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Abstract This paper investigates positivity and stability problems of timescale-type delayed linear singular

systems (LSSs). The existing results put an extremely strict constraint on the time-delay function. By

introducing a novel function, this constraint is successfully removed, which generalizes the scope of the

considered systems. Then, some necessary and sufficient criteria are proposed for the positivity of LSSs

with bounded and infinite time-varying delays. Finally, the exponential (asymptotical) stability of LSSs with

bounded (infinite) time-varying delays is analyzed. The derived results are also applicable to timescale-type

differential-difference systems (DDSs). Compared with the existing stability criteria of DDSs with bounded

time-varying delays, the strict limit on the parameter related to the convergence rate is eliminated. Hence,

the conservatism of the existing results can be reduced. Moreover, when investigating stability of DDSs

with infinite time-varying delays, this paper proposes a less conservative stability theorem. To illustrate the

validity of the derived results, an example is presented regarding LSSs with bounded and infinite time-varying

delays.
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1 Introduction

In recent decades, singular or descriptor systems have drawn continuous attention from many researchers
and engineers due to their significant roles in real-world applications, such as aerospace engineering and
chemical processing [1–4]. When singular systems are investigated, the first issue is impulse-controllable
or impulse-free judgment. If this judgment can be made, singular systems can be transformed into a class
of standard differential-algebraic systems. With this transformation, some problems of singular systems
will be conveniently addressed [5–7]. When the singular matrices are special, singular systems can be
transformed into differential-difference systems (DDSs). Recently, with the development of research on
positive systems, positive singular systems have attracted researchers’ interest [8–10]. A representative
example of positive descriptor systems is the Leontief model [11]. Thus far, few studies on positive singular
systems with time delays have been published. In [9, 10], based on the properties of the Drazin inverse,
some interesting results regarding the positivity and stability of continuous delayed singular systems were
proposed. However, the results in [9,10] only focused on asymptotical stability of systems with bounded
delays. Comparatively speaking, the research on systems with infinite or unbounded delays is more
challenging since limited tools are available for their analysis and synthesis. Additionally, solutions to
such systems are sensitive to the initial conditions [12]. For positive singular systems with infinite delays,
the research progress is relatively slow. When investigating such systems, the time-delay functions must
satisfy a restrictive condition [13, 14]. Additionally, since the time-delay functions are not bounded, the
exponential stability of such systems is hardly achieved, given the algebraic parts.
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Many complex models in engineering cannot be directly described by continuous or discrete systems,
such as multi-agent systems with intermittent information transmissions among agents [15]. The reason
is that the time domain may be neither continuous nor uniformly discrete. Therefore, establishing
mathematical models under a more general framework is desirable and necessary. Fortunately, this task
can be completed via the timescale theory proposed by Hilger [16]. Recently, fruitful studies [17–22]
on timescale-type systems have been published. Although timescale-type systems are generalizations of
continuous and discrete cases, there are essential differences between the former and the latter two. For
example, if the time domain is the set of real numbers R or integer numbers Z, the term t− τ(t) ∈ R [23]
or t − τ(t) ∈ Z is always satisfied for arbitrary time-delay function τ(t) ∈ R or τ(t) ∈ Z. In other
words, the system states are definitely meaningful at t − τ(t). However, this statement may be untrue
for an arbitrary time scale (please see Remark 1 for more details). Thus, timescale-type systems are not
simple extensions of continuous or discrete cases, and the studies on these kinds of systems with time
delays are more challenging. In recent years, increasingly more researchers have applied their attention to
timescale-type positive systems [24–27] or singular systems [28,29]. Unfortunately, no studies concerning
timescale-type positive singular systems have been published. In [21], timescale-type DDSs with bounded
time delays were investigated, and some interesting results were developed regarding the positivity and
exponential stability of the considered systems. As mentioned above, DDSs can be considered special
cases of singular systems. Thus, it is natural to study timescale-type positive singular systems, which
partly motivates our work.

Inspired by [9,10,21,30], this paper first investigates timescale-type linear singular systems (LSSs) with
time delays, which take DDSs as their special cases. Compared with [9,10,21,30], some improved results
are proposed. The main novelties of this paper are listed as follows.

• Ref. [9, 10] studied the asymptotical stability of continuous positive singular systems with bounded
time delays. Different from [9, 10], the considered systems here are more general and complicated since
they can include not only continuous or discrete cases but also systems on hybrid time domains. In
addition, exponential stability problems are addressed in this paper. Thus, the presented results here are
generalizations of those in [9, 10].

• Refs. [21, 30] first investigated timescale-type DDSs with bounded and infinite time-varying delays,
respectively. In contrast to these studies, the improved results developed in our paper can be summarized
from three aspects. (i) To make system states meaningful, Refs. [21, 30] strictly constrained the time-
delay function. By introducing an auxiliary function, our work successfully removes this constraint, which
widens the scope of the considered systems. (ii) The stability criterion in [21] requires the parameter
related to the convergence rate to be extremely small, which is fairly restrictive. Given the properties
of the timescale-type exponential function, the requirement on the parameter related to the convergence
rate is excluded here. Thus, the stability criteria in our paper are less conservative than those in [21].
(iii) The stability condition in [30] depends on the graininess function (please see Definition 1), which is
difficult to use. In this paper, a less conservative stability theorem is proposed (please see Remark 4 for
more details).

The remainder of this paper is organized as follows. In Section 2, some definitions and lemmas of the
time scale are introduced. In Section 3, the positivity and exponential stability of timescale-type LSSs
with bounded time delays are investigated. In Section 4, positivity and asymptotical stability problems
of timescale-type LSSs with infinite time delays are addressed. In Section 5, the derived results are
applied to timescale-type DDSs. In Section 6, some simulation examples are given to demonstrate the
effectiveness of the derived results.

Notations. In this paper, the following notations will be used. ‖ · ‖ denotes the usual Euclidean
norm. Q ≻ 0 (� 0,≺ 0,� 0) denotes a matrix in which all elements are positive (nonnegative, negative,
nonpositive). A Metzler matrix has only nonnegative off-diagonal elements. Q is a Schur matrix if its
spectral radius is less than one. det(Q) represents the determinant of matrix Q. ̺(Q) = max{Re(λ) :
λ ∈ ̟(Q)}, and ̟(Q) is the set of all eigenvalues of matrix Q.

2 Basic concepts of time scale

Definition 1 ([17]). A time scale is a nonempty closed subset of the real number set R, which takes
the sets Z and R as its special cases. Assuming T is a time scale and t ∈ T, when t < supT, the forward
jump operator σ : T → T is defined as σ(t) = inf{s ∈ T : s > t}; when t > inf T, the backward jump
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operator ρ : T → T is defined as ρ(t) = sup{s ∈ T : s < t}. The graininess function µ : T → R+ is defined
as µ(t) := σ(t) − t. If µ(t) > 0, t is said to be right scattered; if µ(t) = 0, t is said to be right dense.
If ρ(t) = t, then t is left dense, while if ρ(t) < t, then t is left scattered. Along with the set T, the set
Tκ is defined as follows: if T contains the left-scattered maximum M , then Tκ = T \ {M}; otherwise,
Tκ = T. The definition of timescale-type derivative f∆(t) of the function f : T → R and its properties
can be found in [17].

Definition 2 ([17]). A function (matrix-valued function) is rd-continuous if it is continuous at right-
dense points and its left-sided limits exist (finite) at left-dense points. The set of all rd-continuous
functions (matrix-valued functions) is denoted as Crd(T,R) (Crd(T,Rn×n)).

Definition 3 ([17]). A function (matrix-valued function) p : T → R (P : T → Rn×n) is regressive, if for
all t ∈ Tκ, 1 + µ(t)p(t) 6= 0 (I + µ(t)P (t) is invertible). R (Rn×n) denotes the set of all regressive and
rd-continuous functions (matrix-valued functions). p : T → R is positive (nonnegative) regressive, if for
all t ∈ Tκ, 1 + µ(t)p(t) > 0 (> 0). R+ (R+

0 ) denotes the set of all positive (nonnegative) regressive and
rd-continuous functions.

Definition 4 ([17]). If p ∈ R, then the exponential function is defined as ep(t, s)=exp(
∫ t

s
ξµ(τ)(p(τ))∆τ ),

where s, t ∈ T, ξµ(p) = 1
µ
log(1 + µp). If P ∈ Rn×n, then the matrix exponential function is defined as

eP (t, s), where s, t ∈ T. If T = R, ep(t, s) = e
∫

t

s
p(r)dr; moreover, if p and P are constant, ep(t, s) = ep(t−s)

and eP (t, s) = eP (t−s). If T = Z, ep(t, s) =
∏t−1

r=s(1 + p(r)); moreover, if p and P are constant, ep(t, s) =
(1 + p)t−s and eP (t, s) = (I + P )t−s.

Lemma 1 ([17]). If p ∈ R, s, t, r ∈ T, then (i) e0(t, s) = ep(t, t) = 1; (ii) ep(t, s)ep(s, r) = ep(t, r);
(iii) ep(σ(t), s) = (1+µ(t)p(t))ep(t, s); (iv) e⊖p(s, t) = ep(t, s) =

1
ep(s,t)

, where the function ⊖p = −p
1+µ(t)p .

If P ∈ Rn×n, s, t, r ∈ T, then (i) e0(t, s) = eP (t, t) = I; (ii) eP (t, s)eP (s, r) = eP (t, r); (iii) eP (σ(t), s) =
(I + µ(t)P (t))eP (t, s).

3 Systems with bounded delays

Consider the following timescale-type LSSs:

Ex∆(t) = Ax(t) +Bxt, t ∈ T, (1)

where x ∈ Rn, xt = x(ζ(t − τ(t))), 0 ∈ T, T is any time scale, the function ζ : R → T is defined
as ζ(s) = inf{t ∈ T : t > s} [18], τ(t) is the time delay satisfying 0 < τ1 6 τ(t) 6 τ2 with τ1, τ2 being
constants, E is a singular matrix with rank r < n, the initial condition is φ(t), t ∈ [−τ2, 0]T := [−τ2, 0]

⋂

T,
A ∈ Rn×n, and the matrix pair (E,A) is regular and impulse free. The matrix pair (E,A) is regular if
det(sE − A) is not identically zero. And the pair (E,A) is impulse free if the degree of the polynomial
det(sE −A) satisfies deg(det(sE −A)) = rank(E) [31].

Remark 1. System (1) is of generality since it can be transformed into many different types of systems
in light of various time scale T. And system (1) is not just a simple extension or unification of the classical
continuous and discrete cases. For example, when T is the real set R, system (1) turns into continuous
system Eẋ(t) = Ax(t) + Bxt. When T is the integer set Z, system (1) gives rise to discrete system
E(x(t + 1) − x(t)) = Ax(t) + Bxt. And when T = {qk : k ∈ Z}

⋃

{0}, the q-difference systems [17, 32]
can be formulated from (1). For continuous (T = R) or discrete (T = Z) systems, the condition τ(t) ∈ R
or τ(t) ∈ Z is acquiescent, and hence the phenomenon t− τ(t) /∈ T will never occur. So it is unnecessary
to introduce the function ζ(t). However, in some cases, this phenomenon may be true. For example, if
T =

⋃

k∈Z
[2k, 2k + 1] and τ(t) ∈ T, it can be true that t − τ(t) /∈ T. Let us take τ(t) = 0.5, and then

t−0.5 /∈ T for any t ∈ [2k, 2k+0.5). Hence, the state x(t−τ(t)) is not always meaningful for any function
τ(t) ∈ T. Moreover, if we impose an extra condition on the function τ(t) that t− τ(t) ∈ T [21, 30], then
τ(t) ≡ 2 ∈ T must be true, which is conservative. To avoid this phenomenon, Ref. [27] introduced the
function χ(t) := sup{s : s 6 t, s ∈ T} to make x(χ(t−τ(t))) meaningful. Supposing 0 ∈ T and −τ(0) /∈ T,
then x(χ(−τ(0))) is meaningless. Therefore, the function χ(t) in [27] is not so effective. Fortunately, the
function ζ(t) in system (1) can always make x(ζ(t − τ(t))) meaningful for any function τ(t) ∈ T.

Since (E,A) is regular and impulse-free, there exist two nonsingular matrices P and Q � 0, such that

PEQ = ( Ir 0

0 0
), and PAQ = ( Ar 0

0 In−r
) [1, 33]. Let Q−1x(t) = x̂(t) = ( x̂1(t)

x̂2(t)
) and PBQ = ( B̂11 B̂12

B̂21 B̂22
).
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Then, system (1) yields
{

x̂∆
1 (t) = Arx̂1(t) + B̂11x̂1(ζ(t− τ(t))) + B̂12x̂2(ζ(t− τ(t))),

x̂2(t) = −B̂21x̂1(ζ(t − τ(t))) − B̂22x̂2(ζ(t− τ(t))),
(2)

where Ar ∈ Rr×r, and the initial condition is φ̂1(t), φ̂2(t), t ∈ [−τ2, 0]T.
Clearly, positivity and stability of system (1) are equivalent to that of system (2). In the following

sections, system (2) is mainly investigated.
By Theorem 5.24 in [17], the solution to the first equation of (2) is

x̂1(t) = eAr
(t, s)x̂1(s) +

∫ t

s

eAr
(t, σ(r))

(

B̂11x̂1(ζ(r − τ(r)))

+B̂12x̂2(ζ(r − τ(r)))
)

∆r

:= eAr
(t, s)x̂1(s) + F (t, s), t, s ∈ T, t > s.

(3)

3.1 Positivity analysis

In this subsection, we consider the positivity of system (2). As stated in [21,34], it is necessary to assume
that −B̂22 is a Schur matrix. Therefore, we also make this assumption throughout this paper.

The following definition is similar to that in [21].

Definition 5. System (2) is said to be positive if for any initial value φ̂1 � 0 and φ̂2 � 0, it holds that
x(t) � 0 and y(t) � 0, t ∈ [0,∞)T.

Lemma 2 ( [21]). Let A = (aij)n×n ∈ Rn×n. For any t, s ∈ T, t > s, eA(t, s) � 0 if and only if
A ∈ M(T), where M(T) denotes the set of all Metzler matrices satisfying aii ∈ R+

0 (T).

Lemma 3. Let A ∈ M(T) and g(t) � 0. Then, for any t, s ∈ T, t > s,
∫ t

s
eA(t, σ(r))g(r)∆r � 0.

Proof. If t is right dense, then σ(t) = t and σ(r) 6 t for any r < t. Then, by Lemma 2, we have

eA(t, σ(r)) � 0 for any r 6 t. Thus,
∫ t

s
eA(t, σ(r))g(r)∆r � 0, t > s.

If t is right scattered and left scattered, then ρ(t) < t and σ(ρ(t)) = t. Moreover, by Theorem 1.75

in [17], we have
∫ t

ρ(t)
eA(t, σ(r))g(r)∆r = µ(ρ(t))eA(t, t)g(ρ(t)). Then, it yields

∫ t

s

eA(t, σ(r))g(r)∆r =

∫ ρ(t)

s

eA(t, σ(r))g(r)∆r +

∫ t

ρ(t)

eA(t, σ(r))g(r)∆r

=

∫ ρ(t)

s

eA(t, σ(r))g(r)∆r + µ(ρ(t))eA(t, t)g(ρ(t))

=

∫ ρ(t)

s

eA(t, σ(r))g(r)∆r + µ(ρ(t))g(ρ(t)).

By observing σ(r) 6 t for any r ∈ [s, ρ(t)]T, and from Lemma 2, we can get
∫ t

s
eA(t, σ(r))g(r)∆r � 0. If

t is right scattered and left dense, then two cases should be considered. Case I: there exists a constant
ε > 0 such that [t − ε, t]T = [t − ε, t]. Case II: for any ǫ > 0, [t − ǫ, t]T 6= [t − ǫ, t] but there exists an
increasing sequence {tk, k ∈ Z+} ⊂ T (where Z+ is the set of all positive integers), such that tk < t for
any k ∈ Z+ and supk∈Z+{tk} = t.

Consider case I. It holds that
∫ t

s

eA(t, σ(r))g(r)∆r =

∫ t−ε

s

eA(t, σ(r))g(r)∆r +

∫ t

t−ε

eA(t, σ(r))g(r)∆r

=

∫ t−ε

s

eA(t, σ(r))g(r)∆r +

∫ t

t−ε

eA(t−r)g(r)dr.

Since σ(r) < t for any r ∈ [s, t− ε]T, and from Lemma 2, it holds that
∫ t

s
eA(t, σ(r))g(r)∆r � 0.

Consider case II. In this case,
∫ t

s

eA(t, σ(r))g(r)∆r =

∫ t1

s

eA(t, σ(r))g(r)∆r +

∫ t

t1

eA(t, σ(r))g(r)∆r.
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For any r ∈ [s, t1]T, σ(r) < t. By Lemma 2, eA(t, σ(r)) � 0. And following Theorem 1.79 in [17], we can

derive that
∫ t

t1
eA(t, σ(r))g(r)∆r =

∑

s∈[t1,t)T
µ(s)eA(t, σ(s))g(s). For any s ∈ [t1, t)T, σ(s) 6 t. Following

Lemma 2, we have eA(t, σ(s)) � 0. Therefore, we can get
∫ t

s
eA(t, σ(r))g(r)∆r � 0. Based on the above

analysis, the proof is completed.

Now, we are in a position to propose the following result.

Theorem 1. System (2) is positive if and only if Ar ∈ M(T), B̂1j � 0, and B̂2j � 0, j = 1, 2.

Proof. (Sufficiency): First, we consider the claim t ∈ [0, ζ(τ1)]T = [0, τ1]T ∪ (τ1, ζ(τ1)]T.

Supposing t ∈ [0, τ1]T, then ζ(r − τ(r)) 6 ζ(t − τ1) 6 0 for any r 6 t. Since φ̂j(t) � 0 (j = 1, 2) and

B̂1j � 0, j = 1, 2, it follows from Lemmas 2 and 3 that eAr
(t, 0) � 0 and F (t, 0) � 0. By (3), we have

x̂1(t) � 0, t ∈ [0, τ1]T. In light of B̂2j � 0, j = 1, 2, it is apparent that x̂2(t) � 0, t ∈ [0, τ1]T. Thus,
x̂(t) � 0 for any t ∈ [0, τ1]T.

Supposing t ∈ (τ1, ζ(τ1)]T, two cases should be considered. (i) τ1 ∈ T, and (ii) τ1 /∈ T. If case (i) is
true, then ζ(τ1) = τ1, and t ∈ [0, ζ(τ1)]T = [0, τ1]T, which directly yields x̂(t) � 0. If case (ii) is true, then
ρ(ζ(τ1)) < τ1 < ζ(τ1) and (τ1, ζ(τ1)]T = {ζ(τ1)}. Following the fact

x̂1(ζ(τ1)) =x̂1(ρ(ζ(τ1))) + µ(ρ(ζ(τ1)))x̂
∆
1 (ρ(ζ(τ1)))

=(I + µ(ρ(ζ(τ1)))Ar)x̂1(ρ(ζ(τ1)))

+ µ(ρ(ζ(τ1)))(B̂11x̂1(ζ(ρ(ζ(τ1)) − τ(ρ(ζ(τ1)))))

+ B̂12x̂2(ζ(ρ(ζ(τ1))− τ(ρ(ζ(τ1))))))

=eAr
(ζ(τ1), ρ(ζ(τ1)))x̂1(ρ(ζ(τ1)))

+ µ(ρ(ζ(τ1)))(B̂11x̂1(ζ(ρ(ζ(τ1)) − τ(ρ(ζ(τ1)))))

+ B̂12x̂2(ζ(ρ(ζ(τ1))− τ(ρ(ζ(τ1)))))), (4)

and by noting ρ(ζ(τ1)) ∈ [0, τ1]T and ζ(ρ(ζ(τ1))− τ(ρ(ζ(τ1)))) 6 0, we can get from Lemmas 2 and 3 that
x̂1(ζ(τ1)) � 0.

Since ζ(τ1) − τ(ζ(τ1)) 6 ζ(τ1) − τ1 < ζ(τ1), it holds that ζ(ζ(τ1) − τ(ζ(τ1))) 6 ζ(τ1). If ζ(ζ(τ1) −
τ(ζ(τ1))) < ζ(τ1), then ζ(ζ(τ1) − τ(ζ(τ1))) ∈ [−τ2, τ1]T. By the foregoing analysis and B̂2j � 0, j = 1, 2,
we have

x̂2(ζ(τ1)) =− B̂21x̂1

(

ζ(ζ(τ1)− τ(ζ(τ1)))
)

− B̂22x̂2

(

ζ(ζ(τ1)− τ(ζ(τ1)))
)

�0. (5)

If ζ(ζ(τ1)− τ(ζ(τ1))) = ζ(τ1), then

x̂2(ζ(τ1)) = −(I + B̂22)
−1B̂21x̂1(ζ(τ1)).

Since −B̂22 is a Schur matrix, it yields from the Laplace transformation that (I + B̂22)
−1 � 0. Following

x̂1(ζ(τ1)) � 0 and B̂21 � 0, we have x̂2(ζ(τ1)) � 0. Thus, x̂(t) � 0 for any t ∈ (τ1, ζ(τ1)]T. To sum up,
x̂(t) � 0 for any t ∈ [0, ζ(τ1)]T.

Next, we consider the claim t ∈ [ζ(τ1), ζ(2τ1)]T = [ζ(τ1), 2τ1]T ∪ (2τ1, ζ(2τ1)]T.

Supposing t ∈ [ζ(τ1), 2τ1]T, by (3) we have

x̂1(t) = eAr
(t, ζ(τ1))x̂1(ζ(τ1)) +

∫ t

ζ(τ1)

eAr
(t, σ(r))

×
(

B̂11x̂1(ζ(r − τ(r))) + B̂12x̂2(ζ(r − τ(r)))
)

∆r.

For any r 6 t, it holds that r−τ(r) 6 t−τ1 6 τ1, which implies ζ(r−τ(r)) 6 ζ(τ1). Then, x̂j(ζ(r−τ(r))) �
0, j = 1, 2. By Lemmas 2 and 3, we have x̂1(t) � 0 for any t ∈ [ζ(τ1), 2τ1]T. Similarly, we can obtain
x̂2(t) � 0 in light of B̂2j � 0, j = 1, 2. Thus, for any t ∈ [ζ(τ1), 2τ1]T, x̂(t) � 0.
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Supposing t ∈ (2τ1, ζ(2τ1)]T and 2τ1 ∈ T, then (2τ1, ζ(2τ1)]T = {2τ1}. Apparently, x̂(t) � 0. If 2τ1 /∈ T,
then (2τ1, ζ(2τ1)]T = {ζ(2τ1)}. Just like (4), we have

x̂1(ζ(2τ1)) = eAr
(ζ(2τ1), ρ(ζ(2τ1)))x̂1(ρ(ζ(2τ1)))

+µ(ρ(ζ(2τ1)))(B̂11x̂1(ζ(ρ(ζ(2τ1))− τ(ρ(ζ(2τ1)))))

+B̂12x̂2(ζ(ρ(ζ(2τ1))− τ(ρ(ζ(2τ1)))))).

Observing ρ(ζ(2τ1)) ∈ [ζ(τ1), 2τ1]T and ζ(ρ(ζ(2τ1))− τ(ρ(ζ(2τ1)))) 6 ζ(τ1), it holds that x̂1(ζ(2τ1)) � 0.
Moreover, following the same step of (5), it yields x̂2(ζ(2τ1)) � 0. Based on the above discussion, we
have x̂(t) � 0 for any t ∈ [ζ(τ1), ζ(2τ1)]T.

Repeating the same process, we can derive that x̂(t) � 0 for any t ∈ [0,∞)T. The sufficiency part is
finished.

(Necessity): Firstly, we prove B̂12 � 0 and B̂22 � 0. Choose φ̂1(t) = 0, and then by (2) we have

x̂∆
1 (0) = B̂12x̂2(ζ(−τ(0))).

Assuming B̂12 � 0 is true, there maybe exist k ∈ {1, . . . , r} such that x̂∆
1,k(0) < 0. If 0 is right scattered,

then

x̂1,k(σ(0)) = x̂1,k(0) + µ(0)x̂∆
1,k(0) < 0,

which is a contradiction. If 0 is right dense, there must exist t∗ ∈ U+(0) such that x̂1,k(t
∗) < 0, which is

also a contradiction. Thus, B̂12 � 0.
From (2) and φ̂1(t) = 0, we have

x̂2(0) = −B̂22x̂2(ζ(−τ(0))).

By the proof by contradiction, we can obtain B̂22 � 0.
Similarly, we can prove B̂11 � 0 and B̂21 � 0 by choosing φ̂2(t) = 0. So it is omitted here.

Finally, we prove Ar ∈ M(T). Choose x̂1(t) = 0, t ∈ [−τ2, 0)T and φ̂2(t) = 0, and then by (3), it holds
that

x̂1(t) = eAr
(t, 0)x̂1(0) +

∫ t

0

eAr
(t, σ(r))(B̂11x̂1(ζ(r − τ(r)))

+B̂12x̂2(ζ(r − τ(r))))∆r.

If 0 is right dense, there always exists ǫ ∈ U+(0)
⋂

[0, τ1]T such that

x̂1(ǫ) = eAr
(ǫ, 0)x̂1(0) +

∫ ǫ

0

eAr(ǫ−r)B̂11x̂1(ζ(r − τ(r)))dr.

Supposing Ar /∈ M(T), then by Lemma 2, eAr
(ǫ, 0) � 0 may be unsatisfied. Thus, x̂1(ǫ) � 0 may be true

by choosing proper initial condition x̂1(0), which contradicts with positivity of system (2). And hence
Ar ∈ M(T). If 0 is right scattered, then

x̂1(σ(0)) = eAr
(σ(0), 0)x̂1(0) +

∫ σ(0)

0

eAr(σ(0),σ(r))

×(B̂11x̂1(ζ(r − τ(r))) + B̂12x̂2(ζ(r − τ(r))))∆r

= (I + µ(0)Ar)x̂1(0) + µ(0)B̂11x̂1(ζ(−τ(0))).

Following the above process, we can also get Ar ∈ M(T), which finishes the necessity part. Therefore,
the proof of Theorem 1 is completed.

Remark 2. In the proof of Theorem 1, we use the step method [35]. Following this way, the existence
and uniqueness of solutions of system (1) can be guaranteed under the condition that the matrix pair
(E,A) is regular and impulse free.
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3.2 Stability analysis

In this subsection, exponential stability of system (2) is investigated. Throughout this subsection, it is
assumed that Ar ∈ M(T), B̂1j � 0, and B̂2j � 0, j = 1, 2.

To proceed with the main result, the following hypothesis is essential.

Hypothesis 2. supt∈T
{µ(ρ(t))} 6 τ1.

Remark 3. Many kinds of time scales satisfy Hypothesis 2. To illustrate this fact, three examples are
given. (a) If T = R, then µ(t) ≡ 0 < τ1 for any t. (b) If T = Z, then µ(t) ≡ 1 for any t ∈ Z. And for
discrete time-delay systems, τ1 > 1 is acquiescent. (c) Construct such a time scale satisfying ρ(t) ≡ t for
any t, and then µ(ρ(t)) ≡ 0 and Hypothesis 2 is always true. Moreover, Hypothesis 2 is independent of
any right-scattered or right-dense points. Thus, Hypothesis 2 is mild.

Theorem 3. Let Hypothesis 2 hold. For a given positive constant γ, system (2) is exponentially stable
if there exist two positive vectors α = (α1, . . . , αr)

T, β = (β1, . . . , βn−r)
T, such that

(Ar + γI)α+ eγτ2(B̂11α+ B̂12β) ≺ 0, (6)

and
B̂21α+ (e−γτ2I + B̂22)β ≻ 0. (7)

Proof. In the sequel, we consider the claim:

S(t) : x̂1(t) � Me⊖γ(t, 0)α,

x̂2(t) � Me⊖γ(t, 0)β, t ∈ [0,∞)T,

where M = ‖φ̂1‖‖φ̂2‖
min{αi,βj}

, i = 1, . . . , r, j = 1, . . . , n− r.

Clearly, S(0) is true.
Suppose the claim S(t) is not satisfied and let t∗ = inf{t ∈ (0,∞)T : S(t) is not true}. Then, S(t)

holds for any t ∈ [0, t∗)T and there exist i ∈ {1, . . . , r} and j ∈ {1, . . . , n − r} such that at least one of
the following statements is true:

x̂1,i(t
∗) > Me⊖γ(t

∗, 0)αi, (8)

x̂2,j(t
∗) > Me⊖γ(t

∗, 0)βj. (9)

In what follows, three cases are considered.
Case I. Eq. (8) is true. Then, x̂2(t

∗) � Me⊖γ(t
∗, 0)β.

If t∗ is left dense, then x̂1,i(t
∗) = Me⊖γ(t

∗, 0)αi and t∗ is right dense. Moreover, for any m 6= i,
x̂1,m(t∗) 6 Me⊖γ(t

∗, 0)αm. By (2), we have

x̂∆
1,i(t

∗) =

r
∑

k=1

Ar(i, k)x̂1,k(t
∗) +

r
∑

k=1

B̂11(i, k)x̂1,k(ζ(t
∗ − τ(t∗)))

+

n−r
∑

k=1

B̂12(i, k)x̂2,k(ζ(t
∗ − τ(t∗)))

=Me⊖γ(t
∗, 0)Ar(i, i)αi +

r
∑

k 6=i

Ar(i, k)x̂1,k(t
∗) +

r
∑

k=1

B̂11(i, k)x̂1,k(ζ(t
∗ − τ(t∗)))

+

n−r
∑

k=1

B̂12(i, k)x̂2,k(ζ(t
∗ − τ(t∗)))

6Me⊖γ(t
∗, 0)

[

r
∑

k=1

Ar(i, k)αk

+ e⊖γ(ζ(t
∗ − τ(t∗)), t∗)

(

r
∑

k=1

B̂11(i, k)αk +

n−r
∑

k=1

B̂12(i, k)βk

)]

. (10)
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By Lemma 1, we have

e⊖γ(ζ(t
∗ − τ(t∗)), t∗) = eγ(t

∗, ζ(t∗ − τ(t∗))) 6 eγτ2.

Then, it follows from (6) that

r
∑

k=1

Ar(i, k)αk + e⊖γ(ζ(t
∗ − τ(t∗)), t∗)×

(

r
∑

k=1

B̂11(i, k)αk +

n−r
∑

k=1

B̂12(i, k)βk

)

< 0.

In view of (10), we can obtain x̂∆
1,i(t

∗) < 0. Since t∗ is right dense, there always exists some ε > 0 such
that x̂1,i(t

∗ + ε) < x̂1,i(t
∗), which contradicts with the definition of t∗.

If t∗ is left scattered, then x̂1,i(t
∗) > Me⊖γ(t

∗, 0)αi and x̂1(t) � Me⊖γ(t, 0)α for any t ∈ [0, ρ(t∗)]T.
Similar to (10), we have

x̂∆
1,i(ρ(t

∗)) 6Ar(i, i)x̂1,i(ρ(t
∗)) +Me⊖γ(ρ(t

∗), 0)

[

r
∑

k 6=i

Ar(i, k)αk

+ eγτ2

(

r
∑

k=1

B̂11(i, k)αk +
n−r
∑

k=1

B̂12(i, k)βk

)]

. (11)

Thus, it yields from (11) that

x̂1,i(t
∗) =x̂1,i(ρ(t

∗)) + µ(ρ(t∗))x̂∆
1,i(ρ(t

∗))

6Me⊖γ(ρ(t
∗), 0)

[

αi + µ(ρ(t∗))

(

r
∑

k=1

Ar(i, k)αk

+ eγτ2

(

r
∑

k=1

B̂11(i, k)αk +

n−r
∑

k=1

B̂12(i, k)βk

))]

. (12)

By noting ⊖γ = −γ
1+µ(t)γ > −γ, and from (6) and (12), we have

x̂1,i(t
∗) < Me⊖γ(ρ(t

∗), 0)(1 + µ(ρ(t∗))⊖ γ)αi

= Me⊖γ(ρ(t
∗), 0)e⊖γ(t

∗, ρ(t∗))αi

= Me⊖γ(t
∗, 0)αi,

which is a contradiction. Thus, case I is not satisfied.
Case II. Eq. (9) is true. Then, x̂1(t

∗) � Me⊖γ(t
∗, 0)α.

If t∗ is left dense, then x̂2,j(t
∗) = Me⊖γ(t

∗, 0)βj and x̂2,p(t
∗) 6 Me⊖γ(t

∗, 0)βp for any p 6= j. By
observing ζ(t∗ − τ(t∗)) 6 t∗, it follows from (2) that

x̂2,j(t
∗) =−

r
∑

k=1

B̂21(j, k)x̂1,k(ζ(t
∗ − τ(t∗)))

−

n−r
∑

k=1

B̂22(j, k)x̂2,k(ζ(t
∗ − τ(t∗)))

6Me⊖γ(t
∗, 0)eγτ2

(

−
r
∑

k=1

B̂21(j, k)αk −
n−r
∑

k=1

B̂22(j, k)βk

)

. (13)

By (7), Eq. (13) yields x̂2,j(t
∗) < Me⊖γ(t

∗, 0)βj, which is a contradiction.
If t∗ is left scattered, then t∗ > ρ(t∗) and x̂2,j(t

∗) > Me⊖γ(t
∗, 0)βj . By Hypothesis 2, we have

t∗ − ρ(t∗) 6 τ1 6 τ(t∗), which yields ζ(t∗ − τ(t∗)) 6 ρ(t∗) < t∗. Similar to (13), we can get x̂2,j(t
∗) <

Me⊖γ(t
∗, 0)βj , which is also a contradiction. Therefore, case II does not hold.

Case III. Both Eqs. (8) and (9) are true.
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If t∗ is left dense, then x̂1,i(t
∗) = Me⊖γ(t

∗, 0)αi and x̂2,j(t
∗) = Me⊖γ(t

∗, 0)βj . In addition, x̂1,p(t
∗) 6

Me⊖γ(t
∗, 0)αp for any p 6= i, and x̂2,q(t

∗) 6 Me⊖γ(t
∗, 0)βq for any q 6= j. Similar to case II, a contradic-

tion occurs.
If t∗ is left scattered, then for any t ∈ [0, t∗)T, we have x̂1(t) � Me⊖γ(t, 0)α and x̂2(t) � Me⊖γ(t, 0)β.

Following the same steps in case II, we can also obtain a contradiction. Hence, case III is not satisfied.
Based on the foregoing discussion, S(t) is true. Therefore, for any t ∈ [0,∞)T, ‖x̂(t)‖ 6 Me⊖γ(t, 0)(‖α‖+
‖β‖), which means that system (2) is exponentially stable. The proof of Theorem 3 is completed.

4 Systems with infinite delays

Consider the following system:

Ex∆(t) = Ax(t) +Bxt + ω, t ∈ T, (14)

where the time-delay function τ(t) satisfies τ(t) > τ1 > 0 and t − τ(t) → ∞ as t → ∞ [30], the vector
ω = (ωT

1 , ω
T
2 )

T � 0, and other parameters are the same as those in (1).
Similarly, system (14) can be transformed into the following form:

{

x̂∆
1 (t) = Arx̂1(t) + B̂11x̂1(ζ(t− τ(t))) + B̂12x̂2(ζ(t− τ(t))) + ω1,

x̂2(t) = −B̂21x̂1(ζ(t − τ(t))) − B̂22x̂2(ζ(t− τ(t))) + ω2,
(15)

where Ar ∈ Rr×r, and the initial condition is φ̂1(t), φ̂2(t), t ∈ (−∞, 0]T.
First, a necessary and sufficient criterion about the positivity of system (15) is developed in the following

theorem.

Theorem 4. For any ωi � 0 (i = 1, 2), system (15) is positive if and only if Ar ∈ M(T), B̂1j � 0, and

B̂2j � 0, j = 1, 2.

Proof. (Sufficiency): Consider the claim:

S(t) : x̂1(t) � 0, x̂2(t) � 0, t ∈ [0,∞)T.

Suppose the claim S(t) is not satisfied and let t∗ = inf{t ∈ (0,∞)T : S(t) is not true}. Then, S(t) holds
for any t ∈ [0, t∗)T and there exist i ∈ {1, . . . , r} and j ∈ {1, . . . , n − r} such that at least one of the
following statements is satisfied:

x̂1,i(t
∗) 6 0, (16)

x̂2,j(t
∗) 6 0. (17)

In what follows, three cases are considered.
Case I. Eq. (16) is true. Then, x̂2(t

∗) � 0.

If t∗ is left dense, then x̂1,i(t
∗) = 0 and t∗ is right dense. Moreover, for any m 6= i, x̂1,m(t∗) > 0.

Following (15), we have

x̂1,i(t
∗) = eAr(i,i)(t

∗, 0)x̂1,i(0) +

∫ t∗

0

eAr(i,i)(t
∗, σ(r))

×

[

r
∑

k 6=i

Ar(i, k)x̂1,k(ζ(r − τ(r)))

+

r
∑

k=1

B̂11(i, k)x̂1,k(ζ(r − τ(r)))

+
n−r
∑

k=1

B̂12(i, k)x̂2,k(ζ(r − τ(r))) + ω1,i

]

∆r.

By Lemmas 2 and 3, we have x̂1,i(t
∗) > 0, which is a contradiction.
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If t∗ is left scattered, then x̂1,i(t
∗) 6 0, and for any m 6= i, x̂1,m(t∗) > 0. From (15), we have

x̂1,i(t
∗) = eAr(i,i)(t

∗, 0)x̂1,i(0) +

∫ ρ(t∗)

0

eAr(i,i)(t
∗, σ(r))

×

[

r
∑

k 6=i

Ar(i, k)x̂1,k(ζ(r − τ(r)))

+

r
∑

k=1

B̂11(i, k)x̂1,k(ζ(r − τ(r)))

+

n−r
∑

k=1

B̂12(i, k)x̂2,k(ζ(r − τ(r))) + ω1,i

]

∆r

+

r
∑

k 6=i

Ar(i, k)x̂1,k(ζ(ρ(t
∗)− τ(ρ(t∗))))

+

r
∑

k=1

B̂11(i, k)x̂1,k(ζ(ρ(t
∗)− τ(ρ(t∗))))

+
n−r
∑

k=1

B̂12(i, k)x̂2,k(ζ(ρ(t
∗)− τ(ρ(t∗)))) + ω1,i.

By Lemmas 2 and 3, we have x̂1,i(t
∗) > 0, which is also a contradiction. Thus, case I is not true.

Case II. Eq. (17) is true. Then, x̂1(t
∗) � 0.

If t∗ is left dense, then x̂2,j(t
∗) = 0, and for any q 6= j, x̂2,q(t

∗) > 0. By (15), we can obtain

x̂2,j(t
∗) = −

r
∑

k=1

B̂21(j, k)x̂1,k(ζ(t
∗ − τ(t∗)))

−

n−r
∑

k=1

B̂22(j, k)x̂2,k(ζ(t
∗ − τ(t∗))) + ω2,j .

When ζ(t∗ − τ(t∗)) = t∗, we have

(1 + B̂22(j, j))x̂2,j(t
∗) = −

r
∑

k=1

B̂21(j, k)x̂1,k(ζ(t
∗ − τ(t∗)))

−

n−r
∑

k 6=j

B̂22(j, k)x̂2,k(ζ(t
∗ − τ(t∗))) + ω2,j .

Since −B̂22 is a Schur matrix, x̂2,j(t
∗) > 0. When ζ(t∗ − τ(t∗)) < t∗, we can also get x̂2,j(t

∗) > 0, which
contradicts with the fact x̂2,j(t

∗) = 0.
If t∗ is left scattered, then x̂2,j(t

∗) 6 0 and for any q 6= j, x̂2,q(t
∗) > 0. Similarly, a contradiction also

occurs. Thus, case II is not satisfied.
Case III. Both Eqs. (16) and (17) are true. Then, x̂1,i(t

∗) 6 0 and x̂2,j(t
∗) 6 0. Moreover, for any

m 6= i, q 6= j, x̂1,m(t∗) > 0 and x̂2,q(t
∗) > 0. Taking the similar analysis to case I, case III is false.

Based on the three cases, the claim S(t) is true. Therefore, the sufficiency part is finished.

(Necessity): Firstly, we prove B̂12 � 0 and B̂22 � 0. Choose φ̂1(t) = 0, and then by (15) we have

x̂∆
1 (0) = B̂12x̂2(ζ(−τ(0))) + ω1.

Assuming B̂12 � 0 is true, there maybe exist k ∈ {1, . . . , r} such that x̂∆
1,k(0) < 0. If 0 is right scattered,

then

x̂1,k(σ(0)) = x̂1,k(0) + µ(0)x̂∆
1,k(0) < 0,
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which is a contradiction. If 0 is right dense, there must exist t∗ ∈ U+(0) such that x̂1,k(t
∗) < 0, which is

also a contradiction. Thus, B̂12 � 0.
From (15) and φ̂1(t) = 0, we have

x̂2(0) = −B̂22x̂2(ζ(−τ(0))) + ω2.

By the contradiction, we can obtain B̂22 � 0.
Similarly, we can prove B̂11 � 0 and B̂21 � 0 by choosing φ̂2(t) = 0. So it is omitted here.

Finally, we prove Ar ∈ M(T). Choose x̂1(t) = 0, t ∈ (−∞, 0)T and φ̂2(t) = 0, and then by (15), we
have

x̂1(t) = eAr
(t, 0)x̂1(0) +

∫ t

0 eAr
(t, σ(r))(B̂11x̂1(ζ(r − τ(r)))

+B̂12x̂2(ζ(r − τ(r))) + ω1)∆r.

If 0 is right dense, there always exists ǫ ∈ U+(0)
⋂

[0, τ1]T such that

x̂1(ǫ) = eAr
(ǫ, 0)x̂1(0) +

∫ ǫ

0

eAr(ǫ−r)(B̂11x̂1(ζ(r − τ(r))) + ω1)dr.

Supposing Ar /∈ M(T), then by Lemma 2, eAr
(ǫ, 0) � 0 may be unsatisfied. Thus, x̂1(ǫ) � 0 may be

true by choosing proper initial condition x̂1(0), which contradicts with the positivity of system (15). And
hence Ar ∈ M(T).

If 0 is right scattered, then

x̂1(σ(0)) = eAr
(σ(0), 0)x̂1(0) +

∫ σ(0)

0

eAr(σ(0),σ(r))

×(B̂11x̂1(ζ(r − τ(r))) + B̂12x̂2(ζ(r − τ(r))) + ω1)∆r

= (I + µ(0)Ar)x̂1(0) + µ(0)(B̂11x̂1(ζ(−τ(0))) + ω1).

Following the above process, we can also get Ar ∈ M(T), which finishes the necessity part. Therefore,
the proof of Theorem 4 is completed.

Next, the asymptotical stability problem of system (15) is addressed. In the sequel, it is assumed that
ω1 = 0 and ω2 = 0.

Lemma 4. Let A be a Metzler matrix and Bi � 0, i = 1, . . . , 4. Then, the following statements are
equivalent:

(i) B4 is a Schur matrix and ̺(A+B1 + B2(I −B4)
−1B3) < 0;

(ii) (A+B1)p+B2q ≺ 0 and B3p+B4q ≺ q for some p ≻ 0, q ≻ 0.
Proof. Since A is a Metzler matrix and Bi � 0, i = 1, . . . , 4, it holds that A+ B1 + B2(I −B4)

−1B3 is
a Metzler matrix. The remainder of the proof is similar to Lemma II.2 in [36], so it is omitted here.

Theorem 5. Let Ar ∈ M(T) and B̂1,j � 0, B̂2,j � 0, j = 1, 2. System (15) is asymptotically stable if

B̂2,2 is a Schur matrix and ̺(Ar + B̂11 − B̂12(I + B̂22)
−1B̂21) < 0.

Proof. Since B̂2,2 is a Schur matrix and ̺(Ar + B̂11− B̂12(I + B̂22)
−1B̂21) < 0, it follows from Lemma 4

that
(Ar + B̂11)ϕ1 + B̂12ϕ2 ≺ 0, (18)

− B̂21ϕ1 − B̂22ϕ2 ≺ ϕ2, (19)

where ϕ1 and ϕ2 are positive constant vectors. Let yi(t) = ϕi − x̂i(t, ϕ1, ϕ2), i = 1, 2. Then, by (15), we
have















y∆1 (t) = Ary1(t) + B̂11y1(ζ(t− τ(t)))

+B̂12y2(ζ(t− τ(t))) − (Ar + B̂11)ϕ1 − B̂12ϕ2,

y2(t) = −B̂21y1(ζ(t− τ(t))) − B̂22y2(ζ(t− τ(t))) + B̂21ϕ1 + B̂22ϕ2 + ϕ2.

By (18) and (19), it holds from Theorem 4 that ϕi � x̂i(t, ϕ1, ϕ2) for t ∈ [0,∞)T.
Then, from (15), we can get x̂∆

1 (t) 6 Arx̂1(t) + ϕ, where ϕ = B̂11ϕ1 + B̂12ϕ2.
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Since Ar ∈ M(T), by Lemma 2, it holds that the argument µ(t)(Aru+ ϕ) + u = eA(σ(t), t)u + µ(t)ϕ
is non-decreasing with vector u. Thus, following the timescale-type comparison principle Theorem 4.1.2
in [37], we have x̂1(t, ϕ1, ϕ2) � z(t, ϕ1), where z(t) is the solution of the comparison system z∆(t) =
Arz(t) + ϕ with initial condition z(0) = ϕ1.

In view of the term (ii) of Lemma 4 and Theorem II.1 in [36], we have ̺(Ar) < 0 and A−1
r � 0.

Introducing v(t) = z(t, ϕ1) +A−1
r ϕ, then v∆(t) = Arv(t). Since ̺(Ar) < 0, the timescale-type Lyapunov

inequality AT
r Q+QAr + µ(t)AT

r QAr < 0 can be true for some Q > 0. Then, by Theorem 4.2 in [38], it
yields limt→∞ v(t) = 0, which implies limt→∞ x̂1(t, ϕ1, ϕ2) � limt→∞ z(t, ϕ1) = −A−1

r ϕ ≺ ϕ1.
By (15) and (19), we have ϕ2 ≻ x̂2(t, ϕ1, ϕ2). Thus, there exist t∗ ∈ [0,∞)T and a constant η ∈ (0, 1),

such that x̂i(t, ϕ1, ϕ2) � ηϕi for any t ∈ [t∗,∞)T. The rest of the proof is similar to Theorem 2 in [30],
so we omit here.

Remark 4. Due to the unboundedness of the time-delay function τ(t), we think it is impossible to make
the algebraic equation of (15) achieve exponential stability. Thus, we consider asymptotical stability of
system (15) in Theorem 5.

5 Application to timescale-type DDSs

As an application, we apply the foregoing results about system (1) and system (14) to DDSs. For
simplicity, we only consider the former.

For system (1), let x = (yT, zT)T, E = ( I

0
), A = ( C 0

D −I
), B = ( 0 G

0 H
), where matrices C, D, G and

H are with proper dimensions, then system (1) can be rewritten as the following timescale-type DDSs:
{

y∆(t) = Cy(t) +Gzt,

z(t) = Dy(t) +Hzt.
(20)

In addition, if B = ( G1 G2

H1 H2
), where matrices Gi and Hi (i = 1, 2) are with proper dimensions, then

system (14) can be rewritten as the following DDSs:
{

y∆(t) = Cy(t) +G1yt +G2zt,

z(t) = Dy(t) +H1yt +H2zt.
(21)

It can be observed that det(sE − A) = det(sI − C). Then, it is assumed that (I, C) is regular and
impulse-free throughout this section. Similar to system (1), systems (20) and (21) can be also transformed
into a system like (2). Therefore, the positivity and stability problems of systems (20) and (21) can be
addressed by Theorems 1, 3–5.

In [21], the positivity and stability of system (20) with bounded time-delays are also investigated. The
related results are introduced in the following theorems.

Theorem 6 ([21]). System (20) is positive if and only if C ∈ M(T), G � 0, D � 0, and H � 0.

Theorem 7 ([21]). System (20) is exponentially stable if there are two positive vectors α and β such
that the following conditions hold:

Cα+Gβ ≺ 0,

Dα+ (H − I)β ≺ 0,

and
(I −H)−1Dα ≺ β.

Moreover, system states y(t) and z(t) respectively satisfy y(t) � Ke⊖γ(t, 0)α and z(t) � Ke⊖γ(t, 0)β,
where t ∈ [0,∞)T, constant K > 0, and constant γ > 0 is related to convergence rate.

However, in the proof of Theorem 7, the actually-used stability criteria are as follows:

Cα+ e⊖γ(λ− τ(λ), λ)Gβ ≺ (⊖γ)α, (22)

Dα+ e⊖γ(λ− τ(λ), λ)Hβ ≺ β, (23)

where λ ∈ [0,∞)T.
The following theorem states the positivity and stability criteria of system (21) with infinite time-delays

in [30].
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Theorem 8 ([20, 30]). Let RD be the set of all right-scattered points in T. Consider system w∆(t) =
Mw(t). If M is Hurwitz, the set S = {t ∈ RD : ̺(I + µ(t)M) > 1} is finite, and ̺(I + µ(t)M) 6 ǫ < 1
for any t ∈ RD ∩ CTS. Then, limt→∞ w(t) = 0.

The comparison between the studies [21, 30] and our work is made in the following remark.

Remark 5. Compared with the results in [21, 30], our work shows its advantages in the following
aspects.

(i) As is stated in Remark 1, the restriction on time-delay function τ(t) is relaxed. In addition, systems
(20) and (21) are special cases of system (1), which means the scope of the studied system in this paper
is wider than those in [21, 30]. Therefore, our results are generalizations of those in [21, 30].

(ii) In light of the condition Dα+ (H − I)β ≺ 0 in Theorem 7 and e⊖γ(λ− τ(λ), λ) = eγ(λ, λ− τ(λ))
(obtained by the term (iv) in Lemma 1), the condition for (23) is that the term eγ(λ, λ − τ(λ)) should
sufficiently approximate to 1. Since the time-delay function τ(t) is given in advance, the constant γ must
be sufficiently small to make (23) hold. As a result, the stability conditions in Theorem 7 are quite strict.
And by noting Definition 4 and ⊖γ = −γ

1+µ(t)γ , both conditions (22) and (23) rely on the time-delay

function τ(t). Moreover, the condition (22) further depends on the function µ(t). Thus, Eqs. (22) and
(23) are conservative. Comparatively, the inequalities (6) and (7) in Theorem 3 are independent of µ(t)
and τ(t). And Eqs. (6) and (7) are easier to be satisfied since all the parameters are constant. In addition,
it can be observed from (6) and (7) that the constant γ does not necessarily have to be sufficiently small.
Thus, the stability conditions in Theorem 3 are less conservative than those in Theorem 7.

(iii) In [30], Theorem 8 is fairly important to analyze the positivity and asymptotical stability of system
(21). However, the conditions that ̺(I+µ(t)M) 6 ǫ < 1 and the set S is finite are not easy to be verified.
The reason is that both of them rely on the function µ(t). Let us consider some types of time scales. If
time scale T is uniform (e.g., T = hZ with constant h > 0), then µ(t) ≡ h. If T is some special kind
of non-uniform time domain, such as T =

⋃

k∈Z
[2k, 2k + 1], then µ(t) ≡ 1 for all right-scattered points

2k+1. For these cases, the above two conditions can be easily verified because µ(t) is constant. However,
in some general cases, such as T = 2Z := {2k : k ∈ Z}, or time scale T with µ(t) 6 µ∗ for some constant
µ∗, the function µ(t) is time varying. As a result, the conditions that ̺(I + µ(t)M) 6 ǫ < 1 and the set
S is finite are difficult to be satisfied. Thus, we consider Theorem 8 is not so effective for the positivity
and asymptotical stability analysis of system (21). Moreover, this issue has also been pointed out in
Remark 5 of [30]. Actually, the proof of Theorem 8 in [20, 30] is based on the timescale-type eigenvalue
criterion. In our recent work [38], asymptotical stability is analyzed by the timescale-type Lyapunov’s
second method. The only requirement on the function µ(t) is bounded above, i.e., µ(t) 6 µ∗ for some
constant µ∗. With this treatment, the conservative issue of Theorem 8 can be relaxed.

6 Illustrated examples

In this section, we consider system (1) with the following parameters [21]:

E =









1 0 0

0 1 0

0 0 0









, A =









−0.9 0.2 0

0.3 −0.8 0

0.5 0.3 −1









,

B =









0 0 0.4

0 0 0.6

0 0 0.3









, T =
⋃

k∈Z

[2k, 2k + 1].

Obviously, the pair (E,A) is regular and impulse free. In the sequel, the considered system with bounded
and infinite time delays is respectively investigated.

6.1 Bounded time delay

First, the time-delay function is the same as the example 2 in [21], i.e., τ(t) = 1 if t = 2k+1, and τ(t) = {t}
if t ∈ [2k, 2k + 1), where {t} is the decimal part of t. When t ∈ [2k, 2k + 1), supt∈T

{µ(ρ(t))} = 0 6 τ(t).
And when t = 2k + 1, supt∈T

{µ(ρ(t))} = 1 6 τ(t). Thus, Hypothesis 2 is satisfied.
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Figure 1 (Color online) Trajectories of system states. (a) and (b) Systems with bounded time delay; (c) system with infinite

time delay.

Let nonsingular matrices P , Q be

P =









1.5 0 0

0 1 0

0 0 −1









and Q =









2
3 0 0

0 1 0
1
3 0.3 1









.

Then, we have

PEQ =









1 0 0

0 1 0

0 0 0









, PAQ =









−0.9 0.3 0

0.2 −0.8 0

0 0 1









, and PBQ =









0.2 0.18 0.6

0.2 0.18 0.6

−0.1 −0.09 −0.3









.

Clearly, Ar ∈ M(T), B̂1j � 0, B̂2j � 0, j = 1, 2, and −B̂22 is Schur. Thus, the considered system is
positive.

Choose the same initial condition as that in the example 2 of [21] and let γ = 0.025. Then, solving
the LMIs (6) and (7) by means of the Matlab toolbox, we can get α = (23.1007, 23.0988)T and β =
6.6454. Therefore, all conditions of Theorem 3 are satisfied, which yields that the considered system is
exponentially stable. Figure 1(a) shows the simulation result.

Next, the time-delay function is chosen as τ(t) = 1.3+ 0.2sint. In this case, t− τ(t) /∈ T can be surely
true for some t. Thus, the stability problem of considered system cannot be addressed by the approaches
in [21]. Fortunately, this problem can be solved by Theorem 3. By noting supt∈T

{µ(ρ(t))} = 1 6 τ1,
Hypothesis 2 is satisfied.

By choosing the forgoing parameters P , Q, γ, α, and β, all conditions of Theorem 3 are also satisfied.
Hence, the considered system is exponentially stable. Figure 1(b) shows the simulation result.

6.2 Infinite time delay

Let the time-delay function be τ(t) = t
2 . By some calculations, we can get ̺(Ar + B̂11 − B̂12(I +

B̂22)
−1B̂21) = −0.0571 < 0. Thus, all conditions of Theorem 5 are satisfied, which yields that the

considered system is asymptotically stable. Figure 1(c) shows the simulation result.
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7 Conclusion

In this paper, the positivity and stability problems of timescale-type LSSs have been investigated. To
analyze the positivity of LSSs with bounded and infinite time delays, some necessary and sufficient criteria
have been obtained. For systems with bounded time delays, exponential stability has been analyzed. For
systems with infinite time delays, asymptotical stability problems have been solved. An example has been
presented to illustrate the effectiveness of the proposed methods. Future work will focus on nonlinear
positive singular systems and stochastic singular systems.
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