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Abstract The current Internet has revealed numerous shortcomings due to the limitations in its original

design, and is being challenged by the user’s increasingly complicated requirements for efficient data distri-

bution. To this end, a novel network paradigm namely SINET (smart identifier networking) is proposed,

aiming to shift the communication pattern of the traditional IP networks from passive best-effort packet

delivery to the active on-demand adaptation of network and service resources. In this way, SINET is able

to provide agile, differentiated and customizable traffic steering and performance enhancement for customers

of different scenarios with various service quality guaranteed. In this paper, we are going to summarize the

main design principles and associated key mechanisms of SINET, and briefly introduce its research outcomes

in several typical application scenes.
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1 Introduction

The primitive design of the current Internet is now being challenged by the increasingly complicated
communication requirements from various types of users, resulting in many serious drawbacks in traffic
steering and service provision for the sake of unsatisfactory network flexibility, scalability, controllability,
and smartness. Therefore, how to design clean-slate information networks has gained unprecedented at-
traction in the past decades, and plentiful major research programs have been launched around the world.
For example, US-NSF (National Science Foundation) started GENI (global environment for network in-
vestigations)1) and NeTS (networking technology and systems)2) as early as 2005 and 2008 respectively,
aiming to build a global network innovation platform and seek new paradigms and mechanisms for the
future networks. Since then, a series of projects such as FIA (future Internet architecture)3), ICE-T
(US-EU Internet core & edge technologies)4), RINGS (resilient & intelligent NextG systems)5), and IMR
(Internet measurement research: methodologies, tools, and infrastructure)6) have been launched to accel-
erate the rapid developments of network innovations and practice. On the other hand, the EU initiated
the FIRE project (future Internet research & experimentation) through the FP7 program in 2007 [1]
to construct and validate the new Internet architectures and associated key applications. Hereafter, a
number of projects have also been funded through the LEIT-ICT-Future Internet plan of the EU H2020
program, where many cutting-edge technologies such as 5G7), cloud computing8), and satellite commu-
nication technologies9) are explored and studied intensively and comprehensively.
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Therefore, studies on the next-generation information networks have been greatly promoted in recent
years due to the strong support from governments and the urgent needs driven by the industry. As a re-
sult, many advanced concepts, paradigms, and technologies continuously emerged including LISN (loc/ID
split networking) [2], SDN (software-defined networking) [3], IBN (intent-based networking) [4]10), NFV
(network functions virtualization) [5, 6], and DTN (digital twin networking) [7]. Specifically, LISN sepa-
rates the dual roles of IP addresses and introduces a mapping mechanism to dynamically maintain their
bindings for the support of user mobility management and alleviation of routing scalability in backbone
networks. SDN decouples the control and forwarding plane of legacy routers and achieves flexible flow
steering via the logically centralized controller for QoS (quality of service) assurance of various applica-
tions. Moreover, IBN translates and facilitates consistent configurations of business intents across the
networks automatically, and ensures satisfaction of the desired intents by monitoring and adjusting net-
work performance via the AI (artificial intelligence) techniques. NFV leverages virtualization technology
to decouple network functions from their proprietary hardware, and orchestrates network services on de-
mand based on virtual functions to improve resource utilization and user experience. In addition, DTN
creates virtual twins of physical network entities and realizes co-evolution between these two spaces via
necessary mappings, computing, and communications, thereby prompting network efficiency and intelli-
gence for better service provisions.

Our team has devoted ourselves to this research area for nearly 30 years and summarized that the
essential causes for the serious problems of the current Internet lie in its inherent characteristics of triple
bindings in the architectural design, where user and network addressing space, resources and their serving
locations, and the control and data plane of network components such as forwarding devices and service
functions are tightly coupled with weak agility, elasticity, manageability and programmability. To this
end, SINET (smart identifier networking), a novel network paradigm and its associated mechanism are
proposed to shift the communication pattern of the traditional IP networks from passive best-effort packet
delivery to the active on-demand adaptation of network and service resources, where the above bindings
are simultaneously decoupled and new advanced techniques such as data analytics and machine learning
are introduced for better decision making. In this way, SINET is able to provide efficient, differentiated
and customizable traffic steering and performance enhancement for diversified application scenarios. In
the following, we are going to present the primary design principles and key mechanism of SINET in
line with its three phases of evolutionary routes, and then, briefly demonstrate its research outcomes in
several typical scenes including high-speed rail networks, industrial Internet, satellite networks and IoT
(Internet of Things) networks. Finally, the conclusion is given.

2 The evolution of smart identifier networking

In this section, we will present the evolutions of SINET in detail, which has three phases including
the IDN (identifier networking), SCN (smart collaborative networking), and SI2NET (smart integration
identifier networking).

2.1 The identifier networking

The IDN is the initial shape of the SINET and its architectural design is depicted in Figure 1 [8].
Specifically, the IDN consists of two logical layers called NCL (network communication level) and PSL
(pervasive service level), and they are further divided into the four sub-layers responsible for access
control, data routing, connection management, and service advertisements, respectively. In the NCL,
an AID (access identifier) is leveraged to denote the user identity while the RID (routing identifier) is
used to represent the network location and routing locators for packet forwarding. Besides, the AID-RID
mapping mechanism is introduced to dynamically manage their matching relationships. In this way,
the user and network addressing space is decoupled in addition to the dual roles of IP addresses, which
greatly improves routing stability and scalability of the backbone and facilitates mobility support for
moving terminals and subnets.

On the other hand, to enable efficient endpoint multi-path delivery and QoS guarantee, PSL intro-
duces SID (service identifier) and CID (connection identifier) to uniquely denote a specific service and
its established connections with customers, where SID-AID-CID(s) mappings are used to dynamically

10) Cisco intent-based networking (IBN). https://www.cisco.com/c/en/us/solutions/intent-based-networking.html.

https://www.cisco.com/c/en/us/solutions/intent-based-networking.html
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Figure 1 (Color online) The architecture design of the IDN [2, 8].

bind one or more logical data transmission channels between them. Consequently, data publishers and
subscribers are able to negotiate their policies for utilization of these multiple forwarding paths, where
load balancing or other preferences can be performed based on the types of flows with the purpose of
better user experience and transmission efficiency.

The general working procedures of the IDN are described below. The user first issues the service
descriptor to the resolution system, in order to acquire the corresponding SID and associated AID of the
hosted server. Then, it delivers the request to the target node for connection establishment according to
their communication requirements, and the latter in the access network will return the desired data to
the subscriber via single or multiple paths based on the AID pairs indicated by each CID. Afterwards,
when the access-backbone border routers receive such packets, they have to rewrite the pairs of AIDs
in headers with the correct RIDs through the AID-RID mapping system, and continue to forward them
across the backbone based on the destination RIDs. When the related access-backbone routers on the
other side obtain these packets, they must replace the pair of RIDs with the original AIDs by means of
the mapping system, and route them to the user in the access network according to the destination AIDs.

2.2 The smart collaborative networking

To improve network controllability, resource utilization and adaptation smartness, SCN [9,10] is proposed
following the IDN with a new adaptation layer added for collaborations of both service and network
resources, and its architectural design is shown in Figure 2. In particular, the SCN has three logical
layers called SSL (smart service layer), RAL (resource adaptation layer), and NCL (network component
layer), and they are further divided by the two functional domains namely ED (entity domain) and BD
(behavior domain). The ED uses SID, FID (family identifier) and NID (node identifier) to denote the
identity of different services, families and components in SCN, providing a foundation to decouple the
triple bindings mentioned above. Besides, the BD introduces SBD (service behavior description), FBD
(family behavior description) and NBD (node behavior description) for fine-grained attribute recognition
and state awareness of various resources belonging to the three layers identified by SID, FID, and NID
separately.

The three layers are integrated through the associated resolution mapping mechanism, where the
service requirement is firstly adapted to a network family that can satisfy the user needs based on the
SBD and FBD matching in the BD. In this way, the SID can be mapped to an appropriate FID in the
ED. Then, the selected network family will be deployed at the suitable physical components based on
the FBD and NBD matching, and the FID will be bounded to a group of NIDs of components which
need to orderly execute the required specific functions in terms of packet routing/forwarding and data
processing, forming a dedicated path for the requested service with QoS guarantee.

Hence, the general working procedures of SCN are as follows. First, a provider needs to register its
offered services to the mapping system identified by the related SID and SBD. Then, when a user request
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Figure 2 (Color online) The architecture design of the SCN [9].

arrives, the mapping system will extract the SID to look up the corresponding SBD of the requested
service. Afterwards, it needs to match the SBD with the appropriate FBD and NBD for the effective
mappings of SID-FID-NIDs, and finally distribute the necessary service policies and routes/forwarding
rules to the involved entities. Consequently, SCN is able to achieve smart service provision through
the dynamic awareness and on-demand adaptations of available resources in different layers, thereby
significantly prompting system utilization, operation efficiency, and user experience.

2.3 The smart integration identifier networking

In order to efficiently integrate various types of networks and make full use of their rich resources, SI2NET
is further proposed [11] and its framework is shown in Figure 3. Specifically, it firstly partitions the current
Internet into two spaces namely SS (service space) and NS (network space), and then, introduces the KS
(knowledge space) as the central hub of horizontal resolution and vertical adaptation between them, so
that different levels of resources can be coordinated and scheduled uniformly.

Besides, the SS and NS are further divided into the CP (control plane) consisted of SCOs (service
control objects) and NCOs (network control objects), and the OP (operation plane) composed of SOOs
(service operation objects) and NOOs (network operation objects). The CP objects of the SS and NS are
leveraged to monitor and control the OP objects, and deliver necessary service policies and configuration
instructions to the latter. Meanwhile, the OP objects need to perform specified actions to the receiving
packets according to the assigned policies and instructions such as data forwarding, content caching,
and header/payload inspections. Note that SOOs and NOOs include not only physical objects such as
servers, routers, and switches, but also any virtual objects running on containers or virtual machines
that are able to perform dedicated service and network functions. On the other hand, the KS is made by
a logically-centralized NKD (network knowledge database) and an IA&NSO (intent analysis & network
service orchestrator). They are used to realize unified identification, attribute recognition and state
awareness of different resources in SI2NET, and analyze the intent of user requests for orchestrations
of specific services that meet their demands to the underlying networks with the help of optimization
methods, data analytics techniques, and machine learning approaches.

Therefore, the general working procedures of SI2NET are as below. When receiving user requests, the
IA&NSO firstly determines which types of network services can satisfy their requirements. After that, it
will query the NKD to obtain the identifiers, attributes and running status of the involved CP and OP
objects, and schedule a specific network service for these users via the horizontal resolution mechanism.
Then, the IA&NSO will generate associated configurations and instructions via the CP objects to deploy
the required network services based on the vertical adaptation mechanism. Finally, the user flow is
redirected to the entry of the network service for data forwarding and processing. In addition, the NKD
in the KS needs to collect state information of all resources in the CP and OP via triggered and periodic
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Figure 3 (Color online) The architecture design of SI2NET.

interaction means, providing the basis for IA&NSO to perform better decision making.

In addition, SINET can be deployed in an incremental way where most of the legacy devices are still
used without any upgrades. For example, to support deployment of IDN, only ingress and egress nodes
of a network are required to add several new functionalities such as mapping management and packet
encapsulations/de-encapsulations, along with a distributed mapping system introduced separately at the
control plane. As for the SCN and SI2NET, it can directly work over the SDN/NFV-enabled networks
but need to add a few new control and management entities, which are in charge of traffic steering and
service provision based on machine-learning algorithms and multi-domain collaboration mechanism [12].

3 The applications of smart identifier networking

In this section, we will demonstrate representative research outcomes of SINET in several typical applica-
tion scenes including high-speed rail networks, industrial Internet, satellite networks, and IoT networks.

3.1 High-speed rail networks

The high-speed movements of trains result in frequent handovers to their accessing networks, and how
to fully perceive effective link states and formulate mobile switching strategies is crucial for their reliable
communication and data transmission. Due to its advantages in mobility support and flexible collabora-
tion of multi-dimensional resources, SINET can offer a unified framework for high-speed railway networks
to achieve secure user access and customized traffic delivery.

Specifically, a SINET-based vehicle cloud computing paradigm namely SVCC-HSR is proposed in [13],
aiming to address the security and transmission issues in high-speed railway networks. As depicted in
Figure 4, SVCC-HSR has three layers, namely the C-HSR, C-Edge and C-Remote. The C-HSR is required
to perform status collection and data analysis while C-Remote needs to cope with the authentication for
access devices, management of identifier binding relationship, and centralized data storage and computing
management. Besides, C-Edge is served as proxies for the C-Remote/C-Edge to process data locally
for better operation efficiency. SVCC-HSR also enables fast handoff authentication, hierarchical data
encryption, group compression and multi-path transmission with associated mechanism, and the purpose
is to remarkably improve the throughput of large-volume data delivery with necessary confidentiality.

As for the performance optimization, many schemes and algorithms have been raised to achieve ef-
ficient authentication, reliable transmission, and multi-path traffic steering in high-speed railway net-
works [14–16]. For example, in [14], a prediction approach for link quality is proposed based on the
collected real-world dataset of high-speed railway networks, where the observed two-time-scale variation
characteristics of link states are used for assurance of reliable data transmissions. In [15], a multi-path
cooperative transmission algorithm is proposed to aggregate available bandwidth of both homogeneous
and heterogeneous access networks. Moreover, in [16], an efficient network selection scheme is proposed
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Figure 4 (Color online) The cloud-based computing paradigm for smart high-speed railway networks [13].

for high-speed railway networks where fuzzy logic is leveraged to cope with uncertainty of link quality of
wireless networks and the utility functions are used to select the best candidate for QoS guarantee.

3.2 Industrial Internet

Industrial Internet has strict requirements in terms of latency, jitter, packet loss and transmission rate,
and it is important to coordinate spectrum and computing resources of each device to maximize system
utilization. SINET is able to efficiently support unified control and management for limited network
resources of the industrial Internet due to its decoupling of the triple bindings, which greatly facilitates
flow delivery with different communication demands.

With respect to the network framework, a three-tier orchestration system is proposed in [17] to ef-
ficiently collaborate multi-dimensional resources for the industrial Internet. As shown in Figure 5, the
cloud tier provides powerful computation and storage capacity to train different neural network models
for support of various smart services. The edge tier dynamically collects the network state and executes
complicated tasks by the cooperation of local nodes. The end tier collects data generated by heteroge-
neous industrial IoT devices in real time, and connects to the Internet through industrial gateways. In
addition, a dynamic resource adaptation method is raised to improve efficiency of resource management.

Besides, industrial Internet focuses more on the QoS guarantee to comprehensively prompt system
utilization and ensure strict industrial indicators including security, latency and packet loss [18–22]. For
instance, the authors in [18] proposed a dedicated data-link implementation for multi-hop industrial
deterministic applications, where centralized control and TDMA (time division multiple address) mech-
anism are leveraged to provide strict real-time and high reliability for end-to-end data transmission by
means of the IEEE 802.11 protocol. A load balancing algorithm is also proposed in [19] using the game
theory method for real-time control systems based on WLAN (wireless local area networks). On the other
hand, to address the security issues in the industrial Internet, a multi-agent resource dynamic adaptation
algorithm is proposed in [20] to improve training efficiency and privacy protections in nodes. In [21], an
emergency-triggered priority access control mechanism is proposed to ensure real-time transmission of
emergency information via the synchronous wired polling and wireless time-slotted TDMA techniques.
Moreover, a self-attention based deep learning service model is proposed in [22] to effectively support
real-time and smart data analysis and provide decision making and failure prediction services for reliable
and safe operation of industrial systems.
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3.3 Satellite networks

The satellite-ground integrated networks have been considered as a crucial direction of the future Internet,
but it is still facing many challenges particularly in heterogeneous network convergence and efficient
differentiate routing. The SINET is able to achieve better network integration and traffic steering for the
sake of its architectural flexibility and system controllability.

Specifically, an elastic framework to integrate satellite and terrestrial networks is proposed in [23, 24],
where the identity and location of both networks and terminals are decoupled for better support of user
mobility management, routing scalability alleviation and heterogeneous network convergence. Figure 6
shows an illustration of the corresponding communication process. Suppose that EP1 has obtained the
SID of the desired content along with the related EID of the EP2 via the resolution system. Then, it will
send a request to the EP2 based on the user identity. Afterwards, the ARs and BRs will encapsulate the
packets with appropriate local locators with the help of the hierarchical Loc-ID mapping system when
entering a new network domain till the destination node. The purpose behind is to separate the inter- and
intra-domain routing into the control and data plane, respectively, so that the heterogeneity of different
types of networks can be hidden to the outside without the need to perform complex protocol translation.
Moreover, each network domain is able to apply its suitable routing protocol based on its characteristics,
which greatly facilitates the heterogeneous satellite network to integrate with the terrestrial networks.
Note that each satellite is required to cache necessary mapping entries locally for addressing of accessing
endpoints and neighbor networks based on the tailored and optimized mobility management schemes [25],
in order to sharply reduce their interactions with the ground mapping system. Furthermore, to achieve
efficient customizable data forwarding in space, a flexible differentiated routing architecture displayed in
Figure 7 is proposed in [26], which synthesizes the topology snapshot and centralized routing for building
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Figure 7 (Color online) A schematic diagram of the hybrid data forwarding schemes in SINET-SGIN [26].

a robust signaling control channel between the satellites and terrestrial control center, in addition to a
hybrid forwarding approach for support of both best-effort and on-demand data delivery to meet user
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diverse communication requirements with the limited and time-varying transmission resources.

Besides, due to the high-dynamic characteristics and limited on-board processing capacity of the satel-
lite networks, how to optimize topology planning, routing efficiency, and performance enhancement has
been widely discussed [27–31]. For example, an efficient link allocation algorithm for multi-layer satellite
networks is proposed in [27] to remarkably simplify the topology dynamics, and another solution in [28]
considers queue length, traffic volume and the number of connected nodes of the high-layer relay nodes
for efficient inter-layer link allocations, aiming to sharply reduce the link switching and avoid unnec-
essary congestions. Besides, a QoS-oriented satellite routing algorithm is proposed in [29] to allocate
link bandwidth based on user priorities, and a group-based network recovery scheme is proposed in [30]
where the remaining key challenges are also discussed in detail. On the other hand, an SFC (service
function chaining) deployment framework and associated mapping algorithm are proposed in [31], where
virtualized value-added services such as traffic analysis and data caching are deployed at the terrestrial
segment of satellite networks nearby users, in order for improvements of system utility and quality of
experience.

3.4 IoT networks

The access of massive heterogeneous IoT devices enables various new Internet applications, however, it
also brings a number of technical challenges in terms of access control, resource allocation, performance
enhancement, and attack detection. In fact, SINET is able to offer identity-based entity management
and efficient task scheduling, which greatly prompts cybersecurity and QoS guarantee of IoT networks.

In particular, a fine-grained authentication framework is proposed in [32], with the purpose of efficient
access control for different types of IoT devices with better network security. To evaluate computation
offloading policies for IoT devices in SINET, a multi-queue-based theoretical model is proposed in [33] to
derive the analytic solutions of related task average response latency and energy consumption. Besides,
an efficient cache consistency management approach is proposed in [34] to eliminate outdated IoT data
buffered by distributed in-network storage without heavy signaling costs introduced. A collaborative
caching approach based on the deep reinforcement learning is also proposed in [35] to improve hit ratio of
edge networks accessed by IoT devices, where edge servers make caching decisions locally and update the
related parameters to the central node for the subsequent optimizations from the global view. Moreover,
a federated DRL-based cooperative caching approach is proposed in [36], which aims to further improve
edge caching efficiency with lower computation complexity and communication costs for model training
and parameter exchanges, through the well-designed small state and action space of the proposed algo-
rithm. To deal with the packet disordering and retransmission problems in IoT networks, a multipath
forwarding mechanism is proposed in [37] to improve the throughput and reliability of data distribution
via adaptive adjustment of flow scheduling policies based on awareness of network congestions. In [38],
an IoT cooperative paradigm is raised to offer fault diagnosis and forecast for high-speed moving vehicles
which efficiently integrates energy harvesting and AI to lower energy costs, volume of data exchanges,
and processing time of involved sensors. In [39], an RL-based (reinforcement learning) SFC deployment
algorithm is proposed for suitable decomposition of involved network functions to related overlay net-
works, with the purpose of better resource utilization and user experience. To maximize the utilization of
system resources, an adaptive deep Q-learning based SFC mapping approach is proposed in [40], where
two simple heuristic algorithms are provided as candidate actions to alleviate the computation complexity
of model training. Additionally, to strengthen network security at edges for resource-limited IoT devices,
an efficient framework to integrate SFC with ML (machine learning) is proposed in [41], in addition
to a CNN-based (convolutional neural networks) anomaly traffic detection algorithm that can recognize
attack flows quickly with high accuracy. In [42], a P4-based network immune scheme is proposed to resist
eavesdropping attacks for IoT devices, where packet load and headers are encrypted separately and are
sent via multiple paths in a disordered manner.

In summary, SINET offers a novel and fundamental network paradigm that decouples the triple bind-
ings of the current Internet, which significantly improves its agility, scalability, and intelligence to name,
control, and coordinate available resources uniformly and efficiently. In this way, SINET can construct
different types of network services on demand according to the application scenarios, addressing their
urgent communication needs in data delivery and content distribution.
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4 Conclusion

This paper first briefly summarizes the development trend of the current information networks, and then
introduces the design principles and associated key mechanism of SINET in line with its three phases of
the evolutionary routes namely IDN, SCN, and SI2NET. Finally, the typical application scenarios of the
SINET are illustrated in detail including the high-speed railway networks, industrial Internet, satellite
networks, and IoT networks. SINET can effectively overcome the serious drawbacks of the Internet due
to its decoupling of triple bindings, and is able to provide fine-grained and customizable communication
services for various types of users on demand for the sake of its inherent network flexibility, controllability
and smartness, offering a novel and potential solution for the technical progress of the future networks.
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