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Abstract This article presents a novel tracking control strategy for unknown linear systems perturbed by

odd-harmonic periodic disturbances that combine adaptive and repetitive control methods. The proposed

control strategy results in a robust adaptive odd-harmonic repetitive controller (RA-OHRC). Direct adaptive

control with a robust adaptation law is utilized to accurately track the desired trajectory, ensuring the

boundedness and convergence of the tracking error. An internal-model-based repetitive controller is added to

compensate for periodic disturbances with odd-harmonic components. The boundedness and the convergence

of the tracking error are verified through the Lyapunov-based stability analysis. The effectiveness of the

proposed RA-OHRC scheme can be demonstrated using the simulation studies involving a servomotor model,

which achieves accurate reference tracking, excellent disturbance rejection capability, and robustness against

uncertainties.
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1 Introduction

Periodic compensation against repetitive disturbances is a control task commonly found in many applica-
tions such as rotation machines [1,2], power inverters [3,4], marine vessels [5], wind-turbines [6], hydraulic
systems [7], and space stations [8]. A repetitive control (RC) method is a popular technique for periodic
reference tracking and/or disturbance rejection. In designing the RC system, one generally requires two
basic information: (1) a plant model and (2) a reference/disturbance model. A known disturbance model
is embedded as part of the resulting controller to generate RC signals to compensate for the disturbance
signals. Using the reference/disturbance model within a feedback control loop is referred to as an inter-
nal model principle [9]. Furthermore, the RC requires a plant model used to synthesize a compensator,
determines the stability of the resulting RC closed-loop system, and dictates how fast the disturbance
signals can be canceled.

A traditional RC is generally structured by a one-period delay z−N with positive feedback forming
an internal model of z−N/[1 − z−N ]. Here, N represents an integer defined as the number of samples
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per disturbance period Tw. This internal model gives a null tracking error for a disturbance signal
with frequencies of n/Tw, where n = 1, 2, . . . , N/2 [10]. In other words, this model can compensate
for a fundamental frequency, even- and odd-harmonic components up to the Nyquist frequency of the
disturbance signal. This is due to the internal model z−N/[1 − z−N ] providing infinite gains at those
frequencies.

In many practical applications, reference and disturbance signals generally exhibit odd-harmonic fre-
quencies. Those applications can be found in power systems [11, 12], magnetically-suspended rotor sys-
tems [13,14], field-modulated magnetometer systems [15], nano-positioning systems [16], and centrifugal
compressors [17]. Considering this, we can avoid using the traditional RC if we only intend to target the
odd-harmonic periodic disturbances. The traditional RC also introduces infinite gains at even harmonics,
which reduces system robustness and degrades the system performance [18]. Furthermore, the traditional
RC easily induces instability due to plant model uncertainties and slow transient responses due to the
one-cycle delay term.

To overcome the above limitations of the traditional RC, a new approach based on the odd-harmonic
repetitive control (OHRC) and the robust adaptive control (RAC) is considered. In this approach, the
OHRC employs a specific internal model representing the disturbance model at only the odd-harmonic
frequencies. Thus, instead of using the traditional RC, it is reasonable to use the OHRC to appropriately
cancel the odd-harmonic periodic disturbances. Moreover, the OHRC uses a half-cycle delay compared
to the traditional RC requiring a one-cycle delay to generate the control signal. Meanwhile, the RAC is
added to complement the OHRC to provide accurate reference tracking and strong robustness against
unknown plant dynamics and uncertainties. This is reasonable because the stability of the RC-type
controlled system is easily affected by the unmodeled dynamics and plant uncertainties.

Some related results using the adaptive/robust control and the learning-based control can be found
in [19–27]. In [19], an adaptive neural tracking controller with nonstrict-feedback form and prespecified
tracking accuracy was designed for a class of uncertain stochastic nonlinear systems. Wu et al. [20]
addressed the adaptive fuzzy tracking problem for a class of nonlinear pure-feedback systems with a
quantized input signal. A robust RC design based on output-feedback control for a class of linear time-
varying systems with structured uncertainties was developed in [21]. Kurniawan et al. [22] presented a
sliding mode-based RC for tracking control of the linear systems subject to the exogenous periodic dis-
turbances and plant parametric uncertainties. In [23], an adaptive repetitive scheme was developed using
a robust integral of the sign of error feedback control to handle the periodic and unmodeled disturbances
in an electro-hydraulic load simulator. Chen et al. [24] proposed an adaptive repetitive learning control
method for permanent magnet synchronous servomotor systems with bounded nonparametric uncertain-
ties. Ref. [25] designed a control strategy incorporating the repetitive learning method and the adaptive
technique for a mobile-wheeled inverted pendulum subject to periodic disturbances and parametric un-
certainties. An adaptive repetitive contouring controller to compensate both periodic and non-periodic
disturbances perturbing an industrial biaxial precision gantry was introduced in [26]. Further, in [27],
an adaptive RC scheme was discussed to eliminate distortions caused by the unknown periodic load
disturbances in the power inverter. Refs. [19, 20] discussed the tracking control problem of uncertain
nonlinear systems without considering the periodic exogenous disturbances. Refs. [21–27] were concerned
with tracking and/or rejecting repetitive signals in the presence of nominal system models, although the
systems are also subject to different uncertainties.

Here, we focused on the problem of reference tracking and disturbance compensation of unknown linear
systems perturbed by the periodic odd-harmonic disturbances. In particular, we developed a control
strategy utilizing robust adaptive odd-harmonic repetitive control (RA-OHRC) scheme. The RAC refers
to a model-reference adaptive control technique, applying a robust adaptation law to perform tracking
control of the linear systems with unknown plant models. The adaptation parameters are updated online
to produce a bounded control signal and ensure the convergence of the tracking error. Meanwhile, the
odd-harmonic repetitive control referred to as the OHRC is added to suppress the periodic disturbance
at its odd-harmonic components. Notably, the design of the OHRC does not require plant dynamics
anymore. This approach generally contrasts the design of feedback RC systems. Simulation results and
comparison studies are provided to highlight the effectiveness of the proposed control method. In order
to emphasize the novelty of this research, the main contributions are summarized as follows.

(1) A new control scheme combining the RAC and the OHRC methods is established. The OHRC
is employed to significantly suppress the odd-harmonic periodic disturbances. Furthermore, compared
to the traditional RC, the OHRC cancels the odd-harmonic periodic disturbances and provides a faster
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transient response due to the use of a half-cycle delay in the design. Meanwhile, the RAC is added to
provide accurate reference tracking and strong robustness against the unknown linear system. Moreover,
the RAC can handle the parameter uncertainties.

(2) Since the plant model is assumed to be unknown, the RC method we proposed here is referred to as
a model-free RC method. In contrast, the traditional RC method requires the plant model information
to synthesize the compensator and ensure the stability of the resulting RC-controlled system.

(3) To assess the stability of the resulting closed-loop system, we introduced the estimation error dy-
namics consisting of three different errors: the repetitive error, the parameter-α error, and the parameter-
β error. A Lyapunov function used in the stability analysis is then constructed based on those three errors.
Then, we showed that the boundedness of the system signals and the convergence of the tracking error
are guaranteed.

The remainder of this paper is organized as follows. In Section 2, the problem statement and some
assumptions are presented. Section 3 discusses a new control method combining the robust adaptive
and the odd-harmonic repetitive control schemes. A stability analysis involving the Lyapunov function is
established in Section 4. A numerical example is given in Section 5. Finally, Section 6 includes concluding
remarks.

2 Problem statement

In this paper, we consider a class of linear-time invariant (LTI) systems represented as follows:

y(k) = [P (z)]u(k) + w(k), (1)

where y(k), u(k), w(k) ∈ R denote a plant output, a control input, and a periodic exogenous disturbance,
respectively, and P (z) is an unknown plant model. The unknown plant model P (z) is considered to have
the following expression:

P (z) = kp
B(z)

A(z)
, (2)

where kp is a plant gain, and B(z) and A(z) are plant numerator and denominator polynomials, respec-
tively, which are given by

B(z) = zq + b1z
q−1 + · · ·+ bq−1z + bq, (3)

A(z) = zp + a1z
p−1 + · · ·+ ap−1z + ap. (4)

Here, the plant parameters kp, a1, . . . , ap, b1, . . . , bq are considered to be unknown, while the numerator
degree q and the denominator degree p are known. Next, we also consider the reference LTI system given
as

yr(k) = z−nr(k), (5)

where r(k) is a reference input and yr(k) is a reference output. Here, z−n is an input delay with the length
of n. Note that z is referred to as the Z-transform variable and also as the forward-shifting operator,
e.g., zr(k) = r(k+1). In addition, z−1 represents a backward-shifting operator, e.g., z−1r(k) = r(k− 1).
The input delay z−n is particularly defined as a reference model M(z). That is,

M(z) = z−n. (6)

The reference model M(z) other than z−n, as long as its transfer function has a relative degree n, can
be used as the reference. For the sake of simplicity, we prefer a reference model (6) since the reference
output yr(k) is simply a delayed version of the reference input r(k) by the delay length of n samples.
Moreover, we also define a tracking error e(k) as

e(k) := yr(k)− y(k) = r(k − n)− y(k). (7)

For the unknown linear system (1), we thus intend to construct the control input u(k) such that: (1) the
periodic disturbance w(k) is rejected; (2) the plant output y(k) precisely follows the reference output
yr(k); (3) the tracking error e(k) asymptotically converges to zero steady-state; and (4) the resulting
closed-loop system is stable and robust against plant uncertainties. To ensure that these objectives are
achievable, we necessarily define several assumptions as follows.
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Assumption 1. The exogenous disturbance w(k) is periodic with a known fundamental frequency fw.
This gives a basis period of Tw = 1

fw
. In addition, it is possible that the disturbance w(k) contains

odd-harmonic frequencies.

Assumption 2. The unknown plant P (z) is stable and minimum phase. This implies that B(z) and
A(z) in (2) are stable polynomials. In addition, the polynomials B(z) and A(z) are co-prime.

Assumption 3. The plant parameters kp, a1, . . . , ap, b1, . . . , bq are unknown. However, the sign of kp,
the degrees p and q of the polynomials A(z) and B(z) are assumed to be known, respectively. It also
assumed that |kp| < k0p for some positive constant k0p.

Assumption 4. The reference model M(z) is chosen such that n < p and n = p− q.

Remark 1. Note that Assumptions 1 and 4 are needed to design the OHRC, and Assumptions 2–4
are required to synthesize the RAC. Here, Assumption 1 is used to design the internal model part of
RC, while Assumption 4 is utilized to construct the compensator part. Assumptions 2–4 give detailed
specifications of the plant and reference model, which determine the dimension of the adaptive parameters
constructing the RAC law. In addition, Assumptions 2–4 have become standard assumptions in the design
of discrete-time model reference adaptive control [28, 29].

3 Proposed method

In this section, we present a control strategy by combining the robust adaptive control and the odd-
harmonics repetitive control methods in order to generate the desirable control input u(k) for the linear
system (1). Thus, the proposed control strategy is referred to as the RA-OHRC, which results in the
control input u(k) expressed as

u(k) = uA(k) + uR(k), (8)

where uA(k) and uR(k) are the control signals generated from the adaptive and repetitive control schemes,
respectively.

3.1 Robust adaptive control

We first design the adaptive control law uA(k), which is adopted from a model reference adaptive control
method presented in [29]. The control law uA(k) is then given by

uA(k) = αT
1 (k)

[
µ(z)

λ(z)

]

u(k) + αT
2 (k)

[
µ(z)

λ(z)

]

y(k) + α3(k)y(k) + α4(k)r(k), (9)

where {α1(k), α2(k)} ∈ R
p−1 and {α3(k), α4(k)} ∈ R are adaptive parameters, λ(z) is a stable polynomial

with a degree of p− 1, and µ(z) is described as

µ(z) =

{

0, if p < 2,
[
zp−2, . . . , z, 1

]T
, if p > 2.

(10)

Remark 2. Eq. (9) shows that the RAC law is divided into four parts with different adaptive parameters
(i.e., α1(k)–α4(k)). In addition, four different input signals (i.e., the reference input r(k), the plant

output y(k), the filtered output µ(z)
λ(z)y(k) and the filtered control signal µ(z)

λ(z)u(k)) are paired to construct

the control law uA(k). This control law becomes the common form in the design of discrete-time model
reference adaptive control as shown in [28, 29].

Note that αT
1 (k), α

T
2 (k), α3(k), α4(k) are respectively estimates of the true parameters α∗T

1 , α∗T
2 , α∗

3, α
∗
4

at time k. To simplify (9), we then define α(k) and ω(k) as follows:

α(k) =
[

αT
1 (k) αT

2 (k) α3(k) α4(k)
]T

, α(k) ∈ R
2p, (11)

ω(k) =
[
µ(z)
λ(z)u(k)

µ(z)
λ(z)y(k) y(k) r(k)

]T

, ω(k) ∈ R
2p, (12)

such that

uA(k) = αT(k)ω(k). (13)
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We also introduce an adaptive parameter β(k) ∈ R used to construct an estimation error ǫ(k) ∈ R as
follows:

ǫ(k) = e(k) + β(k)ξ(k), (14)

where e(k) is the tracking error as defined in (7) and ξ(k) is given by

ξ(k) =
[
αT(k)ω(k − n)−αT(k − n)ω(k − n)

]
. (15)

The adaptive parameters α(k) in (11) and β(k) in (14) are updated using normalized gradient algorithm
with parameter projection as follows [29]:

α(k + 1) = α(k) +
sgn(kp)ǫ(k)Γω(k − n)

n2
ω(k)

+ fα(k), (16)

β(k + 1) = β(k) +
γǫ(k)ξ(k)

n2
ω(k)

+ fβ(k). (17)

To further describe the robust adaptation schemes (16) and (17), some details are then provided as
follows:

Γ ∈ R
2p×2p, Γ = ΓT, 0 < Γ <

2

k0p
I2p, (18)

n2
ω(k) ∈ R, n2

ω(k) = 1 + ωT(k − n)Γω(k − n), (19)

γ ∈ R>0, 0 < γ < 2, (20)

fαi(k) ∈ R, fαi(k) =







0, if αi − gαi ∈ [αl
i, α

u
i ],

αu
i − αi − gαi , if αi − gαi > αu

i ,

αl
i − αi − gαi , if αi − gαi < αl

i,

(21)

fβ(k) ∈ R, fβ(k) =







0, if β − gβ ∈ [βl, βu],

βu − β − gβ, if β − gβ > βu,

βl − β − gβ, if β − gβ < βl,

(22)

gα(k) ∈ R
2p, gα(k) =

ǫ(k)Γω(k − n)

n2
ω(k)

, (23)

gβ(k) ∈ R, gβ(k) =
γǫ(k)ξ(k)

n2
ω(k)

. (24)

Note that fα(k) in (16) and fβ(k) in (17) are projection functions of parameters α(k) and β(k) as
detailed in (21) and (22), respectively. Here, nω(k) is a normalizing signal, and Γ and γ are some chosen
adaptation gains. In addition, αi and gαi are the i-th components of vectors α(k) and gα(k), respectively.
The variables αu

i and αl
i represent the upper and lower bounds of αi(k). Similarly, βu and βl denote the

upper and lower bounds of β(k). The true parameters α∗ and β∗ are considered inside the bounds. That
is,

α∗ ∈ [αl,αu], β∗ ∈ [βl, βu]. (25)

3.2 Odd-harmonic repetitive control

We now present the odd-harmonic repetitive control law uR(k) expressed as follows:

uR(k) =

[
−z−N/2

1 + z−N/2

]

︸ ︷︷ ︸

Internal model

C(z)

[
ǫ(k)

n2
ω(k)

]

, (26)

where [ −z−N/2

1+z−N/2 ] corresponds to an RC internal model as in [18], C(z) is an RC compensator, ǫ(k)/n2
ω(k)

is defined as a normalized estimation error and becomes an input signal to the RC, and N ∈ Z is the
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Figure 1 (Color online) Magnitude responses of the internal models of OHRC and traditional RC with a fundamental frequency

of 1 Hz.

number of samples per disturbance period. It can be seen that the repetitive control law (26) uses the
normalized estimation error ǫ(k)/n2

ω(k) as the input. This is to follow the adaptation algorithms (16)
and (17) that utilize the similar error. In this way, the stability analysis of the closed-loop system with
the proposed controller can be properly established. Here, N is an integer number given by

N =
Tw

T
, (27)

where Tw is the fundamental disturbance period and T is a sampling period.

Remark 3. Supporting Assumption 1, the priori information about the disturbance period Tw is re-
quired to compute the integer N , which can be seen in (27). This priori information is a standard
assumption used in the design of repetitive controller [11–17]. In case that the period information is
unknown, then the period identification can be performed beforehand using certain algorithms such as
in [30, 31].

The internal model in (26) represents the disturbance models at the odd-harmonic frequencies only
such that f ∈ [fw, 3fw, 5fw, . . .]. This is illustrated in Figure 1 showing the magnitude responses of the
OHRC and the traditional RC with a fundamental frequency of 1 Hz. Hence, it is obvious that only the
disturbances at odd harmonics are to be rejected. In the RC-controlled system, a compensator is com-
monly required to stabilize the resulting closed-loop system and also determines the rate of disturbance
rejection. The compensator C(z) is then formulated as

C(z) = krM
−1(z), (28)

where kr is an RC gain and M−1(z) is an inverse of the reference model (6). We notice in (28) that when
designing the compensator C(z), the plant model P (z) written in (2), which is unknown, is not required.
This is in contrast to the general feedback RC which requires the plant model to be known to design
the corresponding compensator. Thus, as shown in (28), the compensator C(z) is instead obtained by
using the reference model M(z), which can freely be chosen as long as Assumption 4 is satisfied. We thus
consider that the RC design in (26) is a model-free repetitive controller.

Now, based on (9), (14), (15), (26), a closed-loop system can be formed and the corresponding controller
is referred to as the RA-OHRC. Such a controller consists of three main blocks, namely the RAC, the
OHRC, and the estimation error as depicted in Figure 2.
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Figure 2 (Color online) A closed-loop system with the proposed RA-OHRC.

4 Stability analysis

Having the closed-loop system as shown in Figure 2, we now present a stability analysis, which includes
plant-reference dynamics matching and estimation error dynamics, using the Lyapunov stability approach.

4.1 Dynamics matching

First, we consider that there are solutions or true parameters α∗ = [α∗T
1 , α∗T

2 , α∗
3, α

∗
4]

T which satisfy a
matching condition in terms of a transfer function as follows:




α∗
4[kp

B(z)
A(z) ]

1− α∗T
1 µ(z) 1

λ(z) − α∗T
2 µ(z)

kpB(z)
λ(z)A(z) − α∗

3[kp
B(z)
A(z) ]



 = z−n. (29)

The true parameter α∗
4 is chosen as

α∗
4 =

1

kp
, (30)

such that the matching condition (29) can be expressed as

[
α∗T
1 µ(z)− λ(z)

]
A(z) +

[
kpα

∗T
2 µ(z) + kpα

∗
3λ(z) + znλ(z)

]
B(z) = 0. (31)

Since B(z) and A(z) are co-prime according to Assumption 2, there is a polynomial S(z) satisfying

[
kpα

∗T
2 µ(z) + kpα

∗
3λ(z) + znλ(z)

]
= −S(z)A(z), (32)

[
α∗T
1 µ(z)− λ(z)

]
= S(z)B(z). (33)

Multiplying (32) with y(k), we then obtain

S(z) [A(z)y(k)] + kpα
∗T
2 µ(z)y(k) + kpα

∗
3λ(z)y(k) = −znλ(z)y(k). (34)

Substituting (2) into (1), we can straightforwardly rewrite the LTI system (1) as

A(z)y(k) = kpB(z)u(k) +A(z)w(k). (35)

Thus, using (35), we can recast (34) as

kpS(z)B(z)u(k) + S(z)A(z)w(k) + kpα
∗T
2 µ(z)y(k) + kpα

∗
3λ(z)y(k) = −znλ(z)y(k), (36)
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which can be rearranged after substituting (33) into (36) to yield

kp
[
α∗T
1 µ(z)u(k) + α∗T

2 µ(z)y(k) + α∗
3λ(z)y(k)

]
+ S(z)A(z)w(k) = kpλ(z)u(k)− znλ(z)y(k). (37)

Dividing (37) by kpλ(z), we then obtain

α∗T
1

µ(z)

λ(z)
u(k) + α∗T

2

µ(z)

λ(z)
y(k) + α∗

3y(k) +
S(z)A(z)

kpλ(z)
w(k) = u(k)−

zn

kp
y(k), (38)

which is referred to as a matching equation used to derive the estimation error dynamics.

4.2 Estimation error dynamics

To obtain the estimation error dynamics of the closed-loop system shown in Figure 2, we first need to
derive the tracking error dynamics. This is begun with applying the control law (8) to matching (38) to
yield

α∗T
1

µ(z)

λ(z)
u(k) + α∗T

2

µ(z)

λ(z)
y(k) + α∗

3y(k) = uA(k) + uR(k)−
S(z)A(z)

kpλ(z)
w(k)

zn

kp
y(k). (39)

Using (9) and (12), and adding both sides of (39) with α∗
4ω4(k), we have

α∗T
1 ω1(k) + α∗T

2 ω2(k) + α∗
3ω3(k) + α∗

4ω4(k) = αT
1 (k)ω1(k) + αT

2 (k)ω2(k) + α3(k)ω3(k) + α4(k)ω4(k)

+ α∗
4ω4(k) + uR(k)−

S(z)A(z)

kpλ(z)
w(k) −

zn

kp
y(k), (40)

which can be simplified to yield

α∗
4ω4(k)−

zn

kp
y(k) = − [α(k)−α∗]ω(k) + uR(k)−

S(z)A(z)

kpλ(z)
w(k). (41)

By defining the adaptive parameter error as

α̃(k) = α(k)−α∗, (42)

then Eq. (41) can be rewritten as

α∗
4ω4(k)−

zn

kp
y(k) = −α̃(k)ω(k) + uR(k)−

S(z)A(z)

kpλ(z)
w(k). (43)

Using (5), (26), and (30), and multiplying (43) with kpz
−n, we obtain

yr(k)− y(k) = −kpz
−nα̃(k)ω(k) + kpkr

[
−zN/2

1 + z−N/2

]
ǫ(k)

n2
ω(k)

− z−nS(z)A(z)

λ(z)
w(k). (44)

Let φ(z) and wφ(k) be

φ(z) = z−nS(z)A(z)

λ(z)
, (45)

wφ(k) = φ(z)w(k). (46)

Thus, by using (7), (45) and (46), Eq. (44) can be rewritten as

e(k) =− kpz
−nα̃(k)ω(k) + kpkr

[
−zN/2

1 + z−N/2

]
ǫ(k)

n2
ω(k)

− wφ(k). (47)

Let v(k) be

v(k) = krp

[
−zN/2

1 + z−N/2

]
ǫ(k)

n2
ω(k)

, (48)
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where krp is given by

krp = krkp. (49)

Then Eq. (47) can be expressed as

e(k) = −kpα̃(k)ω(k − n) + v(k)− wφ(k). (50)

Eq. (50) is interpreted as the tracking error dynamics of the LTI system (1) regulated by the control law
(8). Finally, the estimation error dynamics is obtained by substituting (50) into (14) such that

ǫ(k) = wφ(k)− v(k)− β∗α̃(k)ω(k − n)− β̃(k)ξ(k), (51)

where β∗ and β̃(k) are respectively given by

β∗ = kp, (52)

β̃(k) = β(k)− β∗. (53)

Remark 4. The term wφ(k) in (51) is a bounded and periodic error signal to be cancelled. This
property is determined based on (32), (45), and (46). Using (32), Eq. (45) can then be rewritten as

φ(z) = kpz
−nα∗T

2

µ(z)

λ(z)
+ kpz

−nα∗
3 + 1. (54)

Given that λ(z) is chosen as a stable polynomial, and α∗T
2 and α∗

3 are bounded true parameters, then
φ(z) is a stable transfer function. Since w(k) is periodic and φ(z) is stable, then wφ(k) as formulated in
(46) is bounded and its periodicity is preserved. However, the amplitude and phase of wφ(k) may differ
from w(k).

Remark 5. The term v(k) in (51) can be considered a repetitive control signal generated from (26) to
compensate the periodic signal wφ(k).

Remark 6. The estimation error (51) comprises three different errors, namely the repetitive error ǫr(k),
the parameter-α error ǫα(k), and the parameter-β error ǫβ(k), which are respectively given by

ǫr(k) = wφ(k)− v(k), (55)

ǫα(k) = −β∗α̃(k)ω(k − n), (56)

ǫβ(k) = −β̃(k)ξ(k). (57)

Hence, Eq. (51) can be recast as

ǫ(k) = ǫr(k) + ǫα(k) + ǫβ(k). (58)

Next, we prove the stability of the closed-loop system using a Lyapunov function derived from the
estimation error (58).

4.3 Convergence analysis

It follows from the discussion above that a convergence condition of the LTI system (1) with the control
law (8) is provided as follows.

Theorem 1. Consider the closed-loop system consisting of the unknown LTI system (1) with the
periodic disturbance w(k) under Assumptions 1–4, the adaptive controller designed using (9) with the
adaptation law (16) and (17), and the repetitive controller given by (26). Then, there exists a positive
constant σ such that the resulting closed-loop system is stable in the sense that the estimation error ǫ(k)
is bounded and decays to the zero steady state. This condition also implies that the tracking error e(k)
is a bounded decaying signal.

Proof. Let us choose this candidate of Lyapunov function:

V (ǫr, ǫα, ǫβ) = V1(ǫr(k)) + V2(ǫα(k)) + V3(ǫβ(k)), (59)
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where

V1(ǫr(k)) = k−1
rp

k+N/2−1
∑

h=k

ǫ2r(h), (60)

V2(ǫα(k)) = |β∗|α̃T(k)Γ−1α̃(k), (61)

V3(ǫβ(k)) = γ−1β̃2(k). (62)

To obtain the time difference of the quadratic function V1(ǫr(k)), we need to apply the properties of
wφ(k) and v(k) as follows:

wφ(k +N/2) = −wφ(k), (63)

w2
φ(k +N/2) = w2

φ(k), (64)

v(k) + v(k +N/2) = −krp
ǫ(k)

n2
ω(k)

. (65)

The property (63) holds for any discrete-time periodic signal with a fundamental period of Tw = NT [18].
The properties (64) and (65) straightforwardly follow from (63) and (48), respectively. Now, we can have
the time difference of the quadratic function V1(ǫr(k)) given by

V1(ǫr(k + 1))− V1(ǫr(k))

= k−1
rp







k+N/2
∑

h=k+1

ǫ2r(h)−

k+N/2−1
∑

h=k

ǫ2r(h)







= k−1
rp

{

ǫ2r(k +N/2)− ǫ2r(k)
}

= k−1
rp

{[
wφ(k +N/2)− v(k +N/2)

]2
−
[
wφ(k)− v(k)

]2
}

= k−1
rp

[
v(k) + v(k +N/2)

][
v(k) + v(k +N/2) + 2wφ(k)− 2v(k)

]

= k−1
rp

[
v(k) + v(k +N/2)

]{[
v(k) + v(k +N/2)

]
+ 2ǫr(k)

}

= −
ǫ(k)

n2
ω(k)

[

−krp
ǫ(k)

n2
ω(k)

+ 2ǫr(k)

]

=
ǫ(k)

n2
ω(k)

[

krp
ǫ(k)

n2
ω(k)

− 2ǫr(k)

]

. (66)

Next, we intend to obtain the time differences of V2(ǫα(k)) and V3(ǫβ(k)), respectively. For this purpose,
we first need to consider the following equations:

α̃(k + 1)− α̃(k) = α(k + 1)−α(k) =
sgn(kp)ǫ(k)Γω(k − n)

n2
ω(k)

+ fα(k), (67)

β̃(k + 1)− β̃(k) = β(k + 1)− β(k) =
γǫ(k)ξ(k)

n2
ω(k)

+ fβ(k). (68)

Based on (16) and (67), we can have the time difference of V2(ǫα(k)) given by

V2(ǫα(k + 1))− V2(ǫα(k))

= |β∗|α̃T(k + 1)Γ−1α̃(k + 1)− |β∗|α̃T(k)Γ−1α̃(k)

= |β∗|Γ−1
[
α̃T(k + 1)− α̃T(k)

]
α̃(k + 1) + |β∗|Γ−1

[
α̃T(k + 1)− α̃T(k)

]
α̃(k)

=

[

|β∗|
ωT(k − n)Γǫ(k)

n2
ω(k)

+ |β∗|fT
α (k)

]

×

[
ω(k − n)ǫ(k)

n2
ω(k)

+ Γ−1fα(k) + 2Γ−1α̃(k)

]

= |β∗|
ωT(k − n)Γω(k − n)ǫ2(k)

n4
ω(k)

+ 2|β∗|
ωT(k − n)α̃(k)ǫ(k)

n2
ω(k)

+ |β∗|fT
α (k)Γ−1fα(k)

+ 2|β∗|fT
α (k)Γ−1gα(k) + 2|β∗|fT

α (k)Γ−1α̃(k)



Kurniawan E, et al. Sci China Inf Sci December 2022 Vol. 65 222202:11

6 2|β∗|fT
α (k)Γ−1 [fα(k) + gα(k) + α̃(k)] + |β∗|

ωT(k − n)Γω(k − n)ǫ2(k)

n4
ω(k)

+ 2|β∗|
ωT(k − n)α̃(k)ǫ(k)

n2
ω(k)

. (69)

Similarly, we use (17) and (68) to obtain the time difference of V3(ǫβ(k)). That is,

V3(ǫβ(k + 1))− V3(ǫβ(k))

= γ−1β̃2(k + 1)− γ−1β̃2(k)

= γ−1
[

β̃(k + 1)− β̃(k)
]

(k + 1) + γ−1
[

β̃(k + 1)− β̃(k)
]

β̃(k)

=

[
ξ(k)ǫ(k)

n2
ω(k)

+ γ−1fβ(k)

] [

γ
ξ(k)ǫ(k)

n2
ω(k)

+ fβ(k) + 2β̃(k)

]

= γ−1f2
β(k) + 2γ−1fβ(k)gβ(k) + 2γ−1fβ(k)β̃(k) + γ

ξ2(k)ǫ2(k)

n4
ω(k)

+ 2
ξ(k)β̃(k)ǫ(k)

n2
ω(k)

6 2γ−1fβ(k)
[

fβ(k) + gβ(k) + β̃(k)
]

+ γ
ξ2(k)ǫ2(k)

n4
ω(k)

+ 2
ξ(k)β̃(k)ǫ(k)

n2
ω(k)

. (70)

The time increment of V (ǫr(k), ǫα(k), ǫβ(k)) is obtained by summing up (66), (69), and (70) such that

V (ǫr(k + 1), ǫα(k + 1), ǫβ(k + 1))− V (ǫr(k), ǫα(k), ǫβ(k))

6
ǫ(k)

n2
ω(k)

[

krp
ǫ(k)

n2
ω(k)

− 2ǫr(k)

]

+ |β∗|
ωT(k − n)Γω(k − n)ǫ2(k)

n4
ω(k)

+ 2|β∗|
ωT(k − n)α̃(k)ǫ(k)

n2
ω(k)

+ γ
ξ2(k)ǫ2(k)

n4
ω(k)

+ 2
ξ(k)β̃(k)ǫ(k)

n2
ω(k)

+ 2|β∗|fT
α (k)Γ−1 [fα(k) + gα(k) + α̃(k)] + 2γ−1fβ(k)

[

fβ(k) + gβ(k) + β̃(k)
]

. (71)

Based on (51), (55), and (21)–(24), then

β∗ωT(k − n)α̃(k) + ξ(k)β̃(k) = ǫr(k)− ǫ(k), (72)

fT
α (k) [fα(k) + gα(k) + α̃(k)] 6 0, (73)

fβ(k)
[

fβ(k) + gβ(k) + β̃(k)
]

6 0 (74)

hold. Moreover, using (72)–(74), Eq. (71) can be further expanded into

V (ǫr(k + 1), ǫα(k + 1), ǫβ(k + 1))− V (ǫr(k), ǫα(k), ǫβ(k))

6
ǫ(k)

n2
ω(k)

[

krp
ǫ(k)

n2
ω(k)

− 2ǫr(k)

]

+ |β∗|
ωT(k − n)Γω(k − n)ǫ2(k)

n4
ω(k)

+ 2|β∗|
ωT(k − n)α̃(k)ǫ(k)

n2
ω(k)

+ γ
ξ2(k)ǫ2(k)

n4
ω(k)

+ 2
ξ(k)β̃(k)ǫ(k)

n2
ω(k)

6
ǫ(k)

n2
ω(k)

[

krp
ǫ(k)

n2
ω(k)

− 2ǫr(k)

]

+
ǫ(k)

n2
ω(k)

[2ǫr(k)− 2ǫ(k)]

+
ǫ2(k)

n2
ω(k)

[

|β∗|
ωT(k − n)Γω(k − n)

n2
ω(k)

+ γ
ξ2(k)

n2
ω(k)

]

6
ǫ2(k)

n2
ω(k)

[
krp

n2
ω(k)

− 2

]

+
ǫ2(k)

n2
ω(k)

[

|β∗|
ωT(k − n)Γω(k − n)

n2
ω(k)

+ γ
ξ2(k)

n2
ω(k)

]

6 −
ǫ2(k)

n2
ω(k)

[

2−
krp

n2
ω(k)

− |β∗|
ωT(k − n)Γω(k − n)

n2
ω(k)

− γ
ξ2(k)

n2
ω(k)

]

6 −σ
ǫ2(k)

n2
ω(k)

. (75)
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where σ is given by

σ = 2−
krp

n2
ω(k)

− |β∗|
ωT(k − n)Γω(k − n)

n2
ω(k)

− γ
ξ2(k)

n2
ω(k)

. (76)

From (75), it can be concluded that for any σ > 0, the estimation error ǫ(k) is a bounded decaying signal
(i.e, ǫ(k) ∈ L2 ∩ L∞), which implies that the parameter errors ǫα(k), ǫβ(k) and the repetitive error ǫr(k)
are bounded and decaying. This also implies that the parameters (α(k), β(k)) converge to the true values
(α∗, β∗) and the periodic disturbance w(k) is cancelled. Based on (14), it is also shown that the tracking
error e(k) is bounded and asymptotically converges to the zero steady state. This completes the proof.

5 A numerical example

5.1 Simulation configurations

We now present an example of designing RA-OHRC for a discrete-time LTI system involving the servo-
motor used in [32]. The discrete-time LTI system is modeled as

y(k) =
0.1877z + 0.1038

z2 − 0.9747z + 0.2662
u(k) + w(k), (77)

where y(k) is an output angle position (rad), u(k) is an input voltage (V), and w(k) is an output
disturbance (rad). The associated sampling time for the LTI system (77) is T = 0.05 s. Moreover, the
plant model of the LTI system shown in (77) can then be expressed as

P (z) = kp
z + b1

z2 + a1z + a2
, (78)

where kp = 0.1877, a1 = −0.9747, a2 = 0.2662, and b1 = 0.5530. It is assumed that only the degree p of
the plant is known, while the true plant parameters kp, a1, a2, b1 are unknown. From (78), we thus have
p = 2, which leads to the selection of α(k)’s dimension as follows:

α(k) =
[

α1(k) α2(k) α3(k) α4(k)
]T

, α ∈ R
4. (79)

The reference input r(k) is a periodic signal with the period of 1 s. Also, the disturbance signal w(k)
is periodic with the fundamental frequency of 1 Hz and is modeled as

w(k) = 0.1

2∑

j=0

sin (2π(2j + 1)) . (80)

The reference and disturbance signals: r(k) and w(k) are illustrated in Figures 3(a) and (b), respec-
tively. Now, we can determine the reference model M(z), the parameters µ(z) and λ(z), and the initial
adaptive parameters α(0) as

M(z) = z−1, µ(z) = 1, λ(z) = z, α(0) =
[

0 0 0 0
]T

. (81)

In addition, the adaptation gains (Γ, γ) and the (α, β) bounds are chosen as

Γ = diag{1.5 1.5 1.5 1.5}, γ = 1.5,

[αl,αu] = [(−4, 4), (−4, 4), (−4, 4), (−4, 4)], [βl, βu] = [0, 5]. (82)

The adaptive controller uA(k) of the form (9) can then be constructed as

uA(k) = α1(k)u(k − 1) + α2(k)y(k − 1) + α3(k)y(k) + α4(k)r(k). (83)

To design the repetitive controller, we first determine the integer N yielded as

N =
Tw

T
=

1

0.05
= 20. (84)



Kurniawan E, et al. Sci China Inf Sci December 2022 Vol. 65 222202:13

r(
k)

 (
ra

d
)

w
(k

) 
(r

ad
)

Time (s)

Time (s)

(a)

(b)

Figure 3 (Color online) (a) Reference r(k); (b) disturbance w(k).
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Figure 4 (Color online) Control signal u(k).

Choosing the RC gain kr as 0.75, we can have the compensator model C(z) as

C(z) = 0.75z. (85)

Now, the repetitive controller uR(k) of the form (26) can be designed as

uR(k) =

[

−0.75
z−9

1 + z−10

]
ǫ(k)

n2
w(k)

. (86)

Note that ǫ(k) and n2
w(k) are calculated using (14) and (19), respectively. Finally, the proposed RA-

OHRC can be synthesized from (83) and (86), which is given by

u(k) = uA(k) + uR(k). (87)

5.2 Results and discussion

Simulation results of the LTI system (77) with the controller (87) are presented in Figures 4–8. Particu-
larly, it is shown in Figures 4–7 that despite the presence of the unknown plant model and the external
periodic disturbance, the control signal u(k), the tracking error e(k), the estimation error ǫ(k), and the
adaptive parameters (α(k), β(k)) are all bounded. It can be seen from Figure 5 that the tracking er-
ror e(k) defined as the difference between the reference output yr(k) and the plant output y(k) moves
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Figure 6 (Color online) Error signals. (a) Estimation error ǫ(k); (b) repetitive error ǫr(k); (c) parameter-α error ǫα(k);

(d) parameter-β error ǫβ(k).
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Figure 7 (Color online) Adaptive parameters α(k) and β(k).

toward zero steady-state. Similarly, the estimation error ǫ(k) in Figure 6(a) is also a decaying signal,
which implies the convergence of the repetitive error ǫr(k) (55), the parameter-α error (56), and the
parameter-β error (57). The convergences of ǫr(k), ǫα(k), and ǫβ(k) respectively are then confirmed in
Figures 6(b)–(d). Moreover, Figure 8 illustrates the plant output y(k) demonstrating the tracking capa-
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Figure 8 (Color online) Plant output y(k) and reference output yr(k).
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Figure 9 (Color online) Adaptive parameters α(k) and β(k) of RAC.

bility of the proposed controller. It is noticeable that the plant output y(k) precisely follows the reference
output yr(k) after completing the transient period. The transient period is required by the controller
to adjust the adaptive parameters to cope with the unknown plant model and to generate the periodic
signal for disturbance compensation. These results clearly indicate that both the reference tracking and
the disturbance rejection can be achieved simultaneously.

Comparison is made to the RAC as a standalone controller. The RAC can be obtained by setting the
RC gain kr in (85) as 0. It can be seen in Figure 9 that the adaptive parameters do not converge to the
true values. In addition, the time history of these parameters shows certain periodical patterns instead
of the constant values. Note that the boundedness of the RAC are ensured by the adaptation laws (16)
and (17). This result confirms that the adaptation parameters are greatly affected by the existence of
the periodic disturbance w(k).

The tracking error of the RAC is shown in Figure 10. The RAC results in a periodical bounded tracking
error with no sign of convergence to the zero steady-state. This is also confirmed from the tracking output
indicated in Figure 11, where the output y(k) is unable to accurately follow the reference yr(k). This
means that the periodic disturbance w(k) remains uncancelled.
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Figure 10 (Color online) Tracking error e(k) of RAC.
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Figure 11 (Color online) Plant output y(k) and reference output yr(k) of RAC.
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Figure 12 (Color online) Adaptive parameters α(k) and β(k) of the controlled-system with 10% plant variation.

We also examine the tracking performance of RA-OHRC when the LTI system (77) is subject to plant
uncertainties. Let the 10% plant parameters variation be present at time t > 30 s. This gives a new plant
model as

P∆(z) =
0.2065z + 0.1142

z2 − 1.0722z + 0.2928
. (88)

This plant variation moves the system poles positions from p1 = 0.487+0.169j and p2 = 0.487−0.169j to
the locations at p1∆ = 0.536+0.073j and p2∆ = 0.536−0.073j. The new poles p1∆ and p2∆ are still inside
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Figure 13 (Color online) Tracking error e(k) of the controlled-system with 10% plant variation.

the unit circle which makes Assumption 2 remain valid. From Figure 12, we notice that the adaptive
parameters at time t = 30 s are adjusted to the new solution. As indicated in Figure 13, this adjustment
process introduces a new transition period resulting in a small transient error to the tracking error e(k)
before the e(k) converges again to the zero steady-state. By observing behaviors shown in Figures 12 and
13, it can be concluded that the proposed algorithm is also robust against plant parameter uncertainties.

We thus infer from all the above results that a proper integration between the adaptive and the
repetitive control schemes is required to handle the unknown and uncertain plant model, and to improve
the tracking performance in the presence of the periodic exogenous disturbance.

6 Conclusion

We proposed a robust adaptive odd-harmonic repetitive controller for the unknown linear systems per-
turbed by the odd-harmonic periodic disturbances. The proposed controller design method employs
direct adaptive control with the robust adaptation law to handle the unknown plant model and OHRC to
eliminate the periodic exogenous disturbance. The stability analysis demonstrated that the proposed con-
troller ensures the boundedness of the system signals and the convergence of the tracking error. Finally,
the simulation results showed the effectiveness and high performance of the proposed design method.
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18 Griñó R, Costa-Castelló R. Digital repetitive plug-in controller for odd-harmonic periodic references and disturbances. Auto-

matica, 2005, 41: 153–157

19 Wu J, Chen X, Zhao Q, et al. Adaptive neural dynamic surface control with prespecified tracking accuracy of uncertain

stochastic nonstrict-feedback systems. IEEE Trans Cybern, 2022, 52: 3408–3421

20 Wu J, Wu Z G, Li J, et al. Practical adaptive fuzzy control of nonlinear pure-feedback systems with quantized nonlinearity

input. IEEE Trans Syst Man Cybern Syst, 2019, 49: 638–648

21 Wu M, Zhou L, She J H, et al. Design of robust output-feedback repetitive controller for class of linear systems with

uncertainties. Sci China Inf Sci, 2010, 53: 1006–1015

22 Kurniawan E, Wang H, Sirenden B H, et al. Discrete-time modified repetitive sliding mode control for uncertain linear systems.

Int J Adapt Control Signal Process, 2021, 35: 2245–2258

23 Luo C, Yao J, Chen F, et al. Adaptive repetitive control of hydraulic load simulator with RISE feedback. IEEE Access, 2017,

5: 23901–23911

24 Chen Q, Yu X, Sun M, et al. Adaptive repetitive learning control of PMSM servo systems with bounded nonparametric

uncertainties: theory and experiments. IEEE Trans Ind Electron, 2021, 68: 8626–8635

25 Sun W, Su S F, Xia J, et al. Adaptive tracking control of wheeled inverted pendulums with periodic disturbances. IEEE

Trans Cybern, 2020, 50: 1867–1876

26 Hu C, Yao B, Chen Z, et al. Adaptive robust repetitive control of an industrial biaxial precision gantry for contouring tasks.

IEEE Trans Contr Syst Technol, 2011, 19: 1559–1568

27 Tzou Y-Y, Jung S-L, Yeh H-C. Adaptive repetitive control of PWM inverters for very low THD AC-voltage regulation with

unknown loads. IEEE Trans Power Electron, 1999, 14: 973–981

28 Datta A. On the transient behaviour in discrete-time model reference adaptive control: analysis and possible improvement.

Automatica, 1994, 30: 527–531

29 Tao G. Adaptive Control Design and Analysis. Piscataway: Wiley-IEEE Press, 2003

30 Chang K, Shim I, Park G. Adaptive repetitive control for an eccentricity compensation of optical disk drivers. IEEE Trans

Consumer Electron, 2006, 52: 445–450

31 Kim J, Lim K, Kim S. Track following control with DFT estimator for eccentric error compensation of optical disk driver.

IEEE Trans Consumer Electron, 2007, 53: 467–473

32 Kurniawan E. Robust repetitive control and applications. Dissertation for Ph.D. Degree. Melbourne: Swinburne University

of Technology, 2013

https://doi.org/10.1016/j.automatica.2004.08.006
https://doi.org/10.1109/TCYB.2020.3012607
https://doi.org/10.1109/TSMC.2018.2800783
https://doi.org/10.1007/s11432-010-0095-8
https://doi.org/10.1002/acs.3316
https://doi.org/10.1109/ACCESS.2017.2762665
https://doi.org/10.1109/TIE.2020.3016257
https://doi.org/10.1109/TCYB.2018.2884707
https://doi.org/10.1109/TCST.2010.2100044
https://doi.org/10.1109/63.788503
https://doi.org/10.1016/0005-1098(94)90131-7
https://doi.org/10.1109/TCE.2006.1649662
https://doi.org/10.1109/TCE.2007.381717

	Introduction
	Problem statement
	Proposed method
	Robust adaptive control
	Odd-harmonic repetitive control

	Stability analysis
	Dynamics matching
	Estimation error dynamics
	Convergence analysis

	A numerical example
	Simulation configurations
	Results and discussion

	Conclusion

