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Abstract In unmanned aerial vehicle (UAV) communication networks, trajectory planning and resource

allocation (TPRA) under channel prediction obtains great attention due to its significant energy-saving of

UAVs and user quality of service (QoS) gains. These potentials are primarily demonstrated under the as-

sumption of perfect channel prediction. However, due to the rapid-varying features of air-to-ground channels,

it is difficult to avoid the random channel prediction error (CPE), which may deteriorate the performance

of TPRA. In this paper, we investigate the problem of energy-efficient TPRA considering random CPE. The

problem is formulated as a mixed-integer non-convex optimization with chance constraints, which ensures

that QoS is robust to random CPE. To solve it, we first transform the chance constraints into deterministic

forms, which are further proved to be convex constraints by using the characteristic of quasiconvex functions.

Then, we design a modified successive convex approximation algorithm to iteratively achieve the optimal

solution. To cater to the high-speed movement of UAVs, a low-complexity heuristic online algorithm is tai-

lored. Specifically, we first relax the QoS constraints to find a feasible initial point and iteratively tighten the

lower bound of QoS constraints to obtain a suboptimal solution. Simulation results show that the proposed

algorithm can improve energy efficiency compared with the algorithm without prediction.
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1 Introduction

To provide ubiquitous communication services, aerial base stations (ABSs) based on unmanned aerial
vehicles (UAVs) are proposed as a promising method to complete fast and flexible deployment of com-
munication systems [1–4]. Due to the high mobility, the UAV trajectory and communication resource
can be designed according to the real-time wireless environment and demands of ground users (GUs),
which introduces spatial degrees of freedom for providing a higher quality of service (QoS). Despite the
potential benefits, it is challenging to design the algorithm of trajectory planning and resource allocation
(TPRA) in UAV communication networks due to the high mobility of UAVs. On the one hand, the
resource allocation policy is generally outdated due to the delay imposed by channel state information
(CSI) collection and algorithm running. On the other hand, the perfect channel prediction is unrealistic
since air-to-ground channels in high-mobility UAV networks are rapid-varying [5]. Worse still, the channel
prediction error (CPE) is difficult to handle due to its randomness. Hence, to achieve efficient TPRA, it
is important to overcome the impact of random CPE on system performance. In this paper, we focus on
the robust TPRA under the imperfect channel prediction in UAV communication networks.
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1.1 Related work

Compared with terrestrial communication networks, UAV trajectory optimization is a unique and fun-
damental problem in UAV communication networks. In [6], the trajectory and data collection policy
is jointly designed in the low earth orbit satellite assisted-UAV networks to minimize the total energy
consumption. The energy-efficient UAV communication with a ground terminal is studied via optimiz-
ing the UAV’s trajectory [7]. In particular, the propulsion energy consumption model of the fixed-wing
UAV is derived as a function of UAV’s flying speed. Besides the trajectory planning, resource allo-
cation also significantly impacts the system performance. In [8], researchers studied the UAV access
selection and BS bandwidth allocation problems in a UAV-assisted IoT communication network, and
proposed a hierarchical game framework. Considering both the orthogonal multiple access (OMA) and
non-orthogonal multiple access (NOMA) modes, TPRA is investigated to maximize the minimum average
rate of GUs for UAV communication networks [9]. In [10], the user communication scheduling, UAV tra-
jectory, and resource allocation were jointly optimized to maximize energy-efficiency and satisfy quality
of experience (QoE) requirements of users. Studies on TPRA are generally based on two widely used
assumptions [6,11–14], i.e., (1) the exact mathematical model of CSI is given in advance and changeless,
(2) the time cost of CSI collection and algorithm running is ignored. However, the complete knowledge of
CSI is generally unknown in UAV communication networks. Moreover, the delay imposed by CSI collec-
tion and algorithm running may invalidate the resource allocation policy. Therefore, channel prediction
based methods should be studied for TPRA in UAV communication networks.

To effectively optimize TPRA and further improve the system performance, it is essential to predict CSI
of the air-to-ground channel between UAV and GU. Aided by the channel prediction, the online TPRA
is proposed and widely applied in UAV communication networks [15–17]. In [15], the shadow fading in
a given environment was predicted by leveraging the Gaussian process, and then the relay trajectory
is optimized by using the learned communication properties. In [16], a UAV was deployed to establish
communication links between users and base stations. The relay deployment is optimized via online
learning without prior knowledge of CSI. In [17], the 3D-trajectory planning and resource allocation were
optimized through an online algorithm, which only requires real-time and statistical knowledge of CSI.
In the literature above, CPE is not considered. However, in practice, the random CPE always exists
and further may result in the waste of resources and violation of QoS constraints [5, 18]. Thus, it is
necessary to research robust approaches to handle the random CPE and further avoid QoS violations in
UAV communication networks.

As discussed above, TPRA with channel prediction is challenging in UAV communication networks.
On the one hand, the exact prediction of CSI is of paramount importance for TPRA due to the high-
mobility features of UAV communication networks. On the other hand, there is no such thing as a perfect
channel prediction in UAV communication networks. The random CPE is a huge obstacle to satisfying
QoS constraints of GUs.

1.2 Contributions

In this paper, we investigate TPRA under imperfect channel prediction in UAV communication networks.
To handle the random CPE, we focus on how robustness can be incorporated into TPRA. An optimization
framework is proposed, where the framework is robust to CPE that follows a Gaussian distribution model.
The contributions of this paper are more specifically summarized below.

• We formulate a robust optimization problem to maximize the long-term expected energy efficiency
according to the real-time channel prediction. Specifically, the QoS requirements of GUs are modeled
as probabilistic chance constraints in which the CPE is a Gaussian random variable. Furthermore, we
adopt a safe approximation to transform the probabilistic chance constraints into deterministic forms,
which are proved to be convex constraints by using the characteristic of quasiconvex functions. Then, we
obtain the optimal solution with a modified successive convex approximation (SCA) algorithm.

• To provide a real-time TPRA, we further propose a low-complexity online algorithm. In particular,
we relax the initial QoS constraints since it is non-trivial to find a feasible initial point due to the coupling
between trajectory planning and resource allocation. Then, we design a heuristic algorithm to improve
the solution by iteratively tightening the lower bound of QoS constraints. Furthermore, simulation results
show that the proposed algorithm can improve the energy efficiency compared with the algorithm without
prediction.
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Figure 1 (Color online) The UAV network providing content service for GUs in a target region.

The rest of this paper is organized as follows. In Section 2, the system model of the UAV communication
network is presented. The TPRA formulation with the perfect channel prediction is proposed in Section 3.
In Section 4, the algorithm for the robust TPRA with random CPE is given. Simulation results are
presented in Section 5, which is followed by the conclusion in Section 6.

2 System model

2.1 UAV communication system model

We consider a UAV communication system including one ABS mounted on UAV and K GUs, which are
located in a squared target region with side length L (see Figure 1). Let K = (1, . . . ,K) denote the set
of GUs. The hover center and hover radius of the fixed-wing UAV are denoted by C = (Cx, Cy) and
R, respectively. In addition, the angular velocity of the fixed-wing UAV is denoted by α. Let wk ∈ R

2

denote the horizontal coordinate of GU k. The flight duration T is divided into NT equal-length time
slots, where the duration of each time slot equals Ts such that T = NTTs. Note that the location of
the UAV can be assumed to be unchanged during each time slot when Ts is chosen sufficiently small [7].
Let T = (0, . . . , NT ) denote the set of time slots, and u (t) ∈ R

2, ∀t > 0 denote the horizontal trajectory
coordinates of the UAV at time slot t. The distance between the UAV and GU k at time slot t is
given by

dk (R, t) =

√

H2 + ‖u (t)−wk‖2, (1)

where H is the flight height of the UAV. Letting θk (t) denote the hover angle with respect to GU k at
time slot t (see Figure 1), we have

‖u (t)−wk‖ =
√

R2 + l2k + 2lkR sin (θk (t)), (2)

where lk is the horizontal distance from the UAV hover center to GU k (see Figure 1), i.e., lk =
√

‖wk −C‖2. Furthermore, in (2), we have θk (t) = θk (0) + αt.
All GUs share the same frequency band multiplexed in time domain. Specifically, system bandwidth

W Hz is divided into NF orthogonal subcarriers, and each subcarrier can be allocated to at most one
GU in each time slot. Let I = (1, . . . , NF) denote the set of subcarriers. si,k (t) ∈ {0, 1} is the binary
subcarrier allocation indicator. Particularly, si,k (t) = 1 indicates that subcarrier i is allocated to GU k
at time slot t and si,k (t) = 0, otherwise. Let s denote the subcarrier allocation policy vector.

Let C = {1, 2, . . . , C} denote the set of contents. In this paper, rateless Fountain coding is applied,
where each content is encoded into several different segments, and it can be recovered by collecting a
certain number of encoded segments. Specifically, we consider that each content is encoded into multiple
segments with size S bits, and a content can be recovered by collectingK encoded segments. Furthermore,
we set the storage capacity for caching segments in each GU as J = SKNC bits. In other words, each
GU can cache the encoded segments of NC contents. We assume that each GU sends its content requests
to the UAV at the beginning of each flight cycle. If GU k cannot collect at least K encoded segments
of the requested content s within a flight cycle, it will delete the received encoded segments of content s
from its storage.
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2.2 Channel model

Let P denote the transmit power from the UAV to GUs at each time slot. Therefore, at time slot t,
assuming subcarrier i is allocated to GU k, the achievable transmission rate (bits/s) on subcarrier i is
given by

ri,k (t, ρ̃i,k (t)) = B log2

(

1 +
Pβ0ρi,k (t)

(dk (R, t))
2
N0B

)

, (3)

where N0 denotes the noise power spectral density and B = W/NF is the bandwidth of each subcarrier.

β0 denotes the channel power gain at the reference distance. Moreover, we have ρi,k (t) = |hi,k (t)|2,
where hi,k(t) is the channel coefficient that captures the shadow fading and small-scale fading effects due
to multipath propagation.

In our early work [19], we found that the power gain of channels from the UAV to GUs has correlations in
time domain. Thus, it is reasonable to design TPRA algorithm based on predicted CSI. In the considered
UAV communication network, exact dk (t) can be obtained since the locations of GUs are known. Hence,
the CPE mainly reflects in the predicted channel coefficient. Note that, in practice, the channel prediction
generally only consists of the expectation and variance of channel coefficients rather than exact value [17].
Thus, in this paper, CPE is defined as the prediction error for the expectation and variance of the modular
squaring of channel coefficient, i.e., ρi,k (t). The CPE is generally caused by the fast time-varying wireless
channel and the delay for collection of CSI. Let ρ̃i,k (t) denote the predicted value of ρi,k (t), where
E {ρ̃i,k (t)} and V {ρ̃i,k (t)} denote the expectation and variance of ρ̃i,k (t). Similarly, E {ρi,k (t)} and
V {ρi,k (t)} denote the expectation and variance of ρi,k (t). If E {ρ̃i,k (t)} = E {ρi,k (t)} and V {ρ̃i,k (t)} =
V {ρi,k (t)}, the CSI is exactly predicted. Thus, in this paper, CPE mainly reflects in the predicted
error of E {ρi,k (t)} and V {ρi,k (t)}. ψi,k (t) denotes the prediction error of E {ρi,k (t)}, i.e., ψi,k (t) =
E {ρi,k (t)} − E {ρ̃i,k (t)}. In this paper, ψi,k (t) is modeled as a normal random variate with expectation
µi,k (t) and variance σ2

i,k (t), i.e., ψi,k (t) ∼ N (µi,k (t) , σ
2
i,k (t)). Let Ψ = (ψi,k (t) , i ∈ I, k ∈ K, t ∈ T )

denote the vector of prediction errors. We assume that prediction errors are independent with each other.
Thus, Ψ is a normal multivariate random vector with expectation µ = (µi,k (t) , i ∈ I, k ∈ K, t ∈ T ) and
variance σ, where σ = diag{σ2

1,1 (1) , . . . , σ
2
NF,K

(NT )}. In practice, if we know the biases of the channel
predictions before the planning, we can adjust the predicted channels accordingly. Hence, in the following
of this paper, we set µi,k (t) = 0, i ∈ I, k ∈ K, t ∈ T , i.e., ψi,k (t) ∼ N (0, σ2

i,k (t)).

2.3 UAV energy model

The energy consumption of UAVs generally consists of computing energy, propulsion energy and trans-
mission energy. In general, the propulsion energy is much larger than computing energy and transmission
energy. Thus, in this paper, the computing energy and transmission energy are ignored. The total
propulsion energy of the fixed-wing UAV is a function of velocity and acceleration [20]:

E (v (t)) =

∫ T

0

[

a1 (v (t))
3
+

a2
v (t)

(

1 +
a (t)

2

g2

)]

dt+
1

2
m
(

(v (T ))
2 − (v (0))

2
)

, (4)

where v (t) and a (t) are the velocity and acceleration of the UAV at time slot t, respectively. In addition,
a1 and a2 are two parameters related to the aircraft’s weight, wing area, air density and so on. g is the
gravitational acceleration, and m is the mass of the UAV including all its payload. In this paper, the
total propulsion consumption within each flight cycle can be rewritten as [21]

E (R) =

[(

a1 +
a2
g2R2

)

(αR)
3
+

a2
αR

]

TsNT

=

(

a1α
3R3 +

a2α
3

g2
R+

a2
αR

)

TsNT . (5)

Specifically, since the UAV flies at a constant angular velocity α and hover radius R, we have (v (T ))
2 −

(v (0))
2
= 0 in (4).
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3 TPRA under perfect prediction

In this section, we first define the adopted performance metric, and then, we formulate the TPRA problem
considering perfect prediction of channel coefficients.

3.1 Quality of service for GUs

In this paper, we assume that the QoS of a GU is satisfied when the GU can successfully receive at least
NQ requested contents within a flight cycle. Thus, the QoS constraints of GUs can be given by

∑

t∈T

∑

i∈C

si,k (t)Tsri,k (t, ρ̃i,k (t)) > NQSK, ∀k ∈ K. (6)

Note that the left hand side of (6) is the expected data received by GU k according to the predicted
channel coefficient ρ̃i,k (t).

3.2 Optimization problem formulation

In this paper, we maximize the energy efficiency under the QoS constraints of GUs within each flight
cycle. The TPRA problem is formulated as the following optimal programming:

(P0) max
R,s

1

E (R)

∑

t∈T

∑

i∈I

∑

k∈K

si,k (t)Tsri,k (t, ρ̃i,k (t))

s.t. C1 :
∑

t∈T

∑

i∈I

si,k (t)Tsri,k (t, ρ̃i,k (t)) > NQSK, ∀k ∈ K,

C2 :
∑

k∈K

si,k (t) 6 1, ∀i ∈ I, t ∈ T ,

C3 :
∑

i∈I

si,k (t) > 1, ∀k ∈ K, t ∈ T ,

C4 : si,k (t) ∈ {0, 1} , ∀i ∈ I, t ∈ T , k ∈ K,
C5 : Rmin 6 R 6 Rmax.

The objective function is to maximize the energy efficiency of the UAV communication system, where
the numerator is the total data received by all GUs during each flight cycle, which is a function with
respect to the resource allocation policy and hover radius. Constraint C1 is the QoS constraint of each
GU. Specifically, the QoS of a GU is satisfied when the GU can successfully receive at least NQ requested
contents within a flight cycle. Therefore, the QoS of a GU is satisfied if the GU can receive at least
NQSK bits within a flight cycle. Constraints C2 and C4 are imposed to guarantee that each subcarrier
is allocated to at most one GU at each time slot. Constraints C3 and C4 are imposed to guarantee that
each GU should occupy at least one subcarrier at each time slot. Constraint C5 restricts the hover radius
R.

Note that the solution of problem (P0) is an offline TPRA policy, where the value of channel coefficients
should be exactly obtained. However, in practice, despite machine learning and data mining techniques,
the channel prediction generally only consists of the expectation and variance of channel coefficients
rather than the exact value. In this case, the expectation of transmitted data is used as the system per-
formance metric. Considering the running time of algorithm, we formulate the online TPRA optimization
problem as

(P1) max
R,s

1

E (R)





∑

k∈K

Ak,t0 +
∑

t∈Tt0

∑

i∈I

∑

k∈K

Hi,k

(

ρ̃t0i,k (t)
)





s.t. C1a : Ak,t0 +
∑

t∈Tt0

∑

i∈I

Hi,k

(

ρ̃t0i,k (t)
)

> NQSK, ∀k ∈ K,

C2–C5.



Sheng M, et al. Sci China Inf Sci December 2022 Vol. 65 222301:6

In problem (P1), t0 is the index of the current time slot, where 1 6 t0 6 NT − TE, and Tt0 =
{t0 + TE, . . . , NT } with TE denoting the algorithm running time. Ak,t0 is the total number of bits received
by GU k until time slot t0 + TE − 1, which is given by

Ak,t0 =
∑

t∈T \Tt0

∑

i∈I

ŝi,k (t)Tsri,k (t, ρ̂i,k (t)) . (7)

In (7), ŝi,k (t) is the subcarrier allocation policy for time slot t, 0 6 t 6 t0 + TE − 1, which has been
already optimized before time slot t0. Moreover, ρ̂i,k (t) is the real channel coefficient if channel i is
allocated to GU k at time slot t. Furthermore, ρ̃t0i,k (t) is the prediction of ρi,k (t) at time slot t0, and

ρ̃t0 = {ρ̃t0i,k (t) , ∀i ∈ I, k ∈ K, t ∈ Tt0}. Accordingly, in problem (P1), Hi,k(t, ρ̃
t0
i,k (t)) is the predicted

channel transmission rate of channel i from the UAV to GU k at time slot t, ∀t ∈ Tt0 , where we have

Hi,k

(

t, ρ̃t0i,k (t)
)

=E

{

si,k (t)TsB log2

(

1 + ρ̃t0i,k (t)C (dk (R, t))
−2
)}

(8)

with C = Pβ0

N0B
. Note that the online algorithm for TPRA programming problem in (P1) should be

performed in each time slot. For facilitating a tractable TPRA algorithm design, we rewrite (8) as [17]

Hi,k

(

t, ρ̃t0i,k (t)
)

(a)
=si,k (t)TsBE

{

log2

(

1 + E

{

ρ̃t0i,k (t)
}

C (dk (R, t))
−2
)

+
(ρ̃t0i,k (t)− E{ρ̃t0i,k (t)})C (dk (R, t))

−2

(1 + E{ρ̃t0i,k (t)}C (dk (R, t))
−2) ln 2

−
(C (dk (R, t))

−2
)2(ρ̃t0i,k (t)− E{ρ̃t0i,k (t)})2

(2 ln 2) (1 + E{ρ̃t0i,k (t)}C (dk (R, t))
−2

)2
+ o

}

=si,k (t)TsB

[

log2

(

1 + E

{

ρ̃t0i,k (t)
}

C (dk (R, t))
−2
)

+
(E{ρ̃t0i,k (t)} − E{ρ̃t0i,k (t)})C (dk (R, t))

−2

(1 + E{ρ̃t0i,k (t)}C (dk (R, t))
−2) ln 2

−
(C (dk (R, t))

−2
)2(E{(ρ̃t0i,k (t))2} − 2E{ρ̃t0i,k (t)}E{ρ̃t0i,k (t)}+ (E{ρ̃t0i,k (t)})2)
(2 ln 2) (1 + E{ρ̃t0i,k (t)}C (dk (R, t))

−2
)2

+ o

]

=si,k (t)TsB

[

log2

(

1 + E

{

ρ̃t0i,k (t)
}

C (dk (R, t))
−2
)

−
(C (dk (R, t))

−2
)2Var{ρ̃t0i,k (t)}

(2 ln 2) (1 + E{ρ̃t0i,k (t)}C (dk (R, t))
−2)2

+ o

]

,

(9)

where (a) is due to the second-order Taylor series expansion of log2(1 + ρ̃t0i,k (t)C (dk (R, t))
−2

) around

E{ρ̃t0i,k (t)}, and o is the higher-order infinitesimal terms.

Furthermore, in UAV communication systems, E{ρ̃t0i,k (t)} ≫ Var{ρ̃t0i,k (t)} holds in general since the
line-of-sight (LoS) path dominates in air-to-ground channels [17]. Thus, we have

C2Var{ρ̃t0i,k (t)}
(2 ln 2) (1 + E{ρ̃t0i,k (t)}C (dk (R, t))

−2
)2

− o <
Var{ρ̃t0i,k (t)}

(2 ln 2) (E{ρ̃t0i,k (t)})2
≈ 0. (10)

In this case, we can obtain

Hi,k

(

t, ρ̃t0i,k (t)
)

≈ si,k (t)TsB log2

(

1 + E

{

ρ̃t0i,k (t)
}

C (dk (R, t))
−2
)

. (11)

In this section, we give the formulation for TPRA problem under perfect prediction of channel coeffi-
cients. However, this formulation is overwhelmingly idealistic for practical applications. In Section 4, we
give the robust TPRA algorithm considering prediction errors of channel coefficients.

4 Robust TPRA under prediction error

In this section, we study the robust TPRA algorithm, which considers the prediction errors of channel
coefficients. We first formulate a robust optimization problem with chance constraints, where the deter-
ministic equivalent forms of chance constraints are obtained by a tractable approximation. Then, we solve
the optimization problem with a modified SCA method. Finally, to cater to the high-mobility features
of UAV communication networks, a low-complexity algorithm is proposed to obtain real-time TPRA.
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4.1 Tractable approximation for chance constraint

In problem (P1), the expected data received by GUs is directly evaluated according to the predicted chan-
nel coefficients, which ignores the prediction error of channel coefficients. However, the prediction error
has significant impact on the QoS of GUs. Let ψt0i,k (t) denote the prediction error of E{ρ̃t0i,k (t)}, whose
variance is defined as σt0i,k (t). In addition, let Ψt0 = {ψt01,1 (1) , . . . , ψt0NF,K

(NT )}. Defining H̃i,k(t, ρ̃
t0
i,k (t) ,

ψt0i,k(t)) as the predicted channel transmission rate under prediction error, we have

H̃i,k

(

t, ρ̃t0i,k (t) , ψ
t0
i,k (t)

)

= si,k (t)TsB log2

(

1 +
(

E

{

ρ̃t0i,k (t)
}

+ ψt0i,k (t)
)

C (dk (R, t))
−2
)

. (12)

We rewrite the QoS constraint C1a as a chance constraint form:

C1b : Pr







Ak,t0 +
∑

t∈Tt0

∑

i∈I

H̃i,k

(

t, ρ̃t0i,k (t) , ψ
t0
i,k (t)

)

> NQSK







> 1− ε, ∀k ∈ K. (13)

Note that the QoS constraints of GUs are satisfied with a predefined probability. Specifically, 0 < ε≪ 1 is
the maximum probability that the QoS of GUs cannot be satisfied. Constraint C1b is a chance constraint,
which is in general computationally intractable. In this case, a natural process is to replace constraint
C1b with a safe tractable approximation defined on a space contained in the feasible set of the initial
constraint. Accordingly, the feasible solution to the safe tractable approximation is feasible for the original
chance constraint.

To obtain a deterministic equivalent form of the chance constraint by a tractable approximation, the
chance constraint generally is represented as a linear summation of random variables [22]. Hence, we first
linearize constraint C1b. We define an auxiliary function as

J (k, ρ̃t0 ,Ψt0) = NQSK −Ak,t0 −
∑

t∈Tt0

∑

i∈I

H̃i,k

(

t, ρ̃t0i,k (t) , ψ
t0
i,k (t)

)

. (14)

We first fix R and s, and consider constraint C1b that dependes on Ψt0 . We perform a linearization of
J (k, ρ̃t0 ,Ψt0) with respect to Ψt0 and consider the approximation [23, 24]:

J (k, ρ̃t0 ,Ψt0) ≈ J (k, ρ̃t0 ,0) +
∑

t∈Tt0

∑

i∈I

∂J (k, ρ̃t0 ,Ψt0)

∂ψt0i,k (t)

∣

∣

∣

∣

∣

Ψt0=0

ψt0i,k (t) (15)

for ψt0i,k (t) ∈ [−3σt0i,k (t) ,+3σt0i,k (t)], ∀i ∈ I, k ∈ K, t ∈ Tt0 . This approximation is valid with small σt0i,k (t),
which is satisfied in the UAV system [17, 23]. Furthermore, in (15), we have

∂J (k, ρ̃t0 ,Ψt0)

∂ψt0i,k (t)

∣

∣

∣

∣

∣

Ψt0=0

=
−si,k (t)TsBC (dk (R, t))

−2

(ln 2) (1 + E{ρ̃t0i,k (t)}C (dk (R, t))
−2

)
. (16)

For simplicity of notation, in the following, we replace
∂J(k,ρ̃t0 ,Ψt0)

∂ψ
t0
i,k

(t)
|Ψt0=0 with J ′ (i, k, t, ρ̃t0). Substitut-

ing (15) into constraint C1b, we can obtain

Pr







J (k, ρ̃t0 ,0) +
∑

t∈Tt0

∑

i∈I

J
′

(i, k, t, ρ̃t0)ψ
t0
i,k (t) 6 0







> 1− ε, (17)

which is a linear summation of random variables ψt0i,k (t) , ∀i ∈ I, t ∈ Tt0 , k ∈ K. Hence, constraint (17)
can be rewritten as an equivalent constraint [22]:

C1c : J (k, ρ̃t0 ,0) + ErfInv (ε)

√

√

√

√

∑

t∈Tt0

∑

i∈I

(

σt0i,k (t)J
′ (i, k, t, ρ̃t0)

)2

6 0, (18)
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where ErfInv(ε) is the inverse error function satisfying

1√
2π

∫ ∞

ErfInv(v)

exp
{

−r2/2
}

dr = v, 0 < v < 1.

As we can see, the equivalent constraint (18) is independent on the random variables ψt0i,k (t) , ∀i ∈ I, k ∈
K, t ∈ Tt0 , thereby being a deterministic form constraint. Accordingly, problem (P2) can be rewritten as

(P2′) max
R,s

1

E (R)





∑

k∈K

Ak,t0 +
∑

t∈Tt0

∑

i∈I

∑

k∈K

H̃i,k

(

t, ρ̃t0i,k (t) , 0
)





s.t. C1c, C2− C5.

Remark 1. Note that constraint C1c is a second-order cone constraint with respect to s for a given
hover radius R.

4.2 Optimal solution of TPRA

In the considered UAV communication network, the UAV will hover over the target area with a fixed
radius R. Thus, the hover radius should be optimized once at the beginning of the flight cycle. During
the flight cycle, the UAV only optimizes the subcarrier allocation strategy according to the real-time
predicted channel coefficients. At the end of flight cycle, the UAV can improve the prediction algorithm
to reduce the prediction error of channel coefficients, and further obtain a more appropriate hover radius
at the beginning of the next flight cycle. In the following, the programming processed at the beginning
of each flight cycle is called the hover radius and resource allocation (HRRA) programming, and the
program during the flight cycle is called the resource allocation (RA) programming.

4.2.1 HRRA programming

At the beginning of the flight cycle, the hover radius and resource allocation strategy are both optimized.
In this case, we have t0 = 0 and

∑

k∈KAk,0 = 0. Hence, problem (P2′) can be written as

(P3) max
R,s

1

E (R)

(

∑

t∈T0

∑

i∈I

∑

k∈K

H̃i,k

(

t, ρ̃0i,k (t) , 0
)

)

s.t. C1c, C2− C5.

As we can see, the objective function of problem (P3) is a single ratio fractional function. Thus, we first
use Dinkelbach’s Transform to reformulate problem (P3) as

(P3′) min
R,s

yE (R)−G (R, s, ρ̃0)

s.t. C1c, C2− C5,

where G (R, s, ρ̃0) is given by

G (R, s, ρ̃0) =
∑

t∈T0

∑

i∈I

∑

k∈K

H̃i,k

(

t, ρ̃0i,k (t) , 0
)

. (19)

In addition, y is an auxiliary variable. Specifically, y is iteratively updated by

y(m+1) =
G
(

R(m), s(m), ρ̃0

)

E
(

R(m)
) , (20)

where m is the outer iteration index. R(m) and s(m) are the optimal solution of the m-th iteration. It
can be proved that convergence is guaranteed by alternatively updating y according to (20) since y is non
decreasing after each iteration [25]. In problem (P3′), the objective function is not a concave function, and

constraint C1c is not a convex constraint. Define auxiliary variate xi,k (t) with xi,k (t) 6
si,k(t)

(dk(R,t))
2 . Let
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d = {dk (t) , ∀k ∈ K, t ∈ T0} and x = {xk, ∀k ∈ K} with xk = {xi,k (t) , ∀i ∈ I, t ∈ T0}. With auxiliary
variate xi,k (t), we can rewrite (12) as

H̃i,k

(

t, ρ̃t0i,k (t) , ψ
t0
i,k (t)

)

= TsB log2

(

1 +
(

E

{

ρ̃t0i,k (t)
}

+ ψt0i,k (t)
)

C
si,k (t)

(dk (R, t))
2

)

> TsB log2

(

1 +
(

E

{

ρ̃t0i,k (t)
}

+ ψt0i,k (t)
)

Cxi,k (t)
)

. (21)

Similarly, Eq. (16) can be rewritten as

∂J (k, ρ̃t0 ,Ψt0)

∂ψt0i,k (t)

∣

∣

∣

∣

∣

Ψt0=0

=
−si,k (t)TsBC (dk (R, t))

−2

(ln 2) (1 + si,k (t)E{ρ̃t0i,k (t)}C (dk (R, t))
−2)

>
−TsBCxi,k (t)

(ln 2) (1 + E{ρ̃t0i,k (t)}Cxi,k (t))
. (22)

Accordingly, problem (P3′) can be written as

(P4) min
R,s,x,d

yE (R)−G1 (x)

s.t. C2− C6,

C1d : U (k, ρ̃0,x) +NQSK 6 0, ∀k ∈ K,

C7 : 0 6 xi,k (t) 6
si,k (t)

(dk (R, t))
2 , ∀i ∈ I, k ∈ K, t ∈ T0,

whereG1 (x) =
∑

t∈T0

∑

i∈I

∑

k∈K TsB log2(1+E{ρ̃0i,k (t)}Cxi,k (t)). Moreover, in problem (P4), U(k, ρ̃0,
x) is given by

U (k, ρ̃0,x) =−
∑

t∈T0

∑

i∈I

TsB log2
(

1 + E
{

ρ̃0i,k (t)
}

Cxi,k (t)
)

+ ErfInv (ε)

√

√

√

√

∑

t∈T0

∑

i∈I

(

σ0
i,k (t)TsBCxi,k (t)

(ln 2) (1 + E{ρ̃0i,k (t)}Cxi,k (t))

)2

. (23)

Lemma 1.

√

∑

t∈T0

∑

i∈I(
σ0
i,k

(t)TsBCxi,k(t)

(ln 2)(1+E{ρ̃0
i,k

(t)}Cxi,k(t))
)2 is a quasiconvex function with respect to xk.

Proof. Please refer to Appendix.
Aided by Lemma 1, we can obtain the following theorem.

Theorem 1. Constraint C1d is a convex constraint.

Proof. Please refer to Appendix.
In problem (P4), the objective function and constraint C1d are convex function and convex constraint,

respectively. However, in problem (P4), constraints C4 and C7 are still not convex constraints. For
constraint C4, we relax integer constraints on variables si,k (t) as si,k (t) ∈ [0, 1]. In addition, we apply
constraint si,k (t) = s2i,k (t) to ensure that si,k (t) is a binary variable. This constraint is equivalent to

the set of condition {si,k (t) 6 s2i,k (t) , si,k (t) > s2i,k (t)}. It can be obtained that si,k (t) > s2i,k (t) always
holds due to si,k (t) ∈ [0, 1]. Thus, we can replace constrain C4 with the following two constraints:

C4a : si,k (t) ∈ [0, 1] , ∀i ∈ I, t ∈ T , k ∈ K, (24)

C4b :
∑

t∈T0

∑

i∈I

∑

k∈K

(

si,k (t)− s2i,k (t)
)

6 0. (25)

Moreover, constraint C7 can be written as

C7a : − log (si,k (t) + ρ) + log (xi,k (t) + ρ) + 2 log (dk (R, t)) 6 0, ∀i ∈ I, k ∈ K, t ∈ T0, (26)

C7b : xi,k (t) > 0, ∀i ∈ I, k ∈ K, t ∈ T0, (27)
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where 0 < ρ ≪ 1 is a constant ensuring si,k (t) + ρ > 0. Since constraints C4b and C7a are not convex,
we use SCA method to solve the problem (P4). For SCA method, variables are updated successively
until converging to the minimum of the approximated version of the objective function, which is a tight
lower bound of the objective function. Particularly, let F (si,k (t)) = si,k (t)−s2i,k (t). For any given point

s
(m)
i,k (t), we have

F (si,k (t)) > s
(m)
i,k (t)−

(

s
(m)
i,k (t)

)2

+
(

1− 2s
(m)
i,k (t)

)(

si,k (t)− s
(m)
i,k (t)

)

△
= F (si,k (t)) . (28)

Let Q (si,k (t) , xi,k (t) , dk (R, t)) = − log (si,k (t) + ρ) + (log (xi,k (t) + ρ) + 2 log (dk (R, t))). For given

s
(m)
i,k (t) , x

(m)
i,k (t), and d

(m)
k (R, t), we have

Q (si,k (t) , xi,k (t) , dk (R, t))

> − log
(

s
(m)
i,k (t) + ρ

)

+ log
(

x
(m)
i,k (t) + ρ

)

+ 2 log
(

d
(m)
k (R, t)

)

+

(

− 1

s
(m)
i,k (t) + ρ

+
1

x
(m)
i,k (t) + ρ

+
2

d
(m)
k (R, t)

)

×
(

si,k (t)− s
(m)
i,k (t) + xi,k (t)− x

(m)
i,k (t) + dk (R, t)− d

(m)
k (R, t)

)

△
= Q (si,k (t) , xi,k (t) , dk (R, t)) . (29)

Then, we can find a lower bound of problem (P4) by solving the following optimization program:

(P4′) min
R,x,s,d

yE (R)−G1 (x)− ξ1
∑

t∈T0

∑

i∈I

∑

k∈K

F (si,k (t))−
∑

t∈T0

∑

i∈I

∑

k∈K

µi,k (t)Q (si,k (t) , xi,k (t) , dk (R, t))

s.t. C1d,C2,C3,C4a,C5,C6,C7b.

Note that problem (P4′) is convex and can be solved by standard optimization problemmethod, such as in-
ternal point method. We can iteratively tighten the obtained lower bound. Let Ξ(m) = {R(m),x(m), s(m),
d(m)} denote the solution of m-th iteration and give a tolerance level ε1 > 0. The iteration process will

be stopped if |Ξ(m)−Ξ(m−1)|
|Ξ(m−1)|

6 ε1. The algorithm is summarized in Algorithm 1.

Algorithm 1 Successive convex approximation

1: Initialization

2: Initialize iteration index m = 1 and initial point Ξ(0).

3: Set tolerance level ε1 ≪ 1.

4: repeat

5: For given Ξ(m−1), solve problem (P4′), and obtain solution Ξ(m).

6: Set m = m+ 1.

7: until
|Ξ(m)−Ξ(m−1)|

|Ξ(m−1)|
6 ε1.

8: Adjust resource allocation strategy s following rule (32) to obtain s∗.

9: Solve problem (P4′′) and obtain the optimal solution Ξ∗.

Suppose Ξ̄ = {R̄, x̄, s̄, Θ̄} is the solution found by Algorithm 1. It should be noted that there is still
no guarantee that Ξ̄ is the optimal solution of problem (P4) [26]. Particularly, s̄ may be still not binary
but only nearly binary. Therefore, we adjust s̄ by following the rule as below:

s∗i,k (t) =

{

1, if s̄i,k (t) > 0.5,

0, if s̄i,k (t) 6 0.5.
(30)

Final, we improve the solution of problem (P4) by solving the following convex program with given s∗:

(P4′′) min
R,x,d

yE (R)−G1 (x)

s.t. C1d,C5,C7.

The total algorithm is summarized in Algorithm 1. Let {R∗,x∗,d∗} denote the solution of problem
(P4′′). It has been proved that Ξ∗ = {R∗,x∗, s∗,d∗} is the optimal solution of problem (P4) [26]. The
total algorithm is summarized in Algorithm 2.
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Algorithm 2 The HRRA programming

1: Initialization

2: Initialize iteration index m = 1 and initial y.

3: Set tolerance level ε2 ≪ 1.

4: repeat

5: For given y(m), solve problem (P4), and obtain the optimal solution Ξ∗.

6: Calculate G(R, s,h0) and E(R).

7: Set m = m+ 1 and calculate y(m+1) according to (20).

8: until
|y(m)−y(m−1)|

|y(m−1)|
6 ε2.

4.2.2 RA programming

Since the hover radius is constant during the flight cycle, we only need to optimize the resource allocation
strategy based on the real-time predicted channel coefficients.

Let R∗ denote the optimal hover radius found by Algorithm 2. In this case, problem (P2′) can be
written as

(P6) max
s

∑

k∈K

Ak,t0 +
∑

t∈Tt0

∑

i∈I

∑

k∈K

H̃i,k

(

t, ρ̃0i,k (t) , 0
)

s.t. C1c,C2− C4,

where t0 is the index of current time slot. According to Remark 1, constraint C1c is a second-order cone
constraint with respect to s. Thus, problem (P6) is a convex 0-1 integer programming, which can be
optimally solved by SCA method mentioned in Algorithm 1.

4.3 Low-complexity online algorithm

In this subsection, we will give the low-complexity online algorithm for real-time TPRA. Generally, the
UAV-mounted processor cannot provide high computing capability. Hence, the proposed TPRA algorithm
should be completed in the shortest possible time. We take the HRRA programming as an example to
illustrate the low-complexity algorithm.

Initialization. To begin with, we give the initial hover radius R(0), which is obtained by minimiz-
ing E (R), i.e., R(0) = argminRE (R). Note that the initial hover radius R(0) is the smallest energy
consumption radius. Then, we obtain the initial subcarrier allocation policy s(0) with the following rule:

s0i,k (t) =

{

1, if i = argmax
j
ρ̃0i,k (t) ,

0, otherwise.
(31)

According to s(0), the amount of received data for each GU during one flight cycle can be evaluated by
the robust rule shown in Subsection 4.1.

rk (s, ρ̃0, R) =
∑

t∈T0

∑

i∈I

TsB log2

(

1 + E
{

ρ̃0i,k (t)
}

C
si,k (t)

(dk (R, t))
2

)

− ErfInv (ε)

√

√

√

√

√

∑

t∈T0

∑

i∈I





σ0
i,k (t) TsBC

si,k(t)

(dk(R,t))
2

(ln 2) (1 + E{ρ̃0i,k (t)}C
si,k(t)

(dk(R,t))
2 )





2

. (32)

If rk (s, ρ̃0, R) > NQSK, ∀k ∈ K, the initial subcarrier allocation policy s(0) is the best one. Otherwise,
we define the lower bound of QoS, and alternately tighten the lower bound to satisfy the QoS constraints
of GUs. Specifically, we define the initial lower bound of QoS as follows:

w(0) = min
k∈K

{

∑

t∈T0

∑

i∈I

H̃i,k

(

t, ρ̃0i,k (t) , 0
)

, NQSK

}

. (33)

Furthermore, the amount of transmitted data for GU k occupying subcarrier i at time slot t can be given
by

r̄k (i, t) = TsB log2

(

1 +
E{ρ̃0i,k (t)}C
(dk (R, t))

2

)

. (34)
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Iteration. Consider the n-th iteration for optimizing subcarrier allocation policy. Let w(n−1) and
R(n−1) denote the lower bound of QoS and hover radius in the (n− 1)-th iteration, respectively. Moreover,

let r
(n−1)
k denote the amount of received data based on R(n−1) and s(n−1). Let SY and SN denote the

sets of GUs satisfying the lower bound of QoS constraint, i.e., r
(n−1)
k > w(n−1), and not, respectively.

Then, for GU k = argmink1∈SN r
(n−1)
k1

, set the tuple (i′, t′, k′) as

(i′, t′, k′) = argmax
i∈I,t∈T0,k1∈K1

r̄k1 (i, t) s
(n−1)
i,k1

(t) /r
(n−1)
k1

r̄k (i, t) /r
(n−1)
k

, (35)

where K1 = SY\ {k}. If r
(n−1)
k′ − r̄k′ (i

′, t′) > w(n−1), we set s
(n)
i′,k′ (t

′) = 0 and s
(n)
i′,k (t

′) = 1. Otherwise,

setting K1 = K1\ {k′}, choose repeatedly (i′, t′, k′) until K1 = ∅. After obtaining s(n), update lower
bound of QoS constraint w(n) according to (33). If w(n) > NQSK, the subcarrier allocation policy s(n)

is the best one. Otherwise, repeat above processing until w(n) − w(n−1) 6 ε4.
If w(n) < NQSK, we need to update the hover radius R as follows. Consider the m-th iteration for

optimizing hove radius. Let Kin denote the set of GUs whose distance to the hover center is smaller than
R(m−1). Similarly, Kout denotes the set of GUs whose distance to the hover center is larger than R(m−1).
Then, we define

QoSin =
∑

k∈Kin

min

{

∑

t∈T0

∑

i∈I

H̃i,k

(

t, ρ̃0i,k (t) , 0
)

−NQSK, 0

}

, (36)

and

QoSout =
∑

k∈Kout

min

{

∑

t∈T0

∑

i∈I

H̃i,k

(

t, ρ̃0i,k (t) , 0
)

−NQSK, 0

}

. (37)

In each iteration, the hover radius is updated by

R(m) = R(m−1) +△R(m) QoSin −QoSout

|QoSin|+ |QoSout|
. (38)

In (38), we have △R(m) = max
{

△Rmin, θ△R(m−1)
}

, where △Rmin is the minimum value of hover radius
adjustment and 0 < θ < 1. After updating hover radius R, we repeatedly optimize the subcarrier
allocation policy. Note that lower bound of QoS is non-decreasing after each iteration. Thus, lower
bound of QoS will tend to be NQSK as the number of iterations increases.

Stopping criterion. The iteration will stop until

|U
(

R(m), s(m), ρ̃0

)

− U
(

R(m−1), s(m−1), ρ̃0

)

|
|U
(

R(m−1), s(m−1), ρ̃0

)

| 6 ε3, (39)

where ε3 is the error tolerance for Algorithm 3 and

U
(

R(m), s(m), ρ̃0

)

= G
(

R(m), s(m), ρ̃0

)

− yE
(

R(m)
)

. (40)

The proposed low-complexity algorithm summarized in Algorithm 3. The RA programming can also be
solved by the similar algorithm shown in Algorithm 3.

Complexity analysis. We analyze the computational complexity of the proposed low-complexity
algorithm and compare it against the optimal. Problem (P4′) is a SoCP programming, which can be
solved by interior point method. The worst case of interior point method requires O

(√
NCon

)

iterations,

where NCon is the number of constraints. Moreover, each iteration has a complexity of O(m2
∑NCon

i=1 ni),
where m is the number of variables, and ni is the dimension of the i-th constraint. Therefore, the
complexity of the optimal algorithm is

O
(

l
√

K + 2NTK +NFNT + 3NFNTK (NFNTK)2 (2K + 2NTK +NFNT + 3NFNTK)
)

≈ O
(

l (NFNTK)
2
(2NTK +NFNT + 3NFNTK)

3/2
)

,
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Algorithm 3 The low-complexity algorithm

1: Initialization

2: Initialize iteration index m = 1, and set tolerance level ε3 ≪ 1.

3: Give R(0), s(0).

4: repeat

5: Set n = 1.

6: repeat

7: Obtain w(n−1), R(n−1), r
(n−1)
k

, SY and SN.

8: Set k = argmink1∈SN
r
(n−1)
k1

and K1 = SY\ {k}.
9: repeat

10: Obtain the tuple
(

i′, t′, k′
)

according to (35).

11: if r
(n−1)

k′ − r̄k′
(

i′, t′
)

> w(n−1),

12: set s
(n)

i′,k′

(

t′
)

= 0 and s
(n)

i′,k

(

t′
)

= 1.

13: Break.

14: else

15: Set K1 = K1\
{

k′
}

.

16: end

17: until K1 = ∅
18: if K1 == ∅ or w(n) > NQSK,

19: Break.

20: end

21: Set n = n + 1.

22: until n == Loop or w(n) − w(n−1) 6 ε4.

23: if w(n) > NQSK,

24: Break.

25: end

26: Update hover radius according to (36).

27: Set m = m+ 1.

28: until
|U

(

R(m),s(m),ρ̃0

)

−U
(

R(m−1),s(m−1),ρ̃0

)

|

|U
(

R(m−1),s(m−1),ρ̃0

)

|
6 ε3 or m == Loop.

29: return The final resource allocation strategy and hover radius.

where l is the number of SCA iterations. For the proposed low-complexity algorithm in Algorithm 3, the

computation of w(n) and r
(n)
k has a complexity of O (NFNTK). Each adjustment of subcarrier allocation

policy has a complexity of O (NFNT ). Hence, the total complexity of the low-complexity algorithm
is O (l2l3 (NFNTK +NFNT )), where l2 and l3 are the number of inner iterations and outer iterations,
respectively.

5 Simulation results

In this section, we present the simulation results to illustrate the performance of the proposed algorithm.
We consider a squared target region with side length L = 500 m and 10 GUs are randomly located in the
region. The bandwidth of each subcarrier is set as W = 200 kHz. The channel power at the reference
distance of 1 m is set as β0 = −50 dB. Each content can be recovered by collecting 4 encoded segments,
i.e., K = 4, and the size of each encoded segment equals 300 kbits, i.e., S = 300 kbits. In addition, the
angular speed of the UAV is set as α = π/20 rad/s.

Figure 2 shows the impact of the flight height on energy efficiency. We compared the proposed algorithm
with the Gaussian process based channel prediction algorithm (GPCPA) [15]. As we can see, the energy
efficiency decreases with the increase of flight height. Intuitively, higher flight height will increase the
distance from the UAV to GUs, thereby reducing the transmission rate of channels and energy efficiency.
Moreover, we can find that a higher transmit power can increase energy efficiency. Specifically, a higher
transmit power can obtain a higher transmission rate, which can improve the number of bits received
by GUs with unit propulsion energy consumption. The propulsion energy consumption is greatly larger
than the transmission energy power. Hence, a higher transmit power can increase energy efficiency.

We then compare the low-complexity algorithm with GPCPA in Figure 3, where we plot energy ef-
ficiency as a function of the maximum probability of QoS violation ε. As we can see, the increase of ε
can improve the energy efficiency of the system. The reason is that a higher ε can make the resource
allocation strategy more flexible. Specifically, when ε is small, more subcarriers should be allocated to
the GUs with low received rate to ensure that they satisfy the QoS constraints, thereby reducing the
energy efficiency. Inversely, when the ε is higher, more subcarriers can be allocated to the GUs with a
higher receiving rate. In this case, more QoS violations may occur in the GUs with low received rate,
but the energy efficiency of the system will increase.
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Figure 2 (Color online) The energy efficiency of the UAV

versus the flight height.

Figure 3 (Color online) The energy efficiency of the UAV

versus the maximum probability of QoS violation ε.
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Figure 4 (Color online) The energy efficiency of the UAV

versus the QoS constraint (NC).

Figure 5 (Color online) The energy efficiency of the UAV

versus the variance of CPE.

The influence of QoS constraint is shown in Figure 4. In particular, a higher QoS constraint of GU
refers to the larger number of contents requested by GUs in each flight cycle. We assume that the QoS
constraint of each GU is equal. We set the flight height of the UAV as 300 m. The maximum probability
of QoS violation is set as 0.1, and the variance of CPE is set as 0.5. As we can see, a higher QoS constraint
can decrease the energy efficiency of the system. When the QoS constraint is high, the resource should
be more fairly allocated to each GU to ensure the QoS constraint. In this case, GUs with low received
rate generally occupy more resource, which decrease the energy efficiency of the system. When the QoS
constraint is low, a few subcarriers may guarantee the QoS constraints of the GUs with low received
rate. More resources can be allocated to the GUs with high received rate, and further improve the energy
efficiency.

In Figure 5, we show the impact of the variance of CPE on energy efficiency. We set the flight
height of the UAV as 300 m, and NC = 15. Moreover, the transmit power is set as 1 W, and the
maximum probability of QoS violation is set as 0.1. As we can see, a high variance of CPE reduces
energy efficiency. The reason is that a higher variance of CPE means a more dispersive distribution of
CPE. A more dispersive distribution will generate a larger number of extreme values of CPE. To satisfy
the QoS constraint of GU under the extreme value of CPE, the resource allocation strategy will be more
conservative. More redundant resource allocation generally occurs in a conservative resource allocation
strategy, and further reduces energy efficiency of the system.

6 Conclusion

In this paper, we investigate the TPRA problem in UAV communication networks under imperfect channel
prediction. We model the QoS demands of GUs with chance constraints, which are further transformed
into deterministic forms with a safe approximation. Then, we prove the transformed optimization pro-
gramming is convex programming and propose a modified SCA method to optimally solve it. To cater
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to the high-speed movement of UAVs, a low-complexity algorithm is tailored. Simulation results show
that the proposed low-complexity algorithm generally outperforms GPCPA. Furthermore, the proposed
resource allocation can also be applied in other communication systems suffering from the channel pre-
diction error, e.g., the wireless multiple input multiple output relaying system [27], where the system
performance will greatly deteriorate if CPE results in the inapposite precoding matrix.
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