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Abstract A distributed optimization problem with Markovian switching targets and stochastic observation

noises is considered in this paper. In order to solve target following and renewable following for microgrid

(MG) optimal power balancing, and to attenuate observation noises simultaneously, distributed optimization

algorithms are developed. The interaction between observation noises and Markovian switching targets may

introduce a fundamental tradeoff in reducing the optimization errors and choosing the step size. Further-

more, under infrequent Markovian switching assumptions, the mean-square optimization error bounds, the

switching ordinary differential equation (ODE) limit, and the asymptotic distributions of the optimization

errors are established rigorously and comprehensively. A simulation example on a DC MG is presented to

show the main results of the paper.
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1 Introduction

Distributed estimation, optimization, and control problems have been widely studied in many research
areas [1–10]. This paper considers a distributed and contained optimization problem, which is motivated
by distributed optimal target tracking problems in DC microgrids (MGs). This optimization problem
aims to achieve optimal tradeoff among target tracking (load allocation), power loss reduction, and voltage
management. DC MGs are widely used in distribution-level smart grids. Many different optimization
algorithms have been developed for DC MG power management problems [11–16], but in these studies
stochastic target variations have not been considered.

Distributed optimal target tracking in DC MGs is a highly challenging problem [17, 18]. Constant
targets were considered in our previous studies [19–21], by considering a deterministic framework for
distributed optimal target tracking. Since the MGs with different target types and distributed renewable
generators may contain large target variations, we further studied the impact of stochastic target varia-
tions on the optimization error of distributed optimal target tracking algorithms in [22,23], and optimal
step size selection problems in [24].

In [22, 24], we assumed that the target variation is a stochastic process, which includes zero-mean
noise, mixing, and martingale difference sequences. Although it is common to use the aforementioned
assumptions, to accommodate more practical scenarios, this paper employs discrete-time Markov chain
models for the randomly switching targets. Markov chain [25, 26] is a powerful mathematical tool that
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has been extensively used to represent stochastic processes of systems switching among different states.
In this case, the time-varying target process takes a finite number of values. The target takes one value
from a finite state space at any given time. It stays at this value for a random duration, and jumps
into a new value. Next, it stays in this new value for a random duration, and this process continues
over time. Many applications such as machine learning, system identification, manufacturing processes,
network systems [27–32] used Markov chain to model hybrid systems. These existing results do not deal
with the interaction between Markovian switching and observation noises in optimization problems.

This paper considers optimization problems for tracking Markovian switching targets with observation
noises in network systems. Distributed optimization algorithms are studied. The main contributions of
the paper are given as follows:

(1) Modeling uncertain and typical load variations, demand changes, and optimization targets in DC
MGs as Markov chains;

(2) Developing distributed optimization algorithms to track Markovian switching targets and to atten-
uate observation noises at the same time;

(3) Revealing that the interaction between Markovian switching targets and noisy observations intro-
duces a fundamental tradeoff between reducing optimization errors and choosing the step size of iterative
optimization algorithms;

(4) Establishing mean-square optimization error bounds, the switching ordinary differential equation
(ODE) limit, and asymptotic distributions of optimization errors rigorously and comprehensively under
infrequently Markovian switching target assumptions.

The remainder of the paper is arranged as follows. Section 2 presents the problem formulation, followed
by the distributed optimization algorithm in Section 3. The fundamental tradeoff in choosing the step
size is given in Section 4. The main results including the mean squares order estimates, asymptotic
distributions, and properties of the scaled tracking error sequences are established in Section 5. Section 6
presents simulation studies. Section 7 concludes the paper with a summary of the main findings of this
paper and some potential future directions.

2 Problem formulation

This paper investigates a general distributed and constrained optimization problem that can be spec-
ified to many application domains. For concreteness and readability, power systems used in this pa-
per are often for interpreting abstract concepts. Throughout the paper, for a matrix X ∈ R

m×n,
‖X‖ = (λmax{XXT}) 1

2 denotes the Euclidean norm, and λmax{·} denotes the largest eigenvalue. E[·]
denotes the expectation operator, and Im denotes the m×m-dimensional identity matrix.

Consider a complex system that consists of n agents. Each agent can be a renewable generating site,
a community, or a charging station. For i ∈ {1, . . . , n}, let ui denote the local input, and ℓi denote the
local target. The target can be measured locally but cannot be controlled. It commonly represents a
consolidation of all uncontrollable assets. The target is exemplified by time varying loads on a bus of a
power grid. The use of time-varying targets implies that the optimal solutions are also time varying. Note
that xij denotes the flow from node i to node j. Also, u ∈ R

n, ℓ ∈ R
n, x ∈ R

m denote the vector forms
which containing the control, target, and network state, respectively. An undirected graph G = {V , E} is
used to describe the cyber-physical network topology, where V and E denote the set of nodes and edges,
respectively. This network topology determines the “neighbors” that relate the control input u, the target
ℓ, and the network state x. Since we assume that the cyber network is identical to the physical network,
within this topology each agent i only communicates with its neighbors.

In many practical applications, the target ℓk is a time-varying process. In [22], we assumed that the
variation δk+1 = ℓk+1−ℓk is a stochastic process, which includes zero-mean noise, mixing, and martingale
difference sequences. Although it is common to use such assumptions, to accommodate more practical
scenarios, this paper treats ℓk as a function of a discrete-time Markov chain.

Assumption 1. Let ℓk = ℓ(αk) be modulated by a Markovian switching process αk taking values in a
finite set S = {1, 2, . . . , s} with a stationary transition probability matrix (TPM) P = [pij ] ∈ R

s×s:

pij = P{αk+1 = j|αk = i}. (1)

The Markov chain αk is irreducible and aperiodic.
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Remark 1. By Assumption 1, there is a ν = [ν1, . . . , νs] ∈ R
1×s with 0 < νi < 1 for i = 1, . . . , s such

that the n-step transition matrix Pn satisfies

Pn → 1ν as n → ∞ and |Pn − 1ν| 6 Kλn, (2)

for some 0 < λ < 1, where 1 is a column vector with all components being 1. The ergodicity indicates
that the n-step transition matrix has a limit with identical rows and the convergence is exponentially
fast.

2.1 Performance index

We consider the following performance index that describes power loss between subsystems in power
system applications:

f(u, x) =
∑

i∈V
f i(ui) +

∑

(i,j)∈E
f ij(xij). (3)

The objective is to minimize the performance index with respect to x and u, i.e., minu,x f(u, x). The
equality constraints h(u, x, ℓ) = 0 represent the power balancing and other physical network constraints.
Since the target ℓk is assumed to be a Markovian switching process, the optimal solution for (3) is
time-varying and tracks the property of ℓk.

Assumption 2. (1) f i(ui) and f ij(xij) are smooth and strongly convex.

(2) ∇hu = ∂h(u,x,ℓ)
∂u is of rank n. This implies that for any given x and ℓ, u is uniquely determined.

This may be symbolically written as u = g(x, ℓ). This is a cyber network property and is used in
communication and computation. This function is distributed in the sense that ui is a function of the
variables from its own and its neighbors.

(3) ∇hx = ∂h(u,x,ℓ)
∂x is of rank m. This implies that for any given u and ℓ, the physical system will

generate unique values of x. This is the physical property of the system.

Similar to [22], for concrete technical results, we study the following quadratic performance measure:

f(u, x) =
1

2
(xTSx+ uTRu), (4)

where S = diag{Sij} ∈ R
m×m and R = diag{Ri} ∈ R

n×n are diagonal and positive definite, and
f i(ui) = Ri(ui)2/2 and f ij(xij) = Sij(xij)2/2. The physical system constraints have a linear structure
for typical DC MGs given in [20], i.e., u = Ax + ℓ, where A ∈ R

n×m. The matrix A is full column
rank, because of the physical features of the system, i.e., the network is connected. Thus, Assumption 2
naturally holds, which means that the variable x is generated by the physical system uniquely with a
given u.

Note that the computation of u is local when x is given. However, by x = (ATA)−1AT(u − ℓ), we
know that each ui influences all x; i.e., the calculation of x needs global information from u. But there
is no need to calculate x since we can measure x directly. This structure allows us to design distributed
algorithms.

2.2 Global optimality conditions

Under Assumption 2, for any given ℓ, the global optimality condition is the following stationarity condi-
tion: 




∇fu + λ̃T∇hu = 0,

∇fx + λ̃T∇hx = 0,

h(u, x, ℓ) = 0,

(5)

where λ̃ is the Lagrange multiplier.

For a linear quadratic problem in (4), the Lagrange function is given as follows:

L(u, x, λ) =
1

2
(xTSx+ uTRu) + λ̃T(u−Ax− ℓ), (6)
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and the stationarity conditions is





∇xL(u, x, λ̃) = Sx−ATλ̃ = 0,

∇uL(u, x, λ̃) = Ru+ λ̃ = 0,

∇λ̃L(u, x, λ̃) = u−Ax− ℓ = 0.

Then the optimal solution is

x∗ = −M−1ATRℓ, u∗ = Ax∗ + ℓ, λ̃∗ = −Ru∗,

where M = S +ATRA ∈ R
m×m.

We need to obtain the inverse of the matrix M = S +ATRA in order to obtain the optimal solution,
which is unfeasible in a distributed manner. In this paper, we will develop a distributed optimization
algorithm for updating x and then calculate u accordingly. This implies that each subsystem only needs
access to its own and its neighbors’ states. We first replace u by x and obtain the following performance
index:

J(x) =
1

2
(xTSx+ (Ax + ℓ)TR(Ax+ ℓ)), (7)

whose gradient is ∇xJ(x) = Sx+ATR(Ax+ ℓ) = Mx+Bℓ, where B = ATR.

3 Distributed optimization algorithm

This paper treats the load ℓk as a time-varying and random variable (see Assumption 1). Following the
common practice of pseudo steady-state methods in power systems, we carry out the optimization task
with the following objective function conditioned on ℓk:

min
x

Jk(x) = E

[
1

2
(xTSx+ (Ax+ ℓk)

TR(Ax+ ℓk))|Fk

]
= min

x

1

2
(xTSx+ (Ax + ℓk)

TR(Ax+ ℓk)), (8)

where Fk is the σ-algebra generated by {ℓj : j 6 k}.
The gradient of this performance index is

∇xJk(x) = Sx+ATR(Ax + ℓk) = Mx+Bℓk,

and its optimal solution is
x∗
k = −M−1Bℓk = −M−1Bℓ(αk). (9)

As the global optimal solution is not available, the optimal solution must be obtained by iterative search-
ing with local communications among agents. Such communications naturally lead to gradient errors.
Consequently, the gradient-based algorithm is

xk+1 = xk − µ(Mxk +Bℓk + dk), (10)

where dk is the observation/computation noise for the gradient, and µ > 0 is the step size. Moreover, it is
apparent that the above algorithm is strictly distributed because the update of xij

k+1 only involves the in-

formation from its own and its neighbors, i.e., xij
k , x

iq
k , xpj

k (q is the neighbor of i, and p is the neighbor of

j), and ℓik, ℓ
j
k, S

ij , Ri, Rj .
Noting that ℓk is a random process, thus the optimal solution x∗

k conditioned on ℓk is also a stochastic
process and is sample-path dependent. In addition, the optimization error will be

ek = xk − x∗
k = xk +M−1Bℓk, (11)

and have the following relationship:

ek+1 = xk+1 +M−1Bℓk+1

= xk − µ(Mxk +Bℓk + dk) +M−1Bℓk+1

= xk +M−1Bℓk − µ[M(xk +M−1Bℓk) + dk] +M−1Bℓk+1 −M−1Bℓk
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= ek − µ(Mek + dk) +M−1B(ℓk+1 − ℓk)

= (I − µM)ek − µdk +M−1Bδk+1

= (I − µM)k+1e0 − µ

k∑

i=0

(I − µM)k−idi +

k∑

i=0

(I − µM)k−iM−1Bδi+1, (12)

where δk+1 = ℓk+1 − ℓk.

Lemma 1 ([22]). There exist µ∗ > 0 and c > 0, such that for any µ ∈ (0, µ∗), we have 0 6 1 − µc < 1
and ‖(I − µM)k‖ 6 (1− µc)k.

In Sections 4–6, we assume that µ ∈ (0, µ∗) holds. Note that all proofs are provided in the appendixes
for easy reading.

4 Fundamental tradeoff

Since the step size µ can be designed, a fundamental tradeoff in choosing µ exists in practice. First,
the step size µ should be reduced to zero gradually in order to reduce the noise effect, and then the
proposed optimization algorithm may converge to the optimal solution. But, xk may be unable to track
time-varying targets if the step size µ approaches zero. We will show the fundamental tradeoff in this
section under the following assumption on Markovian switching targets and stochastic observation noises.

Assumption 3. The following properties hold on targets and stochastic observation noises:
(1) e0 ∈ R

m, dk ∈ R
m, and ℓk ∈ R

n are mutually independent.
(2) {dk} is i.i.d with E[dk] = 0m×1 ∈ R

m and E[dkd
T
k ] = Σd ∈ R

m×m.
Now, let ηk = E[ek] denote the error mean, and Σk = E[eke

T
k ] denote the error variance. In Subsec-

tions 4.1 and 4.2, we establish the properties of η∞ and Σ∞ in order to show the fundamental tradeoff
for choosing the step size µ.

4.1 Analysis of ηk

By (12) and Assumption 3, we have

ηk+1 = (I − µM)k+1η0 +

k∑

i=0

(I − µM)k−iM−1BE[δi+1]. (13)

Concerning the Markov chain, using repeated applications of conditional expectation and the Markov
property, it is readily seen that

E[αi] =
∑

i0,i1,...,ij∈S
pij ,ipij−1,ij · · · pi0,i1pi0 ,

where pi0 denotes P (α0 = i0).
We note that the computation of E[δi+1] depends crucially on that of E[αi+1 − αi]. To simplify the

notation, we use the transition matrices. The calculation of the δi+1 essentially involves the difference
of the transition matrix P i+1 − P i. It is readily seen that P i+1 − P i → 0 exponentially fast as i → ∞.
Therefore,

E[δi+1] → 0n×1 as i → ∞. (14)

Note that the proof of Theorem 1 is provided in Appendix A.

Theorem 1. Under Assumptions 1 and 3, the mean of error ηk tends to 0m×1.

4.2 Analysis of Σk

Note that

Σk+1 = E[ek+1e
T
k+1]

= (I − µM)k+1
E[e0e

T
0 ](I − µM)k+1
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+ µ2
E

[( k∑

i=0

(I − µM)k−idi

)
·
( k∑

i=0

(I − µM)k−idi

)T]

+ E

[( k∑

i=0

(I − µM)iM−1Bδk−i+1

)
·
( k∑

i=0

(I − µM)iM−1Bδk−i+1

)T]
. (15)

Let

Dk = µ
k∑

i=0

(I − µM)k−idi.

By Assumption 3, since di is i.i.d. and zero mean, its variance is

ΣD
k = E[DkD

T
k ] = µ2

E

[( k∑

i=0

(I − µM)k−idi

)
·
( k∑

i=0

(I − µM)k−idi

)T]

= µ2
k∑

i=0

(I − µM)iE[d0d
T
0 ](I − µM)i

= µ2
k∑

i=0

(I − µM)iΣd(I − µM)i, (16)

as a result

‖ΣD
k ‖ 6 Kµ2

∞∑

i=0

(1− µc)i = O(µ). (17)

Here let K denote a general positive constant, and K may be different for different cases. Thus, the
notation K +K = K and KK = K is understood in an appropriate sense.

It remains to derive the variance of

Hk =

k∑

i=0

(I − µM)iM−1Bδk−i+1. (18)

In fact,

E[HkH
T
k ] =

k∑

j=0

k∑

i=0

(I − µM)iM−1BE[δk−i+1δ
T
k−j+1]B

TM−1(I − µM)j . (19)

Since αk is an ergodic Markov chain, it is a bounded φ mixing process with mixing rate O(λk) [33, p.
168]. Consequently,

E[HkH
T
k ] = H̃k,1 + H̃k,2,

where

H̃k,1 =
k∑

j=0

k∑

i=0

(I − µM)iM−1B(E[δk−i+1δ
T
k−j+1]− E[δk−i+1]E[δ

T
k−j+1])B

TM−1(I − µM)j ,

H̃k,2 =

k∑

j=0

k∑

i=0

(I − µM)iM−1BE[δk−i+1]E[δ
T
k−j+1]B

TM−1(I − µM)j . (20)

Then, using the well-known mixing inequality [33, p. 170], we have

‖H̃k,1‖ 6 K

∞∑

j=0

(1− µc)j
∑

i>j

λi−j = O(1/µ). (21)

As for H̃k,2, first note that

‖E[δk−i+1]‖ = ‖E[δk−i+1]− Eν [δk−i+1]‖ 6 Kλk−i+1, (22)
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where Eν [δk−i+1] denotes the expectation with respect to the stationary measure (and in fact is equal to
0). Thus,

‖H̃k,2‖ 6 K

∞∑

j=0

λj
∞∑

i=0

λi = O(1). (23)

Thus, Eq. (20) yields

E[HkH
T
k ] = O(1/µ). (24)

In summary, by comparing (17) and (24), we can obtain the fundamental tradeoff in selecting the step
size: when µ → 0, E[HkH

T
k ] is of the order O(1/µ), whereas ΣD

k is of the order O(µ). Thus, if the step
size µ decreases, the tracking error caused by the measurement noise, i.e., ΣD

k , will decrease. But the
tracking error caused by the load variation, i.e., E[HkH

T
k ], will increase, and vice versa. This indicates

the tradeoff between tracking ability and noise sensitivity.

5 Convergence analysis

The tradeoff results on the step size µ only hold on the stationary distribution of the Markov chain, which
satisfies Assumptions 1 and 3. However, the convergence rate of the distributed optimization algorithm
may depend on the property of matrix P . We now consider infrequently jumping Markovian switching
targets, and show the impact of P on the convergence results.

5.1 Mean-square optimization error bounds

Assumption 4. For the Markovian switching process, suppose that there is a small constant ε > 0
such that TPM is

P ε = Is + εQ, (25)

where Q = [qij ] ∈ R
s×s is the generator of an irreducible continuous-time Markov chain, which satisfies∑s

j=1 q
ij = 0 for each i = 1, . . . , s, and qij > 0 for i 6= j. Also, we assume that P (α0 = i) = pi0 for each

i = 1, . . . , s, where pi0 > 0 and
∑s

i=1 p
i
0 = 1.

Note that the small constant ε > 0 ensures that the identity matrix Is dominates. As a result, the
process does not switch much frequently. In the following part, we will establish the relationship between
ε and the optimization error ek to show the impact of the matrix P ε on the convergence rates.

Theorem 2. Under Assumptions 3 and 4, there exists a Kµ > 0 such that for all k > Kµ,

E[‖ek‖2] = O

(
µ+ ε+

ε2

µ

)
. (26)

Remark 2. The proof of Theorem 2 is given in Appendix B. Note that for the step size µ, there
are three possible choices: (1) µ = ε, (2) µ ≫ ε, and (3) µ ≪ ε. For Case (1), the target and the
distributed algorithm update at the similar rate. In this case, E[‖ek‖2] = O(µ) = O(ε) holds. For
Case (2), the optimization rate of the distributed algorithm is faster than the Markov chain dynamics.
Hence, the target process is essentially a constant. We assume that ε = µ1+∆ for some ∆ > 0. Then,
E[‖ek‖2] = O(µ) = O(ε1/(1+∆)) holds. For Case (3), the Markov chain switches very fast, i.e., the target
converges quickly to the stationary distribution. Thus, we assume that ε = µγ for some 1/2 < γ < 1.
Then, E[‖ek‖2] = O(µγ ∧ µ2γ−1), where a ∧ b = min{a, b} for a, b ∈ R.

5.2 Switching ODE limit

We now develop the asymptotic properties of the distributed optimization algorithm. To proceed, we
define piecewise constant interpolation processes for t ∈ [µk, µk + µ) as follows:





αµ(t) = αk,

xµ(t) = xk,

x∗
µ(t) = x∗

k = −M−1Bℓ(αk).

(27)
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The asymptotic behavior is different for the above three cases. The proof uses singularly perturbed
Markov chain and martingale averaging techniques. Let Assumptions 3 and 4 hold for Theorems 3–8.

Case (1): ε = µ. For this case, due to the presence of the Markovian property of x∗(t), the limit
dynamic system (29) randomly changes its regime.

Theorem 3. Assume that ε = µ. Then, (αµ(·), xµ(·), x∗
µ(·)) converges weakly to (α(·), x(·), x∗(·)) such

that α(·) is a continuous-time Markov chain generated by Q and x∗(·) satisfies

x∗(t) = −M−1Bℓ(α(t)), (28)

and
dx(t)

dt
= M(x∗(t)− x(t)), x(0) = x0. (29)

Since the proofs of Theorems 3–8 are similar to those in [27, 29], we omit them here and summarize
the main results. For Theorem 3, by the assumptions, the pair of stochastic processes (xµ(·), x∗

µ(·)) is
tight and compact. Also, it converges to (x(·), x∗(·)) that is the unique solution of a martingale problem.

Case (2): µ ≫ ε. In this case, the switching target process is basically a constant since the Markov
chain switches slowly. Thus, the limiting continuous-time process satisfies an ODE.

Theorem 4. Assume that ε = µ1+∆ for some ∆ > 0. Then, xµ(·) converges weakly to x(·) such that
x(·) is the solution of the following ODE:

dx(t)

dt
= M(x∗ − x(t)), x(0) = x0, (30)

where x∗ = −M−1B
∑s

i=1 ℓ(i)P (α0 = i).
Case (3): µ ≪ ε. For this fast-varying Markov chain case, the limit dynamic system depends on the

stationary distribution of the Markov chain.

Theorem 5. Assume that ε = µγ for some 1/2 < γ < 1. In addition, assume Q is irreducible. Then,
xµ(·) converges weakly to x(·) such that x(·) is the solution of the following ODE:

dx(t)

dt
= M(x̄− x(t)), x(0) = x0, (31)

where x̄ = −M−1B
∑s

i=1 v
iℓ(i), and v = [v1, . . . , vs] is the stationary distribution corresponding to the

continuous-time Markov chain with the generator matrix Q.
The main ideas for the proofs of Theorems 4 and 5 are summarized here. By the assumptions, the

tightness and compactness of xµ(·) can be proved as in the previous case. To obtain the limit, we only
need to treat the average of the term involving the Markov chain and the stationary distribution of the
Markov chain, respectively.

5.3 Asymptotic distributions

Here we consider the asymptotic distribution of the optimization error sequence {xk − x∗
k} in this sub-

section. Note that the diffusion approximation limit of the tracking error under suitable scales shows the
asymptotic convergence rate of the optimization algorithm. For simplicity, we omit the proof, and just
state the following theorems.

Case (1): ε = µ. Here we will show that rk = (xk − x∗
k)/

√
µ is asymptotically normal. From (12),

we have

rk+1 = rk − µMrk −
√
µdk +

M−1Bδk+1√
µ

. (32)

It can be shown that there exists a positive integer Kµ such that {rk : k > Kµ} is tight. To develop the
asymptotic properties of the optimization error, we define the piecewise constant interpolation rµ(t) = rk,
for t ∈ [µ(k −Kµ), µ(k −Kµ + 1)). For any t, s > 0, let

rµ(t) = rKµ
−

t/µ−1∑

k=Kµ

(µMrk +
√
µdk)−

M−1Bℓ(αt/µ)−M−1Bℓ(αKµ
)

√
µ

(33)

and Σ = E[d0d
T
0 ].
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Theorem 6. Assume that ε = µ. Then, rµ(·) converges weakly to r(·) such that r(·) is the solution of
the following stochastic differential equation:

dr = −Mrdt+Σ1/2dw, (34)

where w(·) is a standard Brownian motion.
We know that the tracking error {xk − x∗

k} is asymptotically normal with zero mean and covariance

µC̃, where C̃ is the solution of the following Lyapunov equation:

MC̃ + C̃M = −Σ. (35)

Note that

C̃ =

∫ ∞

0

exp(−Mt)Σ exp(−Mt)dt. (36)

Case (2): µ ≫ ε. Assume that ε = µ1+∆ for some ∆ > 0. Define vk = (xk − x∗)/
√
µ, vµ(t) = vk, for

t ∈ [µ(k−Kµ), µ(k−Kµ+1)). The following result indicates that xk −x∗ is asymptotically normal with

mean 0 and covariance µC̃.

Theorem 7. Assume that ε = µ1+∆ for some ∆ > 0. Then, vµ(·) converges weakly to v(·) such that
v(·) is the solution of the stochastic differential equation:

dv = −Mvdt+Σ1/2dw, (37)

where w(·) is a standard Brownian motion.
Case (3): µ ≪ ε. Assume that ε = µγ and 1/2 < γ < 1. Let zk = (xk − x̄)/

√
µ, zµ(t) = zk, for

t ∈ [µ(k −Kµ), µ(k −Kµ + 1)).

Theorem 8. Assume that ε = µγ for some 1/2 < γ < 1. Then, zµ(·) converges weakly to z(·) such
that z(·) is the solution of the stochastic differential equation:

dz = −Mzdt+Σ1/2dw, (38)

where w(·) is a standard Brownian motion.

6 Simulation study

6.1 Testing system and performance measures

We use the Junbaose trolleybus network as an example to demonstrate the theoretical findings; see
Figure 1. Certain details were presented in [19, 20, 22, 24]. Here we assume that the communica-
tion network topology and the physical network are the same. The line power loss matrix is S =
diag{0.4, 0.38, 0.34, 0.31, 0.36}, which is calculated from physical system measurements. Figure 1 shows
that there are communication lines between 1 and 2, 2 and 3, 2 and 4, 4 and 5, 5 and 6. Let
u = [I1, I2, I3, I4, I5, I6]T, x = [I12, I23, I24, I45, I56]T, ℓ = [ℓ1, ℓ2, ℓ3, ℓ4, ℓ5, ℓ6]T, and A = [1 0 0 0 0; −
1 1 1 0 0; 0 − 1 0 0 0; 0 0 − 1 1 0; 0 0 0 − 1 1; 0 0 0 0 − 1]. Therefore, we have u = Ax+ ℓ.

The optimization problem has two objectives. First, the currents on the feeders need to be balanced,
i.e., Ii0 → Ī and Ī =

∑6
i=1 I

i
0/6; second, the line losses

∑5
ij(I

ij)2Sij = xTSx need to be reduced. By
combining these two objectives, we form the performance index as follows:

min
x,u

J =
1

2

(
xTSx+ (u− Ī1)T(u − Ī1)), s.t. u = Ax+ ℓ. (39)

By AT1 = 0, we know that

J(x) =
1

2
(xTSx+ (Ax+ ℓ − Ī1)T(Ax + ℓ− Ī1))

and the gradient is ∇Jx = Sx+AT(Axℓ) = (S +ATA)x +ATℓ. Thus, we have

x∗ = −(S +ATA)−1ATℓ, u∗ = Ax∗ + ℓ.
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Segment load

from trolleybuses

AC power supply 10 kV

Transformer

PWM-controlled

AC/DC converter

E3 Rated DC voltage 650 V

Controlled current

Figure 1 (Color online) DC power network of the Junbaose trolleybus system.

Here we use (10) to track the optimal solution x∗(k):

xk+1 = xk − µ[(S +ATA)xk +ATℓk + dk],

where dk = [d1k, . . . , d
5
k]

T ∈ R
5. Note that the optimization algorithm is distributed by the structure of

the matrix S + ATA, and the adaptation of Iij only needs data from i and j. Also, at time instant k,
the control input is uk = Axk + ℓk.

6.2 Evaluation results

In this subsection, we demonstrate convergence properties. By Lemma 1, we know that the step size
µ ∈ (0, 0.4370) holds. We take µ = 0.1 and ε = µ/2(ε = O(µ)), ε = µ3 (slowly time varying Markov
chain) and ε =

√
µ (fast time varying Markov chain), respectively. Also, the state space for the target ℓk is

L = {ℓ(1), ℓ(2), ℓ(3)} = {[400; 500; 600; 700; 800; 900], [900; 800; 700; 600; 500; 400], [500; 700; 900; 400; 600;
800]}A, and

Q =




−0.6 0.4 0.2

0.2 −0.5 0.3

0.4 0.1 −0.5


 .

Thus, the stationary distribution of Q is v = [1/3, 1/3, 1/3], and

x̄ = −M−1B

3∑

i=1

viℓ(i) = [35.8257; 60.2734;−40.9584; 28.6050; 40.3694].

Let the initial distribution for ℓ0 be [3/4, 1/8, 1/8]. Then we have

x∗ = −M−1B

3∑

i=1

ℓ(i)P (ℓ0 = ℓ(i)) = [99.5392; 25.8298; 125.5644; 132.6112; 93.2674].

Also, let the observation noise dik ∼ N(0, 102) for i = 1, . . . , 6 and k > 0.
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Figure 2 (Color online) Current (a) and error (b) trajectories with ε = µ/2.
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Figure 3 (Color online) Current (a) and error (b) trajectories with ε = µ3.

Let I10 = 713A, I20 = 811A, I30 = 960A, I40 = 844A, I50 = 887A, I60 = 823A. Then for each Ii, we can get
the current input sequence

{Iik, k = 1, 2, . . . , 500}, i = 1, . . . , 6,

and the error sequence

‖Iik − Ii,∗k ‖, k = 1, 2, . . . , 500, i = 1, . . . , 6,

where Ii,∗k is the time-varying optimal solution. The results for ε = µ/2, ε = µ3, and ε =
√
µ are

shown in Figures 2–4, respectively. These simulations show that for the slowly varying case, the proposed
algorithm performs quite well; i.e., each time the optimal solution jumps, the error trajectory reduces
to zero quickly. When ε = O(µ), the proposed algorithm still shows a good property. As for the fast
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Figure 4 (Color online) Current (a) and error (b) trajectories with ε =
√
µ.
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Figure 5 (Color online) Current average curves with ε =
√
µ.

changing Markov chain, it is impossible to track the optimal solution. However, for the cumulative
average of the sequence xk, i.e., (

∑k
j=1 xj)/k, the current average quickly converges to x̄; see Figure 5.

7 Concluding remarks

This paper has studied a distributed constrained optimization problem that involves Markovian switching
targets and stochastic observation noises. A distributed optimization algorithm has been developed to
track Markovian switching targets and to attenuate observation noises simultaneously. We have analyzed
the impact of Markovian switching targets on the proposed distributed optimization algorithm and the
fundamental tradeoff in choosing the step size. Moreover, mean squares error optimization bounds,
switching ODE limit, and asymptotic distributions have been established rigorously under an infrequently
Markovian switching target assumption. Some important issues such as considering communication
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channel interruptions and/or more general AC power systems remain open.
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Appendix A Proof of Theorem 1
For the proof of Theorem 1, we first state the following lemma.

Lemma A1. Let {ak ∈ R
m} be a real vector sequence convergent to a ∈ R

m. Let ci,k ∈ R
m×m (where 0 6 i 6 k) be a matrix

sequence that satisfies each elements of ci,k is non-negative and limk→∞ ci,k = 0m×m, ∀i, and limk→∞

∑k
i=0 ci,k = Im. Then

limk→∞

∑k
i=0 ci,kai = a holds.
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Proof. Since limk→∞ ak = a, we know that there is a constant N > 0 such that |aj

k
− aj | < N holds for any k > 0 and

j ∈ {1, . . . ,m}, where aj

k
and aj are the jth element of ak and a, respectively. Moreover, for any ε > 0, there exists a positive

integer K1 such that for any k > K1 and j ∈ {1, . . . ,m}, |aj

k
− aj | < ε

3 holds.

If we fix K1, by limk→∞ ci,k = 0m×m, we know that there is a positive integerK2 such that for any k > K2 and j, s ∈ {1, . . . ,m},
|cjs

i,k
| < ε

3NK1m
, i = 1, . . . , K1 holds. By limk→∞

∑k
i=0 ci,k = Im, we know that for any ε > 0, there exists a positive integer K3

and j, s ∈ {1, . . . ,m}, such that
∑∞

i=K3
ci,∞ < ε

3 Im.

Note that

k∑

i=0

ci,kai − a =

k∑

i=0

ci,kai −
k∑

i=0

ci,ka −
∞∑

i=k

ci,∞a =




k∑
i=0

m∑
j=1

c1j
i,k

(aj
i − aj) −

∞∑
i=k

m∑
j=1

c1ji,∞aj

k∑
i=0

m∑
j=1

c2j
i,k

(aj
i − aj) −

∞∑
i=k

m∑
j=1

c2ji,∞aj

.

.

.
k∑

i=0

m∑
j=1

cmj

i,k
(aj

i − aj) −
∞∑
i=k

m∑
j=1

cmj
i,∞aj




.

For any ε > 0, there exists a positive integer K = max{K1,K2,K3} such that for any k > K and each s ∈ {1, . . . ,m},
∣∣∣∣∣∣

k∑

i=0

m∑

j=1

csji,k(a
j
i − aj)

∣∣∣∣∣∣
=

k∑

i=0

m∑

j=1

csji,k|a
j
i − aj | =

K1∑

i=0

m∑

j=1

csji,k|a
j
i − aj |+

k∑

i=K1+1

m∑

j=1

csji,k|a
j
i − aj |

6 N

K1∑

i=0

m∑

j=1

csji,k +
ε

2

k∑

i=K1+1

m∑

j=1

csji,k 6 NK1m · ε

3NK1m
+

ε

3

∞∑

t=0

m∑

j=1

csji,∞ =
2ε

3
,

and when
∑m

j=1 |aj | > 0, we have ∣∣∣∣∣∣

∞∑

i=k

m∑

j=1

c
sj
i,∞a

j

∣∣∣∣∣∣
<

ε

3
∑

m
j=1 |aj |

m∑

j=1

|aj| = ε

3
,

and when
∑m

j=1 |aj | = 0, we have |∑∞
i=k

∑m
j=1 csji,∞aj | = 0. Thus, for any ε > 0, there exists a positive integer K =

max{K1,K2,K3}, such that for any k > K and each s ∈ {1, . . . ,m},
∣∣∣∣∣∣

k∑

i=0

m∑

j=1

csji,k(a
j
i − aj) −

∞∑

i=k

m∑

j=1

csji,∞aj

∣∣∣∣∣∣
< ε

holds.

Proof of Theorem 1. By (13), we have

ηk+1 = (I − µM)
k+1

η0 +

k∑

i=0

(I − µM)
k−i

M
−1

BE[δi+1] = (I − µM)
k+1

η0 +

k∑

i=0

(I − µM)
k−i

µM
M−2B

µ
E[δi+1]. (A1)

Note that

lim
k→∞

k∑

i=0

(I − µM)
k−i

µM = Im,

and since (I − µM)k−i is exponentially stable, we have

lim
k→∞

(I − µM)
k−i

µM = 0m×m

holds. Moreover, we know that

lim
i→∞

M−2B

µ
E[δi+1] = 0m×1.

Then by Lemma A1,

lim
k→∞

k∑

i=0

(I − µM)
k−i

M
−1

BE[δi+1] = 0m×1.

Thus, we have η∞ = 0m×1.

Appendix B Proof of Theorem 2
Define V (x) = eTe/2. Thus,

Ek[V (ek+1)] − V (ek) = Ek[e
T
k {−µMek − µdk + H(ℓk − ℓk+1)}] + Ek[‖ − µMek − µdk + H(ℓk − ℓk+1)‖2], (B1)

where H = −M−1B. By Assumption 4, we know that

Ek[H(ℓk − ℓk+1)] = H

s∑

i=1

E[ℓ(i) − ℓk+1|ℓk = ℓ(i)]I{ℓk=ℓ(i)} = H

s∑

i=1


ℓ(i) −

s∑

j=1

ℓ(j)(δij + εqij)


 I{ℓk=ℓ(i)} = O(ε). (B2)
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Also, we can obtain that

Ek[‖H(ℓk − ℓk+1)‖2
] 6 ‖H‖2

s∑

j=1

s∑

i=1

|ℓ(i) − ℓ(j)|I{ℓk=ℓ(i)}P (ℓk+1 = ℓ(j)|ℓk = ℓ(i))

= ‖H‖2
s∑

j=1

s∑

i=1

|ℓ(i) − ℓ(j)|I{ℓk=ℓ(i)}(δij + εqij) = O(ε). (B3)

By noting ‖ek‖ = ‖ek‖ · 1 6 (‖ek‖2 + 1)/2, we have

O(ε)‖ek‖ 6 O(ε)(V (ek) + 1). (B4)

By the property of the signal {dk}, we have

Ek[‖ − µMek − µdk + H(ℓk − ℓk+1)‖2] = Ek[‖H(ℓk − ℓk+1)‖2] + O(µ2 + µε)(V (ek) + 1). (B5)

Using (B1) and (B5), we know that

Ek[V (ek+1)] − V (ek) = Ek[e
T
k {−µMek − µdk + H(ℓk − ℓk+1)}] + ‖H‖2

Ek[‖ℓk − ℓk+1‖2] + O(µ2 + µε)(V (ek) + 1)

= Ek[e
T
k {−µMek + H(ℓk − ℓk+1)}] + ‖H‖2

Ek[‖ℓk − ℓk+1‖2] + O(µ2 + µε)(V (ek) + 1). (B6)

To analyze (B6), we define the following perturbations of the Lyapunov function:

V ε
1 (e, k) =

∞∑

j=k

eTEk[H(ℓj − ℓj+1)], (B7)

V ε
2 (k) = ‖H‖2

∞∑

j=k

Ek[(ℓk − ℓk+1)
T(ℓj − ℓj+1)]. (B8)

Since Q is irreducible, there is an integer Nε > 0 such that for any N > Nε, ‖(I + εQ)N − 1svε‖ 6 Kε, where vε is the stationary

distribution to I + εQ. Thus, for all N1 > N > Nε,

∥∥∥∥∥∥

N1∑

j=k

eTEk[H(ℓj − ℓj+1)]

∥∥∥∥∥∥
= ‖eTHEk[(ℓk − ℓN1)]‖ 6 O(ε)(V (e) + 1).

Hence,

‖V ε
1 (e, k)‖ 6 O(ε)(V (e) + 1). (B9)

Also, we have

‖V ε
2 (k)‖ = O(ε). (B10)

Note also that

Ek[V
ε
1 (ek+1, k + 1)]− V ε

1 (ek, k) = Ek[V
ε
1 (ek+1, k + 1)] − Ek[V

ε
1 (ek, k + 1)] + Ek[V

ε
1 (ek, k + 1)] − V ε

1 (ek, k). (B11)

It follows that

Ek[V
ε
1 (ek, k + 1)] − V ε

1 (ek, k) = −Ek[e
T
k H(ℓk − ℓk+1)]. (B12)

In addition, we have

Ek[V
ε
1 (ek+1, k + 1)] − Ek[V

ε
1 (ek, k + 1)] =

∞∑

j=k+1

Ek[(ek+1 − ek)
T]Ek+1[H(ℓj − ℓj+1)]. (B13)

By (12), similar to the analysis of (B3), we have

Ek[‖ek+1 − ek‖] 6 µE[‖M‖‖ek‖] + µEk[‖dk‖] + O(ε) = O(µ)(V (ek) + 1) + O(ε) (B14)

and

∥∥∥∥∥∥

∞∑

j=k+1

Ek[(ek+1 − ek)
T
]Ek+1[H(ℓj − ℓj+1)]

∥∥∥∥∥∥
6 O(µ

2
+ ε

2
)(V (ek) + 1). (B15)

Thus, we know that

Ek[V
ε
1 (ek+1, k + 1)] − V

ε
1 (ek, k) = −Ek[e

T
k H(ℓk − ℓk+1)] + O(µ

2
+ ε

2
)(V (ek) + 1), (B16)

and

Ek[V
ε
2 (k + 1) − V

ε
2 (k)] = −‖H‖2

Ek[‖ℓk − ℓk+1‖2
] + O(ε

2
). (B17)
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Define

W (e, k) = V (e) + V ε
1 (e, k) + V ε

2 (k).

Then, by (B6), (B16), (B17), we have

Ek[W (ek+1, k + 1)] − W (ek, k) 6 − µeTk Mek + O(µ2 + ε2)(V (ek) + 1)

6 − λµV (ek) + O(µ2 + ε2)(V (ek) + 1)

6 − λµW (ek , k) + O(µ2 + ε2)(W (ek, k) + 1), (B18)

for some constant λ > 0.

If µ and ε are chosen to be small enough, there is a constant λ0 > 0 such that λ0 < λ and −λµ + O(µ2 + ε2) 6 λ0µ. Then we

have

Ek[W (ek+1, k + 1)] 6 (1 − λ0µ)W (ek , k) + O(µ2 + ε2). (B19)

By taking expectation on two sides, we have

E[W (ek+1, k + 1)] 6 (1 − λ0µ)
N−Nε

E[W (eNε , Nε)] + O

(
µ +

ε2

µ

)
. (B20)

Letting N be large enough, (1 − λ0µ)
N−Nε 6 O(µ) holds. Thus, E[W (ek+1, k + 1)] 6 O(µ + ε2

µ
). By (B9) and (B10), we have

E[V (ek+1)] 6 O

(
µ + ε +

ε2

µ

)
.

This completes the proof.
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