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Abstract The steady momentum of innovations has convincingly demonstrated the high capability of at-

tention mechanisms for the sequence to sequence learning. Nevertheless, the computation of attention across

a sequence is often independent in either hard or soft mode, thereby resulting in undesired effects such as

repeated modeling. In this paper, we introduce a new design to holistically explore the interdependencies

between attention histories and locally emphasize the strong focus of each attention on image caption-

ing. Specifically, we present a contextual and selective attention network (namely CoSA-Net) that novelly

memorizes contextual attention and brings out the principal components from each attention. Technically,

CoSA-Net writes/updates the attended image region features into memory and reads from memory when

measuring attention in the next time step to leverage contextual knowledge. Only the regions with the top-k

highest attention scores are selected, and each region feature is individually employed to compute an output

distribution. The final output is an attention-weighted mixture of all k distributions. In turn, the attention

is then upgraded by the posterior distribution conditioned on the output. Our CoSA-Net is appealing given

that it is pluggable to the sentence decoder in any neural captioning model. Extensive experiments on the

COCO image captioning dataset demonstrate the superiority of CoSA-Net. More remarkably, integrating

CoSA-Net to a one-layer long short-term memory (LSTM) decoder increases CIDEr-D performance from

125.2% to 128.5% on the COCO Karpathy test split. When further endowing a two-layer LSTM decoder

with CoSA-Net, the CIDEr-D score is boosted to 129.5%.
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1 Introduction

Vision and language are two fundamental capabilities of human intelligence. Their interactions support
the unique human capacity to discuss what is seen or imagined in a picture given a natural-language
description. The recent development of deep learning has successfully pushed the limits of vision and
language. Image captioning, as one of the “hottest” topics in this area over the past five years, is for
automatically generating a descriptive utterance (usually a sentence) that describes an image content.
The typical framework of neural captioning models is essentially an encoder-decoder structure. An image
is first encoded into one feature vector or a set of region features via a convolutional neural network
(CNN) or region-based CNN (R-CNN), and a decoder of recurrent neural network (RNN) is employed to
generate a natural sentence.

In the literature, a series of innovations has been proposed to boost image captioning. One represen-
tative research direction is to leverage variants of attention mechanisms [1–4], which generally specify
the spatial regions most informative for each output word. Figure 1(a) illustrates the most standard
attention-based decoder.

Despite obtaining performance improvement by these techniques in terms of quantitative scores, the
measure of attention in each time step is often independent, and the connections across attention are
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Figure 1 (Color online) Comparison between (a) a standard attention-based decoder and (b) the decoder in our CoSA-Net.

(a) The standard attention-based decoder independently measures attention in each time step. (b) The decoder in our CoSA-Net

memorizes the attention history through the design of memory and further develops a hybrid attention mechanism to boost image

captioning.

seldom explored. As such, sequential evolution is not yet fully encoded into the attention, and the
results may suffer from the problems of repeated words or incomplete sentence generation. We propose
to mitigate this issue from the viewpoint of memorizing the attention history and capitalizing on such
contextual knowledge to compute the next attention. Moreover, we endow the attention mechanism with
more power by seeking a hybrid of easily trainable soft attention and more accurate but nondifferentiable
hard attention, as shown in Figure 1(b). In our case, we perform hard attention on each of the selected
inputs with the top-k highest attention values and linearly fuse the k output distributions with attention
to predict the word. The attention vector is further improved with the posterior distribution on the
output word at the end of each time step.

By consolidating the exploitation of contextual knowledge and the selection of a strong focus in at-
tention modeling, we present a new contextual and selective attention network (CoSA-Net) to enhance
image captioning. Specifically, faster R-CNN is first exploited to detect a set of image regions whose
features are written into a static memory. Meanwhile, a dynamic memory manages the history of the
sequential attention along the time steps, which the long short-term memory (LSTM) decoder reads
from to measure the current attention on the static memory. At the end of each time step, the dynamic
memory is updated under the guidance of the decoder state. On the basis of the attention vector, we
only employ the image regions with the top-k highest attention values and couple each region individually
to predict the output distribution. All k distributions are linearly averaged with the attention scores to
infer the final prediction, conditioned on which we upgrade the attention by the posterior distribution.
This process iterates as the sentence generation proceeds. Please also note that our CoSA-Net applies to
any decoder structure, e.g., LSTM or Transformer.

The main contribution of this work is the proposal of CoSA-Net to improve the attention mechanism
for captioning. The solution also leads to an elegant view of how to integrate the sequential context into
attention estimation and how to devise an attention scheme of mixing soft and hard modes, which are
problems not yet fully studied. Our CoSA-Net could be considered a common attention refiner and is
readily pluggable into any neural captioning model. The remaining sections are organized as follows.
Section 2 describes the related works. Section 3 reviews the standard soft and hard attention-based
networks, and Section 4 presents our CoSA-Net. Section 5 provides the experimental results for the
image captioning task, followed by the conclusion in Section 6.

2 Related work

2.1 Image captioning

Recent studies for image captioning mainly take the standard paradigm of encoder-decoder, which is
usually implemented with a CNN plus RNN framework [1,4–25]. Show and tell [7] is an early masterpiece
that capitalizes on LSTM to conduct sequence learning conditioned on the image feature derived from
CNN. Xu et al. [4] took one step further to explore the attention mechanisms, which enable the model
to learn the alignments between captions and visual objects from scratch. Later on, semantic attributes
are incorporated into image captioning as an additional input to the decoder [9, 15]. The captioning
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performance is further boosted with the proposal of the self-critical training strategy [14]. By applying
the self-critical training strategy and taking the sampling operation, the discrepancy between training and
inference can be mitigated. Object level region features are exploited in the Up-Down model, in which
Anderson et al. [1] detected a set of image regions with faster R-CNN and then extracted features. This
work is further extended by Yao et al. [16] via modeling the relations between the objects and injecting
the relations into the two-layer LSTM decoder to enhance caption generation. Ref. [26] presented a
recurrent fusion network to exploit the interactions among multiple image encoders, aiming to produce
more informative intermediate features for the decoder and thus enhance image captioning. Recently, by
integrating the inductive bias of language generation into the encoder-decoder structure, Ref. [27] further
bridged the gap between visual content and natural sentence with scene graph. Wang et al. [28] imitated
the way that humans write captions with a recall mechanism in the cross-entropy optimization phase and
a recalled-word reward in the CIDEr optimization phase. Considering that it could be easier to modify
existing captions than to generate new ones, Ref. [29] explored fixing the details of an existing caption
with a Copy-LSTM. Most recently, the captioning performance greatly benefits from the vision-language
pretraining models which can provide better visual features [30–33]. This makes a new way for improving
image captioning from a different angle.

2.2 Attention-based methods for image captioning

Inspired by sequence learning tasks such as machine translation, the attention mechanism, which is
popular in various tasks [34–37], has brought significant improvements for image captioning [1–4,38–44].
Given several region features of an image, the attention mechanism is to assign different importance
scores to each of the regions. The decoder is thus exposed to the information which is more related to
the decoding state and is able to produce more accurate descriptions. There are two main principles to
incorporate the attention: soft attention and hard attention. Soft attention is the most popular attention
mechanism for image captioning methods, which is firstly employed by Xu et al. [4]. In soft attention, all
the region features are linearly averaged to form a context vector that will be fed into the decoder. Xu
et al. [4] also explored merely sampling one region feature according to the probabilities (i.e., importance
scores), which is known as the hard attention mechanism. Due to the sampling operation, hard attention
is non-differentiable and REINFORCE [45] is required to learn such attention. Later on, Anderson et
al. [1] incorporated the features extracted from detection models and devised a two-layer based LSTM
model, where the hidden state from the first LSTM is exploited to derive the attended feature that is
in turn fed into the second LSTM. Qin et al. [2] further extended [1] by leveraging the attended feature
from the previous time step to compute attention scores and predicting forward to make better use of
future information. By proposing a spatio-temporal memory attention mechanism, Ji et al. [20] leveraged
the spatial-temporal relationship for image captioning. Moreover, Huang et al. [46] brought the idea
of self-attention from the transformer [3] into the image captioning task and enhanced the attention by
applying a novel attention on attention module to the encoder and decoder.

Despite leading to performance improvement, the attentions in different time steps are often considered
independently and the connections across attention are seldom explored in the existing studies. In
contrast, we devise a novel memory network to exploit the contextual knowledge by memorizing the
attention history, conditioned on which the next attention is computed. As such, the sequential context
is integrated into attention measurement. In addition, a hybrid attention mechanism is proposed to fuse
soft and hard attention to enhance the attention vector, which is further upgraded with the posterior
distribution on the output word.

2.3 Memory-augmented neural networks

With the capability of effectively managing sequential data, the memory network [47–49] has been a
focus for recent years. In short, it stores the historical hidden states with a memory matrix, then reads
and updates the memory matrix along the process. To read the memory, the attention mechanism is
often adopted, according to which the memory is selectively read out. Based on [48], Sukhbaatar et
al. [50] extended the memory network and trained it in an end-to-end manner. Such an architecture
requires less supervision in training and thus is more general. Later on, the memory-augmented neural
networks are successfully applied to several application tasks, such as neural machine translation [51,52],
textual/visual question answering [53, 54], knowledge tracking [55], sequential recommendation [56], and
object tracking [57].
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Inspired by the above memory-augmented neural networks, we propose to exploit the contextual knowl-
edge by memorizing the attention history with a static-dynamic memory network in this paper, which is
still a problem not yet fully studied.

3 Standard attention-based networks

Soft attention. We firstly take a brief review of the standard soft attention-based networks (SANs) [4],
which is widely adopted in a series of image captioning techniques under the encoder-decoder structure.
In general, given an input image I, the goal of image captioning is to generate a descriptive sentence,
defined as S = {y1, y2, . . . , yn} (yi denotes the i-th word in the sentence). For image encoder, SANs
typically take CNN or R-CNN to extract a set of region features v1:M = {v1,v2, . . . ,vM} ∈ R

M×Dv . For
a sentence decoder, LSTM is often adopted to produce words conditioned on the region features.

Formally, at each time step t, SANs learn where to look according to the decoding state ht−1 ∈ R
Dh

and the region features v1:M . The distribution of attention αt over all regions can be computed as

αt = softmax(fatt(ht−1,v1:M )), (1)

where fatt is the function that scores how much ht−1 attends to v1:M . The joint image representation is
the weighted average of the region features: v̂t =

∑
i αt,ivi, where αt,i is the i-th element in αt. Then,

the concatenation of the attended feature v̂t and the embedding of the input word yt−1 ∈ R
Dy is fed into

LSTM to obtain ht, which is taken as the resulting state to predict the next word yt. Hence, the output
word probability for yt is

P (yt|y1:t−1,v1:M ) = P (yt|y1:t−1, v̂t). (2)

Hard attention. Instead of attending to all regions {v1, v2, . . . , vM}, the hard attention mechanism [4]
aligns output distribution with exactly one sampled region vm̃. The region vm̃ is obtained according to
the attention score αt,m̃, which is sampled from the attention distribution αt:

αt,m̃ ∼ Multinoulli(αt). (3)

Because of the sampling operation, non-differentiable training is required to teach the network to choose
that state and the gradient is subject to high variance. To reduce the variance, Xu et al. [4] combined
REINFORCE with hard attention.

In summary, the soft attention mechanism assigns attention weights to all input states, which is end-
to-end differentiable and easy to implement. In contrast, the hard attention mechanism only chooses one
input state to infer the output distribution. Though a non-differentiable training strategy is needed for
optimization, the hard attention mechanism is found to be more accurate than soft attention in [58].

4 CoSA-Net for image captioning

We present a new CoSA-Net to facilitate image captioning by the exploitation of contextual knowledge
and the selection of strong focus in attention modeling. Figure 2 depicts the overview of the proposed
CoSA-Net.

4.1 Overview

The whole architecture has three main components: an image encoder, a static-dynamic memory module
(SDM) and an LSTM decoder with the hybrid attention mechanism (HAM). First of all, in image encoder,
CoSA-Net extracts a set of region features v1:M with faster R-CNN. The region features are then written
into SDM as the static memory ms on one hand, and fed into LSTM decoder with the form of mean-
pooled feature v̄ = 1

M

∑M

i vi on the other hand. In addition to the static memory ms, SDM also
manages a dynamic memory md which is updated along with the decoding process, aiming to memorize
the attention history and thus to capitalize on such contextual knowledge to compute the next attention.
Specifically, at each time step, LSTM decoder reads from the dynamic memorymd to measure the current
attention vector αt over the static memory ms. The dynamic memory md is then updated under the
guidance of the decoder state ht at the end of each time step.
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Figure 2 (Color online) Overview of CoSA-Net for image captioning. Faster R-CNN is first exploited to detect a set of image

regions. The region features are then written into a static-dynamic memory module (SDM) as the static memory and fed into the

LSTM decoder in the form of a mean-pooled feature v̄. The LSTM decoder then reads from the dynamic memory to compute the

current attention vector and further update the dynamic memory under the guidance of the decoder state. To predict the output

distribution, the decoder adopts the hybrid attention mechanism (HAM) which is a hybrid of soft attention and hard attention.

Finally, the attention vector is upgraded by the posterior distribution conditioned on the output word to refine the attended feature

in the next time step.

Taking inspiration from easily trainable soft attention and the more accurate but non-
differentiable hard attention, we design the hybrid attention mechanism to further strengthen the at-
tention modeling with a hybrid of soft and hard attention. Such design not only seeks more accurate
attention by coupling input states individually to the output as in hard attention, but also benefits from
the end-to-end differentiability of soft attention. Note that different from the primary hard attention
which often suffers from the high variance of Monte-Carlo sampling gradients, our HAM approximates
the hard attention in an easily trainable way by aggregating the output distributions of top-k input states
with the highest attention weights. In particular, we select the regions with top-k highest attention scores
in αt to model hard attention. Each selected region is individually leveraged to compute an output dis-
tribution. All the k output distributions are then linearly fused with original attention weights from αt

to predict the next word yt. At the end of each time step, the attention vector αt is further upgraded to
the posterior attention βt by the posterior distribution conditioned on the output word yt to refine the
attended feature at the next time step.

Next, we introduce the two core modules in our CoSA-Net, i.e., SDM and HAM, in detail. Recall that
our CoSA-Net is applicable to any decoder structure; here we first present the two modules in the context
of a basic decoder with one-layer LSTM for simplicity.

4.2 Static-dynamic memory

SDM contains two kinds of memories: a static memory and a dynamic memory. The fixed static memory
ms stores the region features v1:M , whereas the dynamic one md manages the history of the sequential
attention along decoding time steps. Both of them are initialized by v1:M . The m-th memory slot in
ms/md corresponds to the m-th region.

Read from SDM. At each time step, LSTM decoder reads the two memories in SDM to measure
attention by exploiting the attention history. Details of attention measurement from memory can be
referred to Subsection 4.3.

Update/Write into SDM. At the end of each time step, we update the dynamic memory and write
the memory back to SDM under the guidance of the current decoder state ht. Figure 3 details the
update. As such, the history of the sequential attention is memorized in time. Inspired by the gate units
in memory networks [47,51,59], we adopt a forget gate gf ∈ R

Dh and an add gate ga ∈ R
Dh to determine

which parts of the previous memory md
t−1 should be forgotten and what information from the current

state ht should be added, respectively. Specifically, gf and ga are calculated as

gf = sigmoid(W f
u ht) and ga = sigmoid(W a

uht), (4)
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where W f
u , W

a
u are transformation matrices and W f

u ∈ R
Dh×Dh , W a

u ∈ R
Dh×Dh . Next, we measure the

similarity between each memory slot and current decoder state ht, which leads to normalized similarity
vectors γf

t , γ
a
t ∈ R

M over all memory slots as

rft,i = w1[tanh(W
h
1 ht +Wm

1 md
t−1,i)], γf

t = softmax(rf
t ),

rat,i = w2[tanh(W
h
2 ht +Wm

2 md
t−1,i)], γa

t = softmax(ra
t ),

(5)

where rft,i is the i-th element of rf
t and rat,i is the i-th element of ra

t , w1,w2 ∈ R
1×Du , W h

1 ,W
h
2 ∈ R

Du×Dh ,

Wm
1 ,Wm

2 ∈ R
Du×Dm . The forgetting content F ∈ R

M×Dh and the adding information A ∈ R
M×Dh are

then obtained by applying the two gates to the normalized similarity vectors γf
t , γ

a
t :

F = γf
t g

T
f and A = γa

t g
T
a . (6)

The dynamic memory is finally updated as

md
t = md

t−1 ⊙ (1− F ) +A, (7)

where ⊙ denotes element-wise multiplication.

4.3 Decoder with the hybrid attention mechanism

To facilitate attention estimation in decoder, we devise an HAM to additionally emphasize the focus
on the regions with top-k highest attention scores by mixing soft and hard attention. Such design not
only seeks more accurate attention through the hard attention over the selected regions with the highest
attention scores, but also makes HAM end-to-end differentiable and easy to implement. After that, the
learned attention vector is further enhanced with the posterior distribution.

Figure 4 illustrates the pipeline of our hybrid attention mechanism. Such a mechanism firstly employs
soft attention to calculate an attention vector αt that measures the importance of each slot in the static
memory ms, which is then utilized to produce context output distributions P s and P h over vocabulary
at soft and hard attention mode, respectively. The two derived distributions are subsequently fused with
the original output distribution P conditioned on the hidden state ht to predict the next word yt. Finally,
αt is refined to the posterior attention βt depending on the context posterior distribution of yt from the
hybrid attention mechanism at hard attention mode.

Formally, at time step t, LSTM outputs state ht as

ht = LSTM(ht−1,xt) and xt = [et−1, v̄,yt−1], (8)

where the input contextual information xt is obtained by concatenating the input word yt−1, the mean-
pooled image feature v̄, and the attended feature et−1 =

∑
i βt−1,im

s
i with the posterior attention βt−1

from the previous time step.
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Figure 4 (Color online) Pipeline of the hybrid attention mechanism. At time step t, depending on hidden state ht, the LSTM

decoder reads from the dynamic memory m
d
t−1 in the SDM and computes the attention vector αt. Next, soft attention and hard

attention are performed conditioned on αt. For the soft attention mode, we first obtain the attended image feature, based on which

we produce the soft context information and further obtain the soft context output distribution P s. For the hard attention mode,

we select the image regions with the top-k highest attention values in αt. After that, we collect the hard context information for

each selected region and predict k distributions over the vocabulary. Depending on these output distributions, the final prediction

of the next word yt is performed. Finally, we leverage the posterior distribution of yt to enhance the attention vector αt as the

posterior attention βt. The posterior attention is then applied to all regional features to obtain the attended image feature et,

which guides the decoding phase in the next time step.

Hybrid attention. Depending on the current hidden state ht, the LSTM decoder reads from the
dynamic memory md

t−1 in the SDM, and learns how much to attend to the static memory ms. The
attention value αt,i for the i-th region in the vector αt is thus computed as

αt,i =
exp(at,i)

ΣM
j=1exp(at,j)

, at,i = wT
a tanh(W

h
a ht +Wm

a md
t−1,i), (9)

where W h
a , W

m
a are transformation matrices and W h

a ∈ R
Da×Dh , Wm

a ∈ R
Da×Dm , wa ∈ R

Da .
Conditioned on the attention vector αt, both soft attention and hard attention are performed, which

we refer to as soft and hard attention mode in the hybrid attention mechanism, respectively. In the soft
attention mode, we firstly obtain the attended image feature m̂s

t =
∑

i αt,im
s
i given the attention vector

αt derived from soft attention overall image regions as mentioned above. Next, we treat the concatenation
of the attended image feature m̂s

t and the LSTM hidden state ht as the soft context information, which
is formulated as

ct = σ([m̂s
t ,ht]), (10)

where σ is a gated linear unit (GLU) [60]. The soft context information ct is further leveraged to produce
the soft context output distribution P s:

P s(yt|y1:t−1, ct) = softmax(f(ct)), (11)

where f(·) is a linear layer. In hard attention mode, we select regions with top-k highest attention values
in αt. The hard attention mechanism is then performed over the selected k regions. More specifically, we
collect hard context information zt,j for each selected region by concatenating region feature ms

j with
hidden state ht:

zt,j = σ([ms
j ,ht]). (12)

As such, the hard context information zt,j for each selected region is further leveraged to predict the
distribution over vocabulary individually:

P (yt|y1:t−1, zt,j) = softmax(f(zt,j)). (13)

All k distributions of the selected regions are then aggregated with the normalized attention weights from
αt, and the hard context output distribution P h is computed by

P h(yt|y1:t−1,Zt) =

k∑

j=1

α′
t,jP (yt|y1:t−1, zt,j), (14)
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where α′
t,j =

αt,j∑
r
αt,r

.

Word prediction. The final prediction of the next word yt is performed depending on the com-
bination of the soft context output distribution P s(yt|y1:t−1, ct), the hard context output distribution
P h(yt|y1:t−1,Zt), and the distribution P (yt|y1:t−1,ht) conditioned on ht:

P (yt|y1:t−1,ht, ct,Zt) = [P s(yt|y1:t−1, ct) + P h(yt|y1:t−1,Zt) + P (yt|y1:t−1,ht)]/3. (15)

Attention refinement. Taking the inspiration from posterior attention models [61], we leverage
the posterior distribution of the predicted word yt to enhance the attention vector αt as the posterior
attention βt. The spirit behind follows the philosophy that the posterior attention, which is obtained
conditioned on the current output, is more closely associated with the real output and thus is more
accurate. Specifically, the posterior attention βt is computed as

βt,i =
p(yt|y1:t−1, zt,i)αt,i∑
s p(yt|y1:t−1, zt,s)αt,s

, (16)

where p(yt|y1:t−1, zt,s) denotes the predicted probability for yt from the distribution P (yt|y1:t−1, zt,s) at
hard attention mode. For the remaining M − k regions, βt,i is set to be zero as a mask. In this way,
the top-k attention values are refined by mixing the soft and hard attention. The posterior attention
is then applied to all the region features to obtain the attended image feature et =

∑
i βt,im

s
i . The

attended feature will be fed into the LSTM as part of the input contextual information at the next
time step (xt+1 = [et, v̄,yt], similar to (8)) and guide the decoding phase again. It is notable that
when the current predicted word is not directly correlated to a visual feature, the predicted probabilities
p(yt|y1:t−1, zt,s) of the word are observed to be extremely small. To alleviate the negative impact that
may arise, we adopt a threshold ρ to determine whether to conduct refinement. If the summation of the
k predicted probabilities is less than ρ, the attention will remain unchanged.

4.4 Up-Down with CoSA-Net

Since we design our CoSA-Net architecture to be a common attention refiner that strengthens attention
modeling via the exploitation of contextual knowledge and the selection of strong focus regions, it is
feasible to plug CoSA-Net into any decoder structure. We next present how to integrate our CoSA-Net
into Up-Down [1] with respect to two-layer LSTM, as shown in Figure 5. Specifically, at time step t, the
input of the first LSTM is

x1
t = [h2

t−1, et−1, v̄,yt−1], (17)

where h2
t−1 is the previous output hidden state of the second LSTM. x1

t is fed into the first LSTM to
obtain the state h1

t . After that, we compute the attention distribution αt with the newly obtained h1
t

and the dynamic memory md
t−1 from the previous time. The attended feature m̂s

t =
∑

i αt,im
s
i and h1

t

are concatenated as the input of the second LSTM. The output hidden state h2
t is thus given by

h2
t = LSTM(h2

t−1, [h
1
t , m̂

s
t ]). (18)

To predict the current word yt, we still combine the soft context information ct and the hard context
information zt,j for the regions having the top-k attention values as

ct = σ([m̂s
t ,h

2
t ]) and zt,j = σ([ms

j ,h
2
t ]). (19)

The same combination strategy is adopted when computing the distribution over possible words as in
Subsection 4.3. Given the current word yt, the attention vector is refined with the posterior distribution
to get a more accurate attention distribution βt, which has a more direct correlation with the current
output. Similarly, the refined attended feature et is fed into the first LSTM at the next time step to
effectively incorporate βt into the following decoding phase.

In the meanwhile, we update dynamic memory conditioned on the hidden state from the second LSTM.
Different from Subsection 4.2, we compute the two gates gf , ga and the weights γf

t , γ
a
t according to h2

t :

gf = sigmoid(W f
u h

2
t ), ga = sigmoid(W a

uh
2
t ), (20)

rft,i = w1[tanh(W
h
1 h

2
t +Wm

1 md
t−1,i)], γf

t = softmax(rf
t ), (21)

rat,i = w2[tanh(W
h
2 h

2
t +Wm

2 md
t−1,i)], γa

t = softmax(ra
t ), (22)

where gf , ga and γf
t , γ

a
t are then leveraged to compute the forgetting content F , the adding information

A, and finally the updated memory md
t , which is then delivered to the next time step.
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Figure 5 (Color online) Illustration of how to integrate our CoSA-Net into an Up-Down structure with respect to a two-layer

LSTM.

5 Experiments

5.1 Datasets and settings

Dataset and evaluation metrics. We conduct experiments on the widely-adopted MS COCO
dataset [62]. The dataset contains 123287 images in total, in which 82783 images are used for train-
ing and the rest are used for validation. Each image is annotated with at least 5 captions. In our
experiments, we follow [1] and take the “Karpathy” split (5000 for validation, 5000 for testing and the
rest for training) for a fair comparison. Following [63], we convert all the sentences into lowercase and
establish a vocabulary with the words occurring more than 4 times. Standard evaluation metrics includ-
ing METEOR [64], CIDEr-D [65], BLEU@N [66], ROUGE-L [67] and SPICE [68] are measured by using
officially released codes1).

Compared methods. (1) LSTM [7] feeds image features extracted from the encoder into an LSTM
decoder at the first time step and produces sentences. (2) SCST [14] proposes a self-critical training
strategy which directly optimizes the captioning model with CIDEr-D score. (3) LSTM-A [15] explores
semantic attributes and takes them as the additional input to the decoder. (4) Up-Down [1] extends region
features to the object level and devises a two-layer based decoder. (5) RFNet [26] fuses multiple encoders
with a novel recurrent fusion network to enhance the encoder features. (6) GCN-LSTM [16] upgrades
the object-level features in [1] by exploring relationships between objects. (7) SGAE [27] leverages the
scene graph representation and a shared dictionary to guide the decoding phase. (8) LBPF [2] extends [1]
by utilizing future information for the current prediction. (9) Base1-LSTM and Base2-LSTM are the re-
implementations of [1, 14] based on our experimental setting. Base1-LSTM + CoSA-Net and Base2-LSTM

+ CoSA-Net are our proposals by plugging the designed CoSA-Net into [1, 14].

Implementation details. The region features utilized in this paper are extracted from the pre-trained
object detector on the visual genome as in [1]. Each image has 10–100 regions, which are represented
as 2048-dimensional vectors, respectively. The vectors are embedded to the dimension of 1000, which is
equal to the dimension of hidden states in LSTM and the embedding size of input words. The number k
of the selected regions is set as 12 and we set the threshold ρ for attention refinement as 0.1. To alleviate
the sparsity induced by the top-k operation, the posterior attention is augmented with the values from
standard soft attention and the two distributions are combined with the same weight in our experiments
as in [61]. We implement the proposed CoSA-Net based on PyTorch, with Adam [69] as the optimizer.
The learning rate for training CoSA-Net under cross-entropy loss is initialized as 2× 10−4, with a mini-
batch size of 10. After being trained with cross-entropy loss for 30 epochs, we select the model which
achieves the best CIDEr-D score on a validation set as the initial model for self-critical learning. The
learning rate is set as 2×10−5 and the model is optimized with the CIDEr-D score for another 30 epochs.
In the inference stage, the beam search strategy is adopted and the beam size is set to 2.

1) https://github.com/tylin/coco-caption.
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Table 1 Performance (%) of our CoSA-Net and other state-of-the-art methods on MS-COCO Karpathy test split, where C, M,

S, B@4, and R are short for CIDEr-D, METEOR, SPICE, BLEU@4, and ROUGE-L scores

Cross-entropy loss CIDEr-D score optimization

C M S B@4 R C M S B@4 R

LSTM [7] 94.0 25.2 – 29.6 52.6 106.3 25.5 – 31.9 54.3

SCST [14] 99.4 25.9 – 30.0 53.4 114.0 26.7 – 34.2 55.7

LSTM-A [15] 108.8 26.9 20.0 35.2 55.8 118.3 27.3 20.8 35.5 56.8

Up-Down [1] 113.5 27.0 20.3 36.2 56.4 120.1 27.7 21.4 36.3 56.9

RFNet [26] 116.3 27.9 20.8 37.0 57.3 125.7 28.3 21.7 37.9 58.3

GCN-LSTMspa [16] 115.6 27.8 20.8 36.5 56.8 127.0 28.4 21.9 37.8 58.1

GCN-LSTMsem [16] 116.3 27.9 20.9 36.8 57.0 127.6 28.5 22.0 38.2 58.3

SGAE [27] – – – – – 127.7 28.4 22.1 38.4 58.6

LBPF [2] 116.4 28.1 21.2 37.4 57.5 127.6 28.5 22.0 38.3 58.4

Base1-LSTM 114.0 27.6 20.8 36.3 56.8 125.2 28.3 21.8 37.6 58.1

Base1-LSTM + CoSA-Net 116.9 28.1 21.2 36.7 57.2 128.5 28.8 22.4 38.5 58.6

Base2-LSTM 115.1 28.0 21.1 36.5 57.1 127.6 28.5 22.0 38.5 58.5

Base2-LSTM + CoSA-Net 117.3 28.3 21.3 37.1 57.5 129.5 29.0 22.5 39.0 58.7

Table 2 Performance (%) of our CoSA-Net and other state-of-the-art methods with model ensembles, where C, M, S, B@4, and

R are short for CIDEr-D, METEOR, SPICE, BLEU@4, and ROUGE-L scores

Cross-entropy loss CIDEr-D score optimization

C M S B@4 R C M S B@4 R

SCST [14] 106.5 26.7 – 32.8 55.1 117.5 27.1 – 35.4 56.6

RFNet [26] 116.3 27.9 20.8 37.0 57.3 125.7 28.3 21.7 37.9 58.3

GCN-LSTM [16] 117.1 28.1 21.1 37.1 57.2 128.7 28.6 22.1 38.3 58.5

SGAE [27] – – – – – 129.1 28.4 22.2 39.0 58.9

Base1-LSTM + CoSA-Net 118.3 28.4 21.4 37.4 57.6 130.7 29.0 22.6 39.6 59.1

Base2-LSTM + CoSA-Net 119.0 28.4 21.5 37.3 57.6 131.0 29.1 22.7 39.7 59.2

5.2 Quantitative analysis

We compare with several state-of-the-art methods and summarize the performances in Table 1. Overall,
CoSA-Net exhibits better performances than the non-attention approaches (LSTM and LSTM-A) and
the attention-based models (SCST, Up-Down, RFNet, GCN-LSTM, SGAE, and LBPF) in terms of
CIDEr-D, SPICE, and METEOR. With the optimization on cross-entropy loss, Base1-LSTM + CoSA-Net
and Base2-LSTM + CoSA-Net lead to the absolute improvement over Base1-LSTM and Base2-LSTM by
2.9% and 2.2%, respectively, in CIDEr-D. The results basically indicate the advantage of exploiting the
dependency among attention history and emphasizing the strong focus in each attention by seeking a
hybrid of soft and hard attention. Furthermore, LSTM-A, which injects semantic attributes into decoders,
outperforms LSTM with a large margin. Nevertheless, the attention-based models (SCST, Up-Down,
RFNet, GCN-LSTM, SGAE, and LBPF) still yield better performances than LSTM-A. That verifies the
impact of the attention mechanism. By further exploring the dependency among attention history and
leveraging the hybrid attention mechanism, Base1-LSTM + CoSA-Net and Base2-LSTM + CoSA-Net are
superior to SCST and Up-Down. In addition, when being optimized with CIDEr-D, the CIDEr-D score
of Base2-LSTM + CoSA-Net is boosted up to 129.5%. As expected, the results indicate that employing a
self-critical training strategy can effectively alleviate the gap between training and inference. Similar to
the observations on the optimization with cross-entropy loss, Base1-LSTM + CoSA-Net and Base2-LSTM

+ CoSA-Net outperform Base1-LSTM and Base2-LSTM by 3.3% and 1.9% in CIDEr-D, respectively, when
being optimized with CIDEr-D.

We further conduct evaluations by ensembling multiple models with different parameter initializations
in our CoSA-Net. Table 2 details the performance comparison between CoSA-Net and other state-of-
the-art methods with model ensembles. As shown in Table 2, the ensembled CoSA-Net exhibits better
performance against the other attention-based models (SCST, RFNet, GCN-LSTM, and SGAE) across
all the metrics, which demonstrates the effectiveness of the memory module and the hybrid attention in
our CoSA-Net.
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Table 3 Leaderboard of state-of-the-art methods on the online MS-COCO test server, where B@N , M, R, and C are short for

BLEU@N , METEOR, ROUGE-L, and CIDEr-D scores

B@1 B@2 B@3 B@4 M R C

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

SCST [14] 78.1 93.7 61.9 86.0 47.0 75.9 35.2 64.5 27.0 35.5 56.3 70.7 114.7 116.7

LSTM-A [15] 78.7 93.7 62.7 86.7 47.6 76.5 35.6 65.2 27.0 35.4 56.4 70.5 116.0 118.0

Up-Down [1] 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5

RFNet [26] 80.4 95.0 64.9 89.3 50.1 80.1 38.0 69.2 28.2 37.2 58.2 73.1 122.9 125.1

SGAE [27] 81.0 95.3 65.6 89.5 50.7 80.4 38.5 69.7 28.2 37.2 58.6 73.6 123.8 126.5

GCN-LSTM [16] 80.8 95.2 65.5 89.3 50.8 80.3 38.7 69.7 28.5 37.6 58.5 73.4 125.3 126.5

Base1-LSTM + CoSA-Net 81.0 95.4 65.6 89.8 50.9 81.1 38.9 70.7 28.8 38.1 58.8 74.1 126.0 128.4

Base2-LSTM + CoSA-Net 81.0 95.4 65.7 89.9 51.0 81.2 39.0 70.9 28.8 38.3 58.8 74.1 126.2 128.5

Table 4 Performance contribution of each component in CoSA

Method HAM AttRef SDM C

Base1-LSTM 114.0

+ HAM
√

115.9

+ HAM, AttRef
√ √

116.4

+ SDM
√

115.3

Base1-LSTM + CoSA-Net
√ √ √

116.9

5.3 Online evaluation

To fully verify the effectiveness of the proposed method, we additionally evaluate our CoSA-Net on the
online MS-COCO test server. Table 3 summarizes the performance leaderboard on the official testing set
with 5 reference captions (c5) and 40 reference captions (c40). Compared to the published top-performing
methods on the leaderboard, our CoSA-Net shows better performance across all evaluation metrics. The
results again demonstrate the advantage of memorizing the contextual attention and focusing on the
principal components from each attention for image captioning.

5.4 Ablation study

Effect of the individual component. In order to examine how each component in CoSA influences
the overall performance, we conduct an ablation study in Table 4 by successively taking HAM, attention
refinement (AttRef) and SDM into Base1-LSTM. Compared to Base1-LSTM which is only equipped with
soft attention, the proposed HAM increases the performances by 1.9% in CIDEr-D. HAM is benefited
from the subtle mix of soft and hard attention, and empowers Base1-LSTM with the capability of globally
attending to all the regions in the image and locally emphasizing the top-k most important regions
simultaneously. Moreover, the use of AttRef boosts the CIDEr-D score from 115.9% to 116.4%. Such
results indicate that the posterior distributions of the output word derived from HAM can effectively
associate the attention vector with the real output, and thus produce a more accurate visual context to
guide the decoder at the next time step. To verify the effectiveness of SDM, we also experiment by directly
integrating Base1-LSTM with SDM to strengthen the soft attention with attention history. The CIDEr-D
score of Base1-LSTM + SDM is 115.3%, which is higher than 114.0% of Base1-LSTM. This validates the
impact of memorizing and dynamically updating the sequential context of attention for enhancing caption
generation. In addition, adopting HAM and SDM together finally improves the performance to 116.9%
in CIDEr-D score.

Effect of the number of selected regions in HAM. Next, we investigate the effect of the number
of selected regions with the highest attention values in HAM. Figure 6(a) details the results of Base1-LSTM

+ CoSA-Net with different number k varying from 6 to 24. The best performance is achieved when k
is 12. In particular, once the number of selected regions is larger than 12, the performance slightly
decreases. We speculate that this may be the result of involving more invalid regions and that double
proves the motivation of focusing on the top-k regions with the highest attention scores in HAM.

Effect of the threshold in attention refinement. Figure 6(b) details the effect of the threshold ρ
in attention refinement. As shown in Figure 6(b), the highest CIDEr-D score is attained when ρ is 0.1. In
the case that ρ is smaller than 0.1, the posterior attention is applied to refine the attended image feature
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Figure 7 (Color online) The visualization of attention with the respect to time step for Base1-LSTM (a) and Base1-LSTM +

CoSA-Net ((b) for attention αt, (c) for the refined βt). The image region with maximum attention weight in each decoding step is

highlighted in red.

at each decoding step, even when the current predicted word is not directly correlated to visual feature
(i.e., the summation of the attention values of the top-k regions is small). This inevitably results in the
inferior performances. Moreover, when ρ is larger than 0.1, the performance is slightly dropped, since
the additional process of attention refinement is easily omitted and the top-k attention values remain
unchanged. The results basically verify the merit of exploiting the posterior distribution of the output
word for attention refinement.

5.5 The visualization of attention

To demonstrate how attention transits among object regions during the caption generation, we visualize
the attention learned by Base1-LSTM, the attention αt, and the posterior attention βt in Base1-LSTM +
CoSA-Net in each time step from row (a) to row (c) in Figure 7, respectively. The transparency of each
region box indicates the corresponding strength of focus, and the red bounding box represents the region
with the highest attention score. Obviously, Base1-LSTM fails to focus on either “couch” or “table” in row
(a) by merely adopting soft attention while “table” is successfully attended to in row (b) by incorporating
the sequential context into soft attention through the SDM in Base1-LSTM + CoSA-Net. Moreover, after
applying AttRef, “couch” and “table” are pinpointed by Base1-LSTM + CoSA-Net in row (c), which
indicates that upgrading the attention vector αt to βt conditioned on the posterior distribution of the
output word can effectively enhance the alignments between visual objects and captions. Such results
again verify the superiority of CoSA-Net.

5.6 Qualitative analysis

Figure 8 showcases several image examples with captions produced by Base1-LSTM, Base1-LSTM + CoSA-
Net, and ground truth annotations. As illustrated in the exemplar results, the sentences from Base1-LSTM+
CoSA-Net are more coherent and accurate. For example, in the first row, compared to Base1-LSTM, which
ignores the “table” in the image, the sentence by Base1-LSTM + CoSA-Net mentions “table” and depicts
the image content more accurately by capitalizing on the attention history and attending to more re-
gions. This result proves the reasonableness of exploiting the dependency among attention histories and
the subtle mix of soft and hard attention to boost image captioning.
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Image Captions GTs

Base
1-LSTM

: A cat sitting on top of a glass of wine.

+ CoSA-Net: A cat sitting on a table next to a glass of wine.

A cat leaning on top of a wooden table.

A cat with its paws on a table near a glass of wine. 

A cat with its front paws on the table.

Base
1-LSTM

: A woman sitting at a table with a table.

+ CoSA-Net: A woman sitting at a table in a restaurant. 

A woman with beautiful breast sitting at a table.

A person sitting at a table with food and a drink.

Young women gazing pensively left while sitting in a 

restaurant. 

Base
1-LSTM

: A group of elephants standing next to each 

other.

+ CoSA-Net: A group of elephants standing next to a fence.

Two elephants standing behind a rope in an enclosure.

A couple of elephants standing next to each other.

Two large elephants waiting to enter their shelter.

Base
1-LSTM

: A group of zebras grazing in a field of grass.

+ CoSA-Net: A group of zebras grazing in the grass near a 

body of water. 

Several zebras eat the green grass in the pasture.

Two zebras and another animal grazing in the grass.

Three zebra in the middle of a field with a body of 

water in the distance. 

Base
1-LSTM

: A man and a woman sitting on a table with a 

banana.

+ CoSA-Net: A young boy wearing a bunch of bananas on 

his head.

A person wearing a banana headdress and necklace.

A lady dressed in a blue and purple outfit wearing a 

hat made of fruit.

A person wearing a hat made out of yellow bananas.

Base
1-LSTM

: A cat laying on top of a book.

+ CoSA-Net: A cat sleeping on top of a book.

A cat is laying next to a blue book.

A cat is sleeping in front of a book.

A cat sleeping next to a book on the floor.

Base
1-LSTM

: A man sitting on a chair in a living room.

+ CoSA-Net: A man sitting on a chair holding a wii game 

controller.

A man in a chair holding a Wii remote.

A person that is playing a video game.

A bearded man is sitting in a chair with a controller.

Base
1-LSTM

: A group of boats are sitting in the water.

+ CoSA-Net: A group of boats are sitting on the beach.

Several beached boats on the sand with orange balls 

hanging over the sides.

A large number of boats that have been beached.

The ships are all docked on the beach by the water.

Figure 8 (Color online) Examples for captions generated by Base1-LSTM, Base1-LSTM + CoSA-Net and ground truths (GTs).

6 Conclusion

We have presented CoSA-Net, which explores the sequential evolution of sentence generation via attention
mechanisms. Particularly, we have studied the problem from the viewpoint of leveraging the attention
history in context. To realize our idea, we have devised a static-dynamic memory module in which the
image region features are written into a static memory, and a dynamic memory manages the attention his-
tory to compute the attention for the decoder in each time step. Moreover, a hybrid attention mechanism
is presented by exploiting soft and hard attention, followed by an update on attention with the posterior
distribution. Extensive experiments performed on the COCO image captioning dataset demonstrate the
efficacy of CoSA-Net when integrating CoSA-Net into a one-layer and a two-layer LSTM decoder. More
remarkably, CoSA-Net formulates attention in a new paradigm and shapes an encouraging attention
structure for any decoder.
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