receivers, illegally tempering users’ private information and causing enormous economic losses.
Therefore, accurate UAV authentication is an essential prerequisite for UAV-enabled relay networks.

Currently, the secure access of wireless networks is provided by cryptography-based authentication
protocols. The identities of the user and network are authenticated by key agreement and the inquiry
request, e.g., the evolved packet system authentication and key agreement protocols (EPS-AKA) in the
4-th generation mobile networks (4G) [8], and the 5G-AKA protocols [9]. Although the effectiveness and
reliability of AKA protocols have been confirmed in the terrestrial cellular network [9,10], it is difficult to
apply them to the UAV relay directly. Firstly, the UAV relay is a resource-constrained device, which may
not support the highly complex authentication protocols. Secondly, the UAV relay is usually fast-moving
under the pre-designed trajectory, with a frequency handover with the ground devices. In this case, the
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latency of authentication handover may cause the UAV to miss the best relay position, thus deteriorating
the efficiency of UAV-enabled relay networks.

Physical layer security has been proposed as an alternative solution for secure wireless communica-
tions [11, 12]. Particularly, physical layer authentication (PLA) is a key complementary technique for
secure access due to its robust security and low complexity [13–19]. The legitimate and spoofing sig-
nals are distinguished by comparing the physical layer attributes of received signals with the reference
vector. Mathematically, PLA is to find a partition plane for the legitimate user and spoofer in physical
layer attributes, such as received signal strength (RSS) [13, 14], channel impulse response (CIR) [15, 16],
angle of arrival (AoA) [17], carrier frequency offsets (CFO) [18], Doppler frequency shift [19]. Physical
layer attributes are time-varying as the wireless channel fading changes, presenting high randomness and
spatiotemporal uniqueness. Therefore, PLA is difficult to be broken by spoofing attackers.

Some researchers have applied PLA to UAV authentication. The authors of [20] proposed a PLA
scheme for the UAV relay using the generalized log-likelihood ratio test, where the parameters of received
signals were estimated to judge the spoofing signals. In [21], a two-dimensional authentication factor
was designed for PLA, which was constructed by combing the mean and variance of RSS. A cross-layer
authentication scheme [22] was proposed based on PLA, where a fused decision program was derived by
linear discriminant analysis to maximum separability of physical layer attributes. These studies provide
implications for applying PLA to UAV authentication. However, they have not considered UAV mobility,
whereas UAV usually flies with a pre-designed trajectory. These characteristics make the physical layer
attributes present strong time-varying, limiting the application of the traditional PLA schemes.

On this basis, the authors of [23] proposed a PLA scheme for mobile UAVs based on trajectory
prediction. The UAV relay was authenticated by comparing the predicted trajectory with the actual
trajectory. The predicted and observed locations of the UAV were combined by a Kalman filter to
enhance the authentication performance. It is a pioneering work to authenticate the UAV by combining
the trajectory, which can guide the further design of the PAL. Nevertheless, since the communication
of the UAV is usually burst, only authenticating the UAV trajectory cannot satisfy the time validity of
authentication.

In this paper, we propose a real-time PLA scheme to authenticate the mobile UAV. The trajectory
of the UAV is established by a Markov process, where the state transition matrix reflects UAV motion.
According to the state transition probability, a neighborhood graph that containsK most likely transition
state is constructed as the reference of a sample to perform PLA. Unlike [23], the proposed PLA scheme
treats physical layer attributes as continuously changing states, where each state can be continuously
authenticated by the state transition probability. Meanwhile, the state-of-the-art UAV-to-ground (U2G)
channel is adopted in this paper to reflect the actual UAV scene according to [24, 25].

Although the time-varying nature of wireless channel fading provides robust security for PLA, it also
causes poor reliability of PLA. In other words, because of the estimation error or the time-varying of
the fading, physical layer attributes will significantly deviate from the reference at some time, leading to
unreliable authentication results. Notably, UAV mobility would further aggravate this unreliability. If we
continually use the traditional PLA for UAV relay, it becomes extremely difficult and resource-consuming
to obtain a reference that accurately reflects the physical layer attributes of a legitimate UAV.

Recently, machine learning (ML) algorithms have been investigated to enhance the reliability of PLA.
Essentially, ML algorithms act as the signal processing tools in PLA, which find the optimal partition
plane for the legitimate user and spoofer in physical layer attributes, so as to relieve the influence of
channel randomness on authentication [14–16, 26–28]. Specifically, an extreme learning machine-based
PLA scheme was proposed in [26], where the attacking samples were artificially generated to find a more
accurate segmentation plane for PLA. The authors of [27] systematically investigated the performance of
decision tree (DT), support vector machine (SVM), and K-nearest-neighbors (KNN) based PLA scheme,
where the classifiers were trained to counteract physical layer attribute fluctuations. The deep learn-
ing (DL) based PLA was proposed in [14–16], which derived a high-dimensional nonlinear presentation
for physical layer attributes. A reliable PLA could be achieved since physical layer attributes for the
legitimate users and attackers were always separable in the constructed feature space.

Nevertheless, the communication of the UAV-relay networks presents new characteristics compared
with the traditional cellular network, leading to traditional PLA schemes being inapplicable. Firstly, due
to the high mobility of the UAV relay, the value range of physical layer attributes for legitimate UAV and
spoofer is largely overlapping. There is no linearly separable plane between the physical layer attributes of
the legitimate UAV and the spoofing UAV. The trained partition plane by the traditional ML algorithm
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could not effectively distinguish the time-varying physical layer attribute samples for legitimate UAV
and spoofing UAV, leading to large errors in PLA decision [27]. Secondly, the supervised ML algorithms
require a large number of training samples, which are difficult to obtain in UAV communication scenarios.
The high-dimensional separable feature space for physical layer attributes is also difficult to train by the
DL algorithm [16]. Therefore, it is urgent to explore new PLA architecture for UAV-relay networks.

Manifold learning is a promising solution to recognize nonlinearly separable physical layer data. It
embeds high-dimensional data into low-dimensional manifold space based on the adjacency structure of
data (or local topology changes of data) [29,30]. Even for nonlinearly separable physical layer data, it still
can be distinguished by the different trends of data caused by different UAV trajectories. Meanwhile, the
process of dimensionality reduction in manifold learning retains the main manifold of the physical layer
data, i.e., the movement direction of UAV relay, whereas other minor manifold directions are discarded,
i.e., the fluctuations of physical layer data caused by environment noise and estimation errors. Therefore,
manifold learning further guarantees the reliability of PLA. Specifically, the authors of [15] proposed a
kernel principal component analysis-based PLA scheme, where the physical layer data was projected into
a potentially infinite-dimensional feature space to find a potential separable space. The study of [15]
provided an insightful view to applying manifold leaning into PLA. However, without considering the
nonlinear separability of physical layer attributes, it is difficult to apply to UAV authentication directly.

In this paper, we propose a diffusion map-based manifold learning algorithm to achieve the PLA for
mobile UAV relay. A low-dimensional feature space is constructed based on the proposed diffusion map
algorithm to represent the inherent manifold structure of physical layer attributes. Unlike [15], the
connectivity of manifold structures is measured by the state transition probability instead of the distance
between the samples. Therefore, the proposed PLA scheme can be adaptive to the arbitrary trajectories
of UAVs. A Gaussian kernel function [30] is established to construct the pairwise adjacency matrix of the
diffusion map. Motivated by [31, 32], the intrinsic dimension and the bandwidth of the kernel function
are trained according to the correlation of samples. Finally, the nearest neighborhoods of a given sample
are selected to construct the neighborhood graph as the reference values to perform PLA.

In a nutshell, the main contributions of this paper are summarized as follows.

• We propose a real-time PLA scheme to authenticate the mobile UAV based on the local correlation
of physical layer attributes. The Markov process is established to reflect UAV motion characteristics,
where the state transition probability measures the local correlation of physical layer attributes. The
UAV relay can be continuously authenticated in real-time by treating physical layer attributes as a
continuously changing state with a fixed correlation. The proposed scheme provides a feasible PLA
framework to authenticate the moving terminals, which can be further extended to authenticate the
moving terminals under arbitrary motion trajectories.

• We propose a diffusion map-based manifold learning algorithm and derive the inherent manifold
structure of physical layer attributes, which overcomes the severe fluctuation of physical layer attributes
caused by the time-varying fading and UAV mobility. A low-dimensional feature space is constructed
based on the spectral embedding of the state transition matrix. Meanwhile, we build a neighborhood
graph that contains K most likely transition states as the authentication reference. To our knowledge,
this is the first work to achieve the PLA for mobile UAV relay using manifold learning, which provided
a new feasible solution for recognizing nonlinearly separable physical layer data.

• We analyze the performance and complexity of the proposed PLA scheme to offer a comprehensive
understanding of the proposed PLA scheme. Extensive simulations confirm that the proposed PLA
scheme can achieve more than 18% performance improvement in resisting the intelligent spoofing UAV
than the traditional DT, SVM, KNN, and DL-based PLA scheme.

The remainder of this paper is organized as follows. The system model is explained in Section 2.
The proposed PLA scheme is described in Section 3. In Section 4, the implementation of the proposed
diffusion map algorithm is illustrated. In Section 5, the performance analysis is investigated. Simulation
results are provided in Section 6, and the conclusion and further work are drawn in Sections 7 and 8,
respectively.
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Figure 1 (Color online) UAV-enabled relay networks.

2 System model

2.1 Network model

Consider a scenario in which the ground user communicates with the ground base station (BS) through
the UAV relay without a direct communication link. As commonly used in security-related studies,
Alice, Bob, and Eve are used to represent the legitimate transmitter, the intended receiver, and the
spoofing attackers, respectively. Eve masquerades as the legitimate UAV relay to amplify and forward
the tampered signals to Bob when the legitimate UAV is idle. In other words, Eve sends the spoofing
signals at the gap of legitimate signals to achieve its illegal purpose. The UAV relay and Eve fly with a
pre-designed trajectory. All communication links are broadcast.

As shown in Figure 1, Alice and Bob are located at the three-dimensional (3D) coordinates of Lb =
(0, 0, 0) and La = (xa, ya, 0), respectively. The trajectory of the UAV relay within each period T can be
modeled as an N -length sequence. The location of the UAV at time slot t is given as

Lu (t) = [xu(t), yu(t), au(t)] , t = 1, . . . , N, (1)

where xu(t) and yu(t) are the horizontal coordinates of the UAV relay, and au(t) denotes the altitude
of the UAV relay. The trajectory of the UAV relay suffers the constraints as follows. Firstly, the UAV
relay follows the same trajectory Lu (t) over consecutive periods until the re-planning process is triggered.
Secondly, UAV needs to return to its original position by the end of each period T , which implies that
the UAV trajectory is a closed curve in 3D space.

As shown in Figure 1, we consider the two most used UAV trajectories, i.e., circular trajectory [33]
and rectilinear trajectory [34]. The circular trajectory of UAV can be modeled as

xu(t)
2
+ yu(t)

2
= R2

u, (2)

where Ru is the radius of the circular trajectory. The rectilinear trajectory of UAV is given as

yu(t) = kuxu(t) + Cu, (3)

where ku and Cu are the direction and location of the rectilinear trajectory, respectively.
The location of Eve is defined as

Le (t) = [xe(t), ye(t), ae(t)] . (4)
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As confirmed in our previous studies [35,36], Eve has more probability of breaking through the PLA when
its location is closer to the UAV relay. In this paper, we consider the intelligent Eve, whose trajectory
is similar to that of the UAV relay. More specifically, intelligent Eve flies around the legitimate UAV
at different horizontals or altitudes, which is the easiest area to break through PLA. Therefore, if the
intelligent Eve can be authenticated, other attackers can also be authenticated. Note that we assume
that the Eve is easily physically observed when its trajectory is the same as the legitimate UAV relay
but in different locations, which is not the focus of this paper.

With the circular trajectory, two patterns of Eve are defined as follows.
Pattern 1. Eve has the same altitude as the UAV relay, like Eves 1 and 2, i.e., ae1(t) = ae2(t) = au(t),

but has a different circular trajectory radius, which can be defined as

xe1(t)
2
+ ye1(t)

2
= R2

e1 = (Ru −∇R)
2
, (5)

xe2(t)
2
+ ye2(t)

2
= R2

e2 = (Ru +∇R)
2
, (6)

where ∇R is the constant trajectory radius difference between Eve and UAV relay.
Pattern 2. Eve has the same trajectory radius as the UAV relay, like Eve 3 and Eve 4, i.e., Re3 =

Re4 = Ru, but has a different altitude, which can be defined as

ae3(t) = au(t)−∇a, (7)

ae4(t) = au(t) +∇a, (8)

where ∇a is the constant altitude difference between Eve and UAV relay.
With the rectilinear trajectory, the other two patterns of Eve are defined as follows.
Pattern 3. Eve has the same altitude and direction as the UAV relay, like Eves 5 and 6, i.e., ae5(t) =

ae6(t) = au(t) and ke5 = ke6 = ku, but is located at a different horizontal location, defined as

ye5(t) = ke5xe5(t) + Ce5 = ke5xe5(t) + (Cu −∇d) , (9)

ye6(t) = ke6xe6(t) + Ce6 = ke6xe6(t) + (Cu +∇d) , (10)

where ∇d is the constant horizontal location difference between Eve and UAV relay.
Pattern 4. Eve has the same horizontal trajectory as the UAV relay, like Eve 7 and Eve 8, i.e.,

ke7 = ke8 = ku and Ce7 = Ce8 = Cu, but is located at different altitudes, defined as

ae7(t) = au(t)−∇a, (11)

ae8(t) = au(t) +∇a, (12)

where ∇a is the constant altitude difference between Eve and UAV relay.

2.2 Channel model

Alice and UAV are assumed to be equipped with a single antenna, and Bob is equipped with m antennas.
In the t-th time slot, Alice transmits the signal sa(t). The received signal of the UAV relay is modeled as

ru(t) =
√
Pahau(t)sa(t) +Nau, (13)

where Pa is the transmitting power, hau denotes the channel response of Alice to UAV (A2U) link, and
Nau ∼ CN (0, σ2

n) is the additional complex Gaussian noise. According to [24], hau can be modeled by

hau(t) = Lau(t) · Sau(t), (14)

where Sau(t) denotes the Rayleigh fading coefficient that is modeled as a complex Gaussian variable with
zero mean and unit variance, i.e., Sau ∼ CN (0, 1), and Lau(t) is the path loss. Since buildings may shade
Alice, the A2U channel presents line-of-sight (LoS) and non-line-of-sight (NLoS) links at different time
slots. According to [25], LoS and NLoS links possess different fading coefficients Lau(t), which can be
expressed as

Lau(t) =






ηLoS

(
4πfcdau(t)

c

)−α
2

, LoS link,

ηNLoS

(
4πfcdau(t)

c

)−α
2

, NLoS link,

(15)
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where fc (Hz) and c are the carrier frequency and speed of light, dau(t) = ‖La − Lu‖ is the distance
between UAV relay and Alice, ‖ · ‖ denotes the Euclidean norm, α denotes the path loss exponent, ηLoS
and ηNLoS are the excessive losses for LoS and NLoS cases. The LoS probability is defined as PLoS, which
can be calculated as

PLoS(t) =
1

1 + Zexp (−Q (θ(t)− Z))
, (16)

where Z andQ are the environment-based constant values, θ(t) = 180/πarcsin(au(t)/dau(t)). Accordingly,
the NLoS probability is PNLoS = 1− PLoS.

Then, the UAV relay amplifies and forwards ru(t) to Bob, which can be designed as

su(t) = Gu(t)ru (t) , (17)

where Gu(t) =
√
Pu/‖ru(t)‖2 is the amplification coefficient of the UAV relay [37], and Pu denotes the

power of the UAV relay.
The received signals of Bob transmitted by the UAV relay can be modeled as

rub (t) = hub(t)su (t) +Nub, (18)

where hub(t) = [h1
ub(t), . . . , h

M
ub(t)] denotes the channel response of the UAV relay to Bob (U2B) link,

Nub = [N1
ub(t), . . . , N

M
ub(t)] is the additional complex Gaussian noise, and Nm

ub ∼ CN (0, σ2
n). Since the

base station Bob is usually deployed in an open area, the U2B link always includes the LoS component.
According to [25], hm

ub(t) can be modeled as

hm
ub(t) = ηLoS

(
4πfcd

m
ub(t)

c

)−α
2

Sub, (19)

where dmub(t) is the distance of the UAV relay to the m-th antenna of Bob, and Sub denotes the Rayleigh
fading, independently and identically distributed with Sau, i.e., Sub ∼ CN (0, 1).

For attackers, the received signals of Eve transmitted by Alice can be modeled by

re(t) =
√
Pahae(t)sa(t) +Nae, (20)

where hae(t) denotes the channel response of Alice to Eve (A2E) link that can be modeled by (14), and
Nae ∼ CN (0, σ2

n) is the additional complex Gaussian noise. Then, Eve amplifies and forwards the falsified
signals, defined as

se(t) =
√
Pewe(t)

(√
Pehae(t)s̃a(t) +Nae

)
, (21)

where Pe is the transmitting power of Eve, we(t) = |re(t)|
−1

, and s̃a(t) is the falsified sa(t). The received
signals of Bob transmitted by Eve can be modeled as

reb (t) = heb(t)se(t) +Neb, (22)

where heb(t) is the channel response of Eve to Bob, which can be modeled by (19), and Neb is the
additional complex Gaussian noise with Nm

eb ∼ CN (0, σ2
n).

In the following parts, given a signal without specifying the identity information, let rb (t) = [rb1(t), . . . ,
rbM (t)] denote the received signal of Bob.

3 The proposed PLA scheme for UAV relay

As shown in Figure 1, we consider a spoofing attacker Eve, who intends to masquerade the UAV relay
and amplify and forward the tampered signals to access the network illegally. The main objective of Bob
is to uniquely and unambiguously identify the transmitter by PLA. The basic idea is to use the local
correlation of physical layer attributes of the received signals to distinguish the transmitters uniquely,
detailed in Subsection 3.1. The main method is to design the identity indicator of the received signal
based on the local correlation of physical layer attributes, detailed in Subsection 3.2.
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3.1 The local correlation of physical layer attributes

In this paper, we consider a special physical layer attribute, i.e., the RSS, to realize PLA. The reasons
can be summarized as follows. Firstly, RSS has a large value range compared with AoA, enabling it
to have higher recognition accuracy for legitimate users and spoofing attackers. Secondly, RSS has
greater randomness than CFO, which increases the difficulty of Eve to masquerade as the legitimate
UAV successfully. Finally, the receiver can directly read RSS without the need for estimation like CSI,
which is low complexity and easy to deploy. Since it is difficult for Eve to simultaneously infer multiple
RSS of the received signal from a large search space, we construct the unique identity signature of the
received signal by the combination of the RSS of M antennas as

I(t) = [P1(t), . . . , PM (t)] , (23)

where Pm(t) = ‖rbm(t)‖2, m = 1, . . . ,M , represents the RSS of the m-th antenna at Bob.
The communication between Alice, UAV relay, and Bob includes two stages, i.e., the initial stage and

the communication stage.
(1) The initial stage. Alice sends the access request signal through the UAV relay. Then, Bob calculates

the RSS of received signals as the initial authentication reference as

R(0) = I(0). (24)

We assume that Eve would not attack the initial stage. Because when Eve amplifies and forwards the
access request signal, its signal would be superimposed with the legitimate signal, leading to a large signal
power received by Bob. In this case, Eve can be easily detected by a power detector.

(2) The communication stage. Alice sends the legitimate signals to Bob by the UAV relay. While
Eve amplifies and forwards the tampered signals in the gaps of legitimate signals to illegally access the
network. In the t-th time slot, I(t) denotes the identity signature of the received signal.

Generally, the local correlation of physical layer attributes is defined as that communication links
between special transceivers present similar physical layer attributes at the adjacent sampling time.
Specifically, given a communication link with fixed transmitting power, the identity signature I(t) at the
adjacent sampling time satisfies

||I(t + 1)− I(t)|| < ξ, (25)

where ξ > 0 represents the maximum difference of I(t) at adjacent sampling time. The larger sampling
interval indicates the smaller correlation of physical layer attributes at adjacent sampling time.

To evaluate the correlation of physical layer attributes, the confidence coefficient is the most commonly
used index, defined as the probability of RSS changing from I(t) to I(t + 1), denoted by

con(I(t) → I(t + 1)) = P
{
I(t+ 1)|I(t)

}
, (26)

where P{I(t+ 1)|I(t)} represents the conditional probability of I(t+ 1) given I(t). The larger P (I(t+
1)|I(t)) indicates the stronger correlation of wireless channel at adjacent sampling time.

Let IL(t) be the RSS of the legitimate UAV, and IE(t) be the RSS of spoofing UAV. Given two adjacent
RSS samples, the correlation of two consecutive legitimate RSS samples is much greater than that of the
legitimate sample and attacking sample. In this case, the probability of RSS changing from a legitimate
state to a legitimate state is much greater than that of a legitimate state to an attack state, denoted by

P (IL(t+ 1)|IL(t)) ≫ P (IE(t+ 1)|IL(t)). (27)

According to (27), the legitimate user and spoofing attacker can always be distinguished if the state
transition probability (correlation) of RSS at adjacent sampling time can be estimated.

3.2 The proposed PLA scheme based on local correlation

The proposed authentication scheme is summarized in Figure 2. In this paper, the identity signatures of
the received signals are modeled by a Markov chain, where each I(t) in the time domain is regarded as
a state. The transition probability from state t− 1 to state t can be defined as

pt,t−1 = con(I(t) → I(t + 1)) = P
{
I(t) | I(t− 1)

}
. (28)
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Figure 2 (Color online) Architecture of the proposed authentication scheme.

In [38], the transition probability of each state can be estimated by the expectation-maximization al-
gorithm. However, in the time-varying channels of UAV, each I(t) is a variable with infinite possible
values. It is difficult to estimate the transition probability of each state like [38]. Therefore, we investigate
manifold learning to find a feature subspace that reflects the manifold structure of I(t) as

Ψ (I(t)) : RM → R
l, (29)

where l 6 M is the dimension of feature subspace. The detailed projection can be found in Section 4.
In the constructed feature subspace, the similarity of two samples is equivalent to the state transition

probability as

f
(
Ψ
(
I(t)

)
,Ψ
(
I(t− 1)

))
, pt,t−1, (30)

where f(·) is the function to measure the similarity of samples.
In this paper, we use the transition probability defined by (28) to authenticate the identity of I (t).

Particularly, the transition probability from IL(t− 1) to I(t) is calculated as

pt,t−1 = f
(
Ψ(I(t)) ,Ψ(IL(t− 1))

)
, (31)

where the subscript L represents the legitimate state. Then, a neighborhood graph Gt is established for
I(t), which contains the previous K legitimate states as

Gt = {IL(t− 1), . . . , IL(t−K)} . (32)

According to the Markov property, the state transition probability in Gt is only related to the previous
state defined as

pt−k,t−k−1 = f
(
ΨL (I(t− k)) ,Ψ(IL(t− k − 1))

)
, (33)
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where k = 0, 1, . . . ,K. Accordingly, the identity indicator of I(t) is defined as

C (t) =






pt,t−1, t = 1,
pt,t−1

pt−1,t−2
, 1 < t < K,

Kpt,t−1∑K
k=1 pt−k,t−k−1

, t > K.

(34)

Finally, the PLA for UAV relay is modeled by binary hypothesis testing as

C(t)

H0

>−
<
H1

τ(t), (35)

where the null hypothesis H0 represents I(t) is authenticated as the legitimate signal, the alternative
hypothesis H1 represents I(t) is authenticated as the attacker, and τ(t) is the decision threshold within
the range of (0, 1). The selection of τ(t) is detailed in Subsection 5.1.

The construction of C (t) can be explained as follows. At the beginning of communication, i.e., t = 1,
the identity indicator C(t) is defined as the transition probability of I(t) from state t − 1 to state
t. However, due to the non-uniform sampling and the time-varying channel, C(t) is a variable with
large fluctuations, resulting in poor reliability and robustness of PLA. Therefore, as the communication
continues, i.e., 1 < t < K, C(t) is defined as the ratio of the current pt,t−1 to the previous pt−1,t−2. In this
case, the fluctuation of C(t) can be mitigated to a certain extent. To further enhance the reliability of the
PLA, when t > K, C(t) is defined as the current pt,t−1 ratio to the average state transition probability
in neighborhood graph G(t). In this case, the fluctuation of C(t) would be alleviated effectively. The
detailed proof of C(t) construction is given in Subsection 5.1.

4 Diffusion map based manifold learning

The manifold learning is a nonlinear mapping algorithm, which embeds one topological space inside
another based on the adjacency structure of samples, aiming to recover a low-dimensional manifold
embedded in a high-dimensional ambient space. In the process of dimensionality reduction, the local
correlation of physical layer attributes is implicitly established by the paired adjacency matrix, which
is further used in the design of PLA. Meanwhile, manifold learning recovers low-dimensional manifold
structures from high-dimensional sampled data, which preserves the changes in physical layer attributes
caused by UAVmobility, and relieves the influence of environmental noise and estimation error. Therefore,
manifold learning is the key technology to achieve reliable UAV authentication.

In Subsection 4.1, the paired adjacency matrix is constructed by the kernel function to establish
a Markov chain of the identity signatures. Then, a low-dimensional feature subspace is constructed
to reflect the inherent manifold structure of identity signatures based on the proposed diffusion map
detailed in Subsection 4.2. Finally, the bandwidth of the kernel function and the intrinsic dimension
of the constructed feature subspace are selected to adapt to the specific manifold structure detailed in
Subsection 4.3.

4.1 The paired adjacency matrix

The paired adjacency matrix establishes a Markov chain of identity signature samples [30], which seeks
to preserve local structure in small neighborhoods on the manifold. The paired adjacency matrix is
constructed based on the local topological structure over a graph of samples.

Specifically, the training set of the identity signatures for the UAV relay is given as

Tr =
{
It(1), . . . , It(N)

}
, (36)

where the subscript t denotes the training sample and N is the number of training samples. For a fixed
constant ε > 0, the neighborhoods of each training sample are defined as

It(j) ∈ N
ε
i , if ‖It(i)− It(j)‖ < ε, (37)
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where N
ε
i is the neighbor set of It(i) with Ni samples.

To reflect the connectivity of training samples, the kernel function is adopted to measure similarity in
which the larger kernel function represents two closer samples. In this paper, we define the connected
matrix of Tr as W = (ωij) ∈ R

N×N , where each element of W is calculated as

ωij = K (It(i), It(j)) =





exp

{
−‖It(i)− It(j)‖2

2σ2

}
, It(j) ∈ N

ε
i ,

0, otherwise,

(38)

where K(·, ·) denotes the Gaussian kernel function, and σ indicates the Gaussian kernel bandwidth. Since
the identity signatures of legitimate UAV and Eve are linear inseparable, the Gaussian kernel is adopted
to measure the similarity.

According to [29], the training set Tr and the connected matrixW jointly determine the local geometry
of identity signatures. Further, the connected matrix W is normalized as

P = WD
−1 =

{
pij
}N
i,j=1

∈ R
N×N , (39)

where D = diag{d1, . . . , dN} is a diagonal matrix with dj =
∑N

i=1 ωij , and pij = ωij/
∑N

i=1 ωij , which

satisfies
∑N

i=1 pij = 1. According to [30], pij can be interpreted as the transition probabilities from state
It (j) to state It (i) in one time step. The larger pij is associated with nearby pairs of samples. Therefore,
a Markov chain of identity signatures is established with the paired adjacency matrix P .

4.2 The proposed diffusion map scheme

The basic idea of the diffusion map is to derive a low dimension feature subspace reflecting the manifold
structure of identity signatures by an eigenanalysis of the state transition matrix of the Markov chain [29,
30]. The traditional diffusion map builds a manifold subspace and utilizes the diffusion distance to
measure the similarity. Unlike the previous studies, we aim to construct a feature subspace that can
measure the state transition probability.

To achieve this purpose, we propose a new diffusion map scheme, shown in Algorithm 1. Particu-
larly, the constructed connected matrix W has the following characteristics. (1) Symmetry: W = W

T.
(2) Positive semi-definiteness: vT

W v > 0, where v is the eigenvector of W . (3) Non-negativity: wij > 0.
In this case, W has real-valued eigenvalues with the orthogonal eigenvectors. The eigenvalue decompo-
sition of W is defined as

Wvk = λkvk, k = 1, . . . , N, (40)

where λk is the k-th eigenvalue ofW that satisfies λ1 > λ2 > · · · > λN > 0. Then, W can be decomposed
into

W = V ΛV
T, (41)

where Λ = diag {λ1, . . . , λN} is a diagonal matrix, V = (v1, . . . ,vN). Each element of W can be
decomposed as

wij =

N∑

k=1

λkvkivkj ≈
l∑

k=1

λkvkivkj , (42)

where vki and vkj represent the k-th element of vi and vj , respectively. In (42), the largest l eigenvalues
and the corresponding eigenvectors can model pij accurately, while the remaining parts can be ignored
as the noise. l denotes the intrinsic dimension, reflecting the minimum number of coordinates needed to
represent the manifold.

In this paper, a new variant of the diffusion map scheme is proposed based on (42). Specifically, the
projection for a sample It (i) can be calculated as

Ψ (It (i)) =
(
λ
1/2
1 vi1, . . . , λ

1/2
l vil

)
. (43)

It can be seen that the inner product of two samples in the construed feature subspace is the function of
the state transition probability pij , which is given as

〈
Ψ(It (i)) ,Ψ(It (j))

〉
=

l∑

k=1

λkvkivkj ≈ dj · pij . (44)
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Algorithm 1 The proposed diffusion map algorithm

Input: Tr = {It(1), . . . , It(N)}, I(t);

Output: Ψ (I (t));

1: Select the neighborhoods of each training sample as It(i) ∈ N
ε
j , if ‖It(i) − It(j)‖ < ε;

2: Calculate paired adjacency matrix W as

ωij = K (It(i), It(j)) =















exp

{

−‖It(i) − It(j)‖
2

2σ2

}

, It(i) ∈ N
ε
j ,

0, otherwise;

3: Conduct eigenvalue decomposition of W as Wvk = λkvk, k = 1, . . . , N ;

4: Given a new sample I(t), the projection is defined as

Ψ (I (t)) =

(

N
∑

k=1

wtkvk1

λ
1/2
1

, . . . ,
N
∑

k=1

wtkvkl

λ
1/2
l

)

.

Therefore, the similarity measurement in feature subspace can be designed as

f (Ψ (It (i)) ,Ψ(It (j))) =
〈Ψ(It (i)) ,Ψ(It (j))〉

dj
=

∑l
k=1 λkvkivkj

dj
≈ pij . (45)

In this case, the similarity of samples in the constructed subspace approximates the state transition
probability.

According to [30], a sample that is not originally included in the original ambient space can be projected
into the feature subspace by weighting the coordinates of the kernel distance between the new point and
the points in the original ambient space. Specifically, given a new identity signature I(t), the projection
can be calculated as

Ψ (I (t)) =

(
N∑

k=1

wtkvk1

λ
1/2
1

, . . . ,

N∑

k=1

wtkvkl

λ
1/2
l

)
, (46)

where wtk can be calculated by (38). Therefore, a new feature subspace is constructed based on the
proposed diffusion map, and the new samples can be projected into this subspace to conduct PLA.

4.3 Parameter selection

The performance of the proposed diffusion map scheme depends on the proper choice of bandwidth σ and
the intrinsic dimension l. An appropriate σ and l should preserve the local connectivity of the manifold
structure. Otherwise, if l is too large, the fluctuation of the sample set caused by noise still reserves. If
l is too small, the underlying structure of the sample set would be dropped [39]. On the other hand, if
σ is too small, the connectivity matrix cannot maintain the local geometry of the sample set accurately.
Conversely, if σ is too large, the connectivity matrix may generate an excessively coarse description of
the manifold structure [40].

In principle, the intrinsic dimension l is selected based on the training samples Tr. According to [41],
the training samples can be conceived as samples from high dimensional probability distributions defined
on metric spaces. From a geometrical perspective, the intrinsic dimension estimation is to find a subset of
the entire metric space that can be parameterized using a relatively small number of variables. Motivated
by [42,43], since the RSS samples of UAV relay usually present the nonlinear data structure, the geometric
(or fractal) method is suitable for estimating the intrinsic dimension.

Firstly, the correlation dimension is defined to measure the intrinsic dimension as

D = lim
ε→0

lnΩ (ε)

ln ε
, (47)

where ε denotes the radius of the neighbors as similar with (37), and Ω(ε) denotes the correlation
integral [41], which can be calculated as

Ω(ε) =
2

N (N − 1)

N∑

i=1

N∑

j=i+1

I(‖It(i)− It(j)‖ 6 ε), (48)

where I(·) is the indicator function, i.e., I(x) = 1 if the condition x holds, otherwise I(x) = 0. From the
statistical view, Ω(ε) reflects the probability that a pair of samples’ distance is less than or equal to ε.
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Figure 3 (Color online) Multiscale intrinsic dimension of

D̃(ε).

Figure 4 (Color online) Logarithmic plot of S (σ) versus σ.

According to [42], the intrinsic dimension estimation is transformed to determine the best fit of the
first linear region of the lnΩ (ε) versus ln ε curve. To achieve this purpose, Ref. [41] suggested recasting
the original definition of the correlation dimension in (47) to a multi-scale intrinsic dimension as

l̂ = lim
ε→0

D̃(ε) = lim
ε→0

d In Ω(ε)

d In ε
= lim

ε→0

ε

Ω(ε)

d Ω(ε)

d ε
, (49)

where l̂ is the estimated intrinsic dimension of the reconstructed subspace. As shown in Figure 3, the
estimated intrinsic dimension is l̂cir = 6.28 for the circular trajectory, while l̂rec = 6.74 for the rectilinear
trajectory. Since the intrinsic dimension must be an integer, we set l̂cir = l̂rec ≈ 7 to avoid dropping the
underlying structure of the sample set.

Motivated by [31, 40], the bandwidth σ can be estimated from the connected matrix W . The basic
idea is to compute the sum of non-zero elements in W for various values of σ and search for the range of
values where the Gaussian bell shape is more pronounced.

Firstly, the sum of non-zero elements in W is calculated as

S (σ) =
N∑

i=1

N∑

j=1

wij (σ) , (50)

where wij (σ) is a function of σ defined by (38).
According to [44], the Gaussian bell shape would be more pronounced at the maximal linear range of

the logarithmic plot of S (σ). As shown in Figure 4, σmax and σmin represent the maximum and minimum
of the maximal linear range of L (σ), respectively. Then, we can get an estimation for σ as

σ̂ = In

(
σmax + σmin

2

)
, (51)

where the estimated bandwidth for circular trajectory σ̂cir and rectilinear trajectory σ̂rec satisfies σ̂cir =
σ̂rec ≈ 2.14. Note that other methods also can estimate the intrinsic dimension [41] and the band-
width [31], which can be studied as further work.

Combining Figure 3 with Figure 4, the parameters of the proposed diffusion map scheme would not
change significantly as the change of the UAV trajectory. Therefore, the performance of the proposed
authentication scheme is highly adaptable to the dynamic UAV trajectory.

Specifically, when the UAV hovers over a fixed location, the physical layer attributes of the UAV
over a fixed location follow the same distribution. The current sample I(t) has a fixed correlation with
the previous one I(t − 1). The state transition probability pt,t−1 can be regarded as a fixed value. In
this case, PLA degrades into the typical static PLA problem, where the fluctuation of physical layer
attributes caused by UAV motion can be ignored. The identity indicator C(t) is a more stable value than
moving UAV conditions, which also conforms to the test rules defined by (35). Therefore, the proposed
authentication scheme can still work well when the UAV hovers over a fixed location.
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Moreover, when the UAV flies in a random trajectory, not limited to the circular trajectory and
rectilinear trajectory, the assumption of the local correlation for physical layer attributes is still valid.
The current sample I(t) has a random correlation with the previous one I(t − 1), in which the state
transition probability pt,t−1 can be regarded as a random value. In this case, the identity indicator
C(t) will fluctuate considerably, which may deteriorate the authentication performance. Therefore, the
identity indicator C(t) must be redesigned to improve authentication performance. This extension could
be the next research in our further work.

5 Performance analysis

In this section, we analyze the authentication accuracy and the computational complexity of our proposed
PLA scheme, respectively, in order to offer a comprehensive understanding of the proposed scheme.

5.1 Analysis of authentication accuracy

Since PLA is modeled by binary hypothesis testing, the false alarm rate Pfa and miss detection rate
Pmd are the most commonly used metrics to measure authentication accuracy [26–28]. Specifically, Pfa

indicates the probability of the legitimate signals being falsely alarmed as the spoofing attack, and Pmd

denotes the probability of the spoofing signals being miss detected. The smaller Pfa and Pmd indicate
more accurate authentication.

According to (35), Pfa and Pmd can be defined as

Pfa(t) = P{C(t) < τ(t) | H0}, (52)

Pmd(t) = P{C(t) > τ(t) | H1}, (53)

where C(t) and τ(t) indicate the decision statistic and decision threshold, respectively. The design of
decision statistic C(t) determines the ability of the proposed scheme to authenticate the legitimate UAV
and the spoofing attacker. The decision threshold τ(t) should be selected to balance Pfa and Pmd.
According to (52) and (53), a large τ(t) leads to a small Pfa; i.e., a large τ(t) can reduce the probability
that the legitimate signals are falsely authenticated. In contrast, a small τ(t) brings a small Pmd; i.e., a
small τ(t) can reduce the probability that the spoofing signals are miss detected.

According to (34), the decision statistic C(t) can be regarded as a function of pt−k,t−k−1, k =
0, 1, . . . ,K. However, since pt−k,t−k−1 is derived by the nonlinear mapping of the identity signatures, it
is difficult to model C(t) precisely. In the following part, we provide the simplified performance analysis
for the proposed PLA scheme based on the constructed C (t).

Case 1. When t = 1, by combining (39) with (45), C(t) can be approximated to

C(t) = pt,t−1 = f(Ψ(I(t)),Ψ(IL(t− 1))) ≈
exp

{
−‖I(t)− IL(t− 1)‖2/2σ2

}
∑

It(k)∈Nε
t−1

exp {−‖IL(t− 1)− It(k)‖2/2σ2}
, (54)

where I(t) denotes the current un-authenticated identity signature, IL(t − 1) indicates the previous
legitimate identity signature, Nε

t−1 is the neighborhood set of IL(t − 1) constructed by the training set
Tr, and It(k) denotes the sample in N

ε
t−1. It can be observed that the distribution of C(t) is determined

by I(t), IL(t− 1), and N
ε
t−1 simultaneously.

Remark 1. If the training set Tr is enough and homogeneous distributed, IL(t − 1) can be equiv-
alent to the mean of all the samples in its neighborhood set N

ε
t−1. In this case, the denominator of

C(t), i.e., St−1 =
∑

Nε
t−1

exp
{
−‖IL(t− 1)− It(k)‖2/2σ2

}
can be approximate to a constant value. The

authentication accuracy is directly related to the difference between I(t) and IL(t− 1).

Specifically, let Di
t,t−1=‖I(t)− IL(t− 1)‖2 represent the change of identity signatures in two adjacent

sampling times, where i = 0 and 1 denote the condition of H0 and H1. According to (54), C(t) negatively
correlates with Di

t,t−1. Therefore, if D0
t,t−1 < D1

t,t−1, then C(t)|H0 > C(t)|H1 always satisfies. Never-

theless, the non-uniform sampling and time-varying channels will lead to large fluctuations in Di
t,t−1,

causing the condition of false alarm and miss detection.
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Remark 2. If the communication mode and UAV trajectory are fixed, the difference of identity sig-
natures in two adjacent sampling times is approximate to a constant, i.e., Di

t,t−1 ≈ C. In this case, the
authentication accuracy depends on the state of the training set.

Particularly, in the sparse region of the training set, the neighborhood set Nε
t−1 has few samples, where

St−1 would be a minor value. According to (54), a small denominator would cause a large C(t). In this
case, the spoofing signals are more likely to be undetected. While for the dense region of the training
set, Nε

t−1 has a large number of samples, leading to a small value of C(t). The legitimate signals intend
to be falsely alarmed as attacking.

In conclusion, the value of C(t) depends on the training sample state and sampling interval. Therefore,
both non-uniform sampling and heterogeneous training samples make C(t) fluctuate violently at different
sampling times, resulting in poor authentication reliability and robustness. By combining Remarks 1 and

2, the threshold τ(t) should be selected in the range of [e−D1

t,t−1
/2σ2

/St−1, e
−D0

t,t−1
/2σ2

/St−1] to balance
the Pfa and Pmd according to the real application requirements.

Case 2. When 1 < t < K, C(t) can be approximated to

C(t) =
pt,t−1

pt−1,t−2
=

f(Ψ(I(t)),Ψ(IL(t− 1)))

f(Ψ(IL(t− 1)),Ψ(IL(t− 2)))
≈

St−2

St−1
· exp

{
−
Di

t,t−1 −D0
t−1,t−2

2σ2

}
. (55)

Remark 3. The heterogeneous distribution of Tr is originated from the change of UAV velocity and
trajectory. This change is usually slow and regular. Therefore, St−2

St−1
can be approximate to 1. In this

case, the authentication accuracy depends on the difference between Di
t,t−1 and D0

t−1,t−2.

Let X i
t,t−1=Di

t,t−1 −D0
t−1,t−2. According to (55), C(t) negatively correlates with X i

t,t−1. Therefore,
if X0

t,t−1 < X1
t,t−1, then C(t)|H0 > C(t)|H1 always satisfies. Meanwhile, since St−2/St−1 ≈ 1, the effect

of the heterogeneous training set on authentication can be reduced effectively.
Under the condition of uniform sampling and stable channel, the RSS changes of legitimate UAV at

two adjacent sampling times are approximately equal. Therefore, X0
t,t−1 ≈ 0 holds, thus C(t)|H0 ≈ 1.

However, under the case of non-uniform sampling with time-varying channels (X0
t,t−1 6= 0), C(t) still

presents a large fluctuation, which still weakens the authentication reliability and robustness. In this

case, the decision threshold τ(t) should be selected in the range of [e−X1

t,t−1
/2σ2

, e−X0

t,t−1
/2σ2

].
Case 3. When t > K, C(t) can be approximated to

C(t) =
Kpt,t−1∑K

k=1 pt−k,t−k−1

=
Kf(Ψ(I(t)),Ψ(IL(t− 1)))

∑K
k=1 f(Ψ(IL(t− k)),Ψ(IL(t− k − 1)))

≈
1

1
K

∑K
k=1

St−k−1

St−1
· exp

{
Xi

t,t−k

2σ2

} . (56)

Remark 4. Under the assumption of Remark 3,
St−k−1

St−1
≈ 1 holds. The authentication accuracy depends

on the average of exp{X i
t,t−k/2σ

2}, k = 1, . . . ,K.

Let Y i
t,t−k = exp{X i

t,t−k/2σ
2} and Zi

t =
1
K

∑K
k=1 Y

i
t,t−k. According to (56), C(t) negatively correlates

with Zi
t , which is equivalent to being negatively correlated with Y i

t,t−k. Therefore, if Y
0
t,t−k < Y 1

t,t−k, then

Z0
t < Z1

t , so that C(t)|H0 > C(t)|H1 always satisfies.
Under the condition of uniform sampling and stable channel, Y i

t,t−k ≈ 1 holds, thus C(t)|H0 ≈ 1.

Meanwhile, under the non-uniform sampling with time-varying channels (Y 0
t,t−k 6= 1), let Var(Y 0

t,t−k) be

the variance of Y 0
t,t−k. According to the central limit theorem, the variance of Zi

t can be indicated by
1
KVar(Y 0

t,t−k). In this case, the fluctuations in C(t) caused by non-uniform sampling and time-varying
channels can be alleviated effectively, thus greatly improving the authentication reliability and robustness.
The decision threshold τ(t) should be selected in the range of [1/Z1

t , 1/Z
0
t ].

5.2 Analysis of computational complexity

This subsection provides an analysis of the computational complexity of each process using time com-
plexity as a function of the number of training samples N , the dimension of samples M , the intrinsic
dimension l, the maximum sample size in the neighborhood set T = max{Ni}, and other related factors
if necessary.
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Table 1 Simulation parameters

Parameter Value

Transmission technology OFDM

Number of subcarriers 52

Center frequency fc 5.2 GHz

Bandwidth of each subcarrier 0.3125 MHz

Modulation mode QPSK

Length of cyclic prefix 16 symbols

Noise power spectrum density −174 dBm/Hz

Number of received antennas m 8

Sampling interval 3.2 µs

(Pa, Pu, Pe) (100, 100, 100) mW

(ηLOS, ηNLOS, α) (3, 21, 4)

(Z, Q) (11.95, 0.14)

(ε, K) (5, 8)

(∇R, ∇a) (7, 7)

The proposed PLA scheme includes two main processes. The one is the training process that obtains
the low dimension manifold subspace using the proposed diffusion map algorithm. The other one is the
authentication decision process based on the constructed manifold subspace.

The training process is composed of three steps. The first step is neighborhood selection, which is
defined by (37). Given a sample It(i), the computing of ‖It(i) − It(j)‖ needs O(NM) calculation,
and sorting to get its neighborhood set takes O(NT ). Therefore, for all N training samples, the time
complexity of neighborhood selection isO(N2(T+M)). The second step is the calculation of the connected
matrix W = (ωij) ∈ R

N×N defined by (38), whose time complexity is O(NMT ). Finally, the eigenvalue
decomposition of W is carried out as (40). According to [45], since W is a very sparse matrix, i.e., each
row or column contains only Ni non-zero elements, and Ni is usually small compared with N , the time
complexity of eigenvalue decomposition for W is O((l+ T )N2). Therefore, the overall complexity of the
training process is O((T +M + l)N2).

The authentication decision process is comprised of three steps. The first step is the projection map
of a new sample I (t) defined by (43), which has the time complexity of O(MNl). The second step is
the similarity calculation for the current samples and the previous legitimate one given as (45). The
time complexity of the inner product is O(l). Finally, the identity indicator C(t) is calculated to conduct
the authentication decision with the time complexity of O(1). Therefore, the overall complexity of the
authentication decision process is O(MNl).

In conclusion, the proposed PLA scheme provided a low computational complexity, which can satisfy
the time validity of UAV relay authentication.

6 Simulations

In this section, the performance of the proposed PLA scheme is simulated with the synthetic data set.
The computer configurations are Intel(R) Xeon E5-1620 v2 CPU, 3.7 GHz basic frequency, 16 GB of
DDR3-1600 RAM, and the simulation platform is MATLAB R2020b.

6.1 The generation of data set

The IEEE 802.11a WLAN communication system is adopted to construct the transmitting environment
to reflect the UAV communication realistically. The baseband signals are randomly generated. Then,
the (2, 1, 7) convolution code is used for channel coding. The transmission of IEEE 802.11a is a multi-
carrier modulation technology with orthogonal frequency division multiplexing (OFDM) [46]. The center
frequency is 5.2 GHz with 52 subcarriers. The bandwidth of each subcarrier is 0.3125 MHz, and the total
bandwidth is 20 MHz. Each OFDM symbol is modulated by the quadrature phase shift keying (QPSK).
The three stages m-sequence is used to spread the spectrum. The cyclic prefix is 16 symbols, and the
length of fast Fourier transform (FFT) is 64. The channel matrix is generated according to (14) and (19).
The number of received antennas of Bob is set to 8, where the antenna interval is 0.25 m. The noise
power spectral density is −174 dBm/Hz. The detailed parameters are summarized in Table 1.
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Figure 5 (Color online) Position of all nodes in simulations.

Figure 5 provides the positions of all nodes in the simulations. Particularly, the transmitter Alice is
located at position (50, 0, 0) m. The receiver Bob is located at the position (0, 0, 10) m. The legitimate
UAV is flying over the transceivers with the altitude of au(t) = 50 m. For the circular trajectory, the
circle center is (25, 0, 50) m, and the radius is R = 40 m. While for rectilinear trajectory, the UAV
flies in the direction of the connection of the transceivers. There are N = 500 sampling nodes on the
trajectory of UAV, where the receiver collects one data frame at each sampling node. One data frame
contains 8 OFDM symbols, and the average symbolic power is used as the RSS of the received signals.
The intervals between adjacent sampling nodes are ∇S = ‖L(t)−L(t− 1)‖ = 0.5 m. The spoofing UAV
(Eve) flies around the legitimate UAV with ∇R = ∇d = ∇a = 10 m. Eve sends spoofing signals with the
same transmitting power of a legitimate UAV (i.e., Pe = Pu = 100 mW) in the absence of the legitimate
signals. Without a special declaration, we set the odd sampling nodes are the legitimate samples, and
other nodes are spoofing samples.

Figure 6 presents the sampling space of the identity signatures under different sampling nodes. As
can be seen, the RSS samples of the legitimate UAV have an inevitable overlap with Eve’s samples.
Different from traditional static communication scenarios, there is a large probability that two UAVs
moving at high speed have similar channels with the receiver at certain sampling times. Therefore, it is
difficult to find a partition plane for spoofing samples and legitimate samples, limiting the application of
traditional classifier-based authentication schemes, such as DT, SVM, KNN, and DL-based schemes [16,
27]. Nonetheless, as shown in Figure 6, the spoofing samples are different from the legitimate samples at
different sampling nodes, providing the opportunity to achieve the PLA. Meanwhile, it can be seen from
Figure 6(b) that the samples of Eves 5 and 6 are always close to the legitimate samples. The authentication
of Eves 5 and 6 is a difficulty in this paper. Moreover, because of the effect of UAV trajectory, the identity
signature samples are not uniformly distributed. Particularly, the samples in nodes 1–50, 450–500, and
225–275 present dense distribution for circular trajectory. However, the samples in nodes 50–225 and 275–
450 are sparse. For rectilinear trajectory, the samples in nodes 160–340 are dense, while other sampling
nodes are sparse.

6.2 Simulations and analysis

As shown in Table 2, the authentication results in the statistical test can be summarized as true legitimacy
(TL), false alarm (FA), miss detection (MD), and true attack (TA). Specifically, the TL represents the case
where the legitimate signal is correctly authenticated. Otherwise, if the legitimate signal is misidentified as
an attack, it is called an FA. Likewise, the TA indicates the case where the spoofing signal is authenticated
successfully. And the situation in which the spoofing signals are authenticated as legitimate is called an
MD. Given an unknown signal, the authentication result of this signal can only be one of the above four
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Figure 6 (Color online) Sampling space of the identity signatures. (a) Circular trajectory; (b) rectilinear trajectory.

Table 2 The definition of authentication results

Predicted
Actual

Legitimacy Attack

Legitimacy TL MD

Attack FA TA

results. According to (52) and (53), the false alarm rate and miss detection rate can be calculated as

Pfa =
FA

TL + FA
, (57)

Pmd =
MD

TA+MD
, (58)

where Pfa denotes the ratio of the false alarm number to the total actual legitimacy number, and Pmd

indicates the ratio of the miss detection number to the total actual attack number.
Figure 7 provides the performance of the proposed authentication scheme at the different sampling

nodes. As shown in Figure 7(a), Pfa and Pmd are always less than 0.01 under the circular trajectory,
confirming that the proposed scheme can effectively authenticate the legitimate UAV and attackers.
Meanwhile, Pfa performs poorly at the sparse region of training data, namely nodes 50–225 and 275–450,
while Pfa performs well at the dense regions, i.e., nodes 1–50, 225–275, and 450–500. This indicates that
sufficient training samples can guarantee the ability of the proposed scheme to authenticate the legitimate
UAV. From another perspective, it can be seen that Pmd decreases as increase of the difference of I(t) at
adjacent sampling nodes, namely D1

t,t−1. Specifically, Pmd of Eves 1 and 2 increases from node 1 to 250,
and decreases from node 250 to 500, because the D1

t,t−1 of Eves 1 and 2 increases from node 1 to 250 and
decreases from node 250 to 500. While the Pmd of Eve 3 and Eve 4 has the reverse trend. Therefore, the
attackers are more easily authenticated as D1

t,t−1 increases. As shown in Figure 7(b), the performance of
the proposed scheme under rectilinear trajectory presents same trend with circular trajectory. That is,
Pfa presents a better performance at the dense region, i.e., node 160 to 340, while Pmd presents better
performance as D1

t,t−1 increases, i.e., node 150 to 400. Meanwhile, for Eves 5 and 6, Pmd is a high value
at node 0–50, and node 450–500. Because D1

t,t−1 ≈ D0
t,t−1 holds at these sampling nodes, the proposed

authentication scheme cannot distinguish the legitimate signals and spoofing signals. Particularly, in the
near region of node 250, Pfa and Pmd have a certain increase. Because the density of training samples
changes greatly before and after this node shown in Figure 6, C(t) has a large fluctuation, leading to the
signals being more likely to be incorrectly authenticated.

Figure 8 provides the false alarm rate Pfa versus the number of training samples N under different
sampling intervals ∇S, where the threshold is set to guarantee Pmd less than 0.01. As can be seen, Pfa

would decrease as the number of training samples increases until the converges when the training samples
are greater than 500. Meanwhile, Pfa of legitimate UAV with the circular trajectory outperforms that
of the rectilinear trajectory. This is because the identity signature in the circular trajectory presents a
denser distribution compared with the rectilinear trajectory, which confirms the solution of Remark 2.
From another perspective, Figure 8 indicates that Pfa increases with the increase of ∇S. By combining
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Figure 7 (Color online) Performance of the proposed PLA scheme at different sampling nodes. (a) Circular trajectory; (b)

rectilinear trajectory.
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Figure 9 (Color online) Miss detection rate versus the loca-

tion difference.

(54)–(56), |C(t)|H0 − C(t)|H1| would decrease as the increase of sampling interval ∇S. To guarantee
the miss detection rate, the large threshold selection leads the legitimate signals to be more likely to be
falsely authenticated, i.e., a large Pfa. Therefore, once the legitimate UAV keeps silent in a period, the
authentication performance of new communications would deteriorate. For the application with robust
security requirements, the proposed authentication process needs to be rebuilt periodically.

Figure 9 analyzes the miss detection rate Pmd versus the location difference between Eve and UAV
relay ∇, which is defined as ∇ = ∇a = ∇R. The threshold is selected to guarantee the Pmd less than
0.01. As can be seen, Pmd decreases as ∇ increases. According to (15) and (19), the difference in identity
signatures between legitimate UAV and Eve, namely D1

t,t−1, is positively correlated with ∇. Therefore,
C(t)|H1 would decrease as the increase of ∇. Given a fixed communication mode of legitimate UAV, i.e.,
C(t)|H0, is a relatively stable value, the smaller C(t)|H1 indicates that the spoofing attackers are more
likely to be authenticated correctly, leading to a smaller Pmd. Meanwhile, we observe that ∇ has different
effects on different attack patterns. Particularly, the samples of Eves 5 and 6 are the most difficult to be
authenticated correctly. Figure 6(b) shows that the identity signatures of Eves 5 and 6 present the most
similar with legitimate samples, causing a large Pmd. Therefore, we can conclude the circular trajectory
of UAV presents better performance to resist spoofing attacks than that of the rectilinear trajectory.

Figure 10 provides the receiver operating characteristic (ROC) curve to compare the proposed au-
thentication scheme with other ML-based PLA schemes, i.e., the DT, SVM, KNN, and DL-based PLA.
We select the most difficult authenticated attackers, namely Eve 5, with the number of training samples
N = 500, the sampling interval of legitimate UAV ∇S = 1 m, and the location difference ∇ = 10 m. It
can be seen that the area under curve (AUC) of the proposed scheme is more than 18% larger than that
of other schemes under the worst performance, indicating that the proposed scheme outperforms other
schemes. Nevertheless, Figure 6 indicates that the identity signatures of different sampling nodes present
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Figure 11 (Color online) The computational time of the proposed PLA scheme and the benchmark solutions. (a) Offline training

time with M = 8; (b) online decision time with N = 500.

different values. By adding the sampling serial number to the identity signatures, the DT, SVM, KNN,
and DL-based authentication scheme can separate the legitimate signal from the spoofing signals. How-
ever, this method also brings new security problems; e.g., the attacker can also forge the serial number
to masquerade legitimate users. The serial number is an artificial endowed value instead of the objective
physical layer attributes, which is more easily forged. Therefore, we can conclude that our proposed PLA
scheme is more accurate for authenticating the moving UAV relay than the existing benchmark solutions.

Figure 11 compares the complexity of the proposed scheme with the benchmark solutions using com-
putational time. Because the DL algorithm [16] is much more complex than other algorithms, it is not
considered in the comparison. Figure 11(a) compares the proposed scheme with benchmark solutions us-
ing offline training time, which represents the preparation time before PLA. As can be seen, the training
time of the proposed scheme is between the SVM and DT algorithm when N 6 450, and larger than
the SVM algorithm when N = 500. In combination with Figure 8, the performance of the proposed
mechanism converges at N = 500. Therefore, the proposed scheme greatly improves the performance of
UAV authentication with a slight increase in the complexity of the training process. Figure 11(b) com-
pares the online decision time of the proposed scheme with the benchmark solutions, which is directly
related to the real-time authentication latency. As can be seen, although the online decision time of the
proposed PLA scheme is slightly larger than other benchmark solutions, the calculation time has reached
the microsecond level, which is less than 16 ms. Meanwhile, we observe that the growth trend of the
proposed scheme is similar to other benchmark solutions. Therefore, we can conclude that the proposed
scheme is suitable for latency-sensitive applications.



Xia S D, et al. Sci China Inf Sci December 2022 Vol. 65 222302:20

7 Conclusion

In this paper, we proposed a mobile PLA scheme, based on manifold learning, for the UAV-enabled relay
networks. This was the first work to realize the real-time PLA for mobile UAV relay by establishing the
Markov chain of physical layer identity signatures. To achieve the separation of non-linear physical layer
data in mobile PLA, we constructed a manifold feature space by the proposed diffusion map algorithm to
reflect the state transition probability of identity signatures. Then, we established the local correlation of
the Markov chain as the test statistic of received signals. The effect of training sample density, sampling
interval, and the attack location on the authentication performance was depicted to offer a comprehensive
understanding of the proposed scheme. Extensive simulations were conducted, which confirmed that the
proposed scheme could effectively resist the spoofing UAV attack under the mobile scenarios, where
the performance outperformed other schemes more than 18% in extremely worse cases. The proposed
scheme provided a feasible framework to authenticate the mobile terminal, which can be further extended
to authenticate the moving terminals under arbitrary motion trajectories.

8 Further work

With the popularity of massive multiple-input-multiple-output (MIMO) technology, the communication
capacity is greatly improved, which provides rich spatial freedom for transmission. Considering the multi-
path channel would offer more observations for the receiver, physical layer authentication schemes based
on MIMO technology would further provide security enhancement.
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