
SCIENCE CHINA
Information Sciences

December 2022, Vol. 65 221201:1–221201:31

https://doi.org/10.1007/s11432-022-3606-1

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 info.scichina.com link.springer.com

. REVIEW .
From CAS & CAE Members

Improving performance of robots using
human-inspired approaches: a survey

Hong QIAO1,2,3*, Shanlin ZHONG1,2, Ziyu CHEN1,2 & Hongze WANG1,2

1State Key Laboratory of Management and Control for Complex System, Institute of Automation,

Chinese Academy of Sciences, Beijing 100190, China;
2School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China;
3CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China

Received 12 May 2022/Revised 5 August 2022/Accepted 8 October 2022/Published online 21 November 2022

Abstract Realizing high performance of ordinary robots is one of the core problems in robotic research.

Improving the performance of ordinary robots usually relies on the collaborative development of multiple

research fields, resulting in high costs and difficulty to complete some high-precision tasks. As a comparison,

humans can realize extraordinary overall performance under the condition of limited computational-energy

consumption and low absolute precision in sensing and controlling each body unit. Therefore, developing

human-inspired robotic systems and algorithms is a promising avenue to improve the performance of robotic

systems. In this review, the cutting-edge research work on human-inspired intelligent robots in decision-

making, cognition, motion control, and system design is summarized from behavior- and neural-inspired

aspects. This review aims to provide a significant insight into human-inspired intelligent robots, which may

be beneficial for promoting the integration of neuroscience, machinery, and control, so as to develop a new

generation of robotic systems.
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1 Introduction

Robots play an increasingly significant role in the transformation process from conventional manufacturing
to advanced intelligent manufacturing. With strong demands of modern manufacturing for high precision,
complexity, and diversity, realizing high-performance robots in manipulation becomes an urgent problem.
To complete a high-precision manipulation, a robot generally needs to have a better system precision
(mainly including sensory precision and repeatable accuracy) than the manipulation task. For example,
in the peg-in-hole assembly task, high-precision visual sensor is used to detect the accurate position of the
hole. After calculating the assembly trajectory of the peg, high-precision encoder is adopted to calculate
the position coordinates of the peg. The control torques of robot are calculated according to the error
between the current and the target coordinates, which is used to adjust the movement of the robot arm
and eliminate the posture error, so that the position of the peg can track the desired assembly trajectory
to complete the assembly.

However, the performance of current robots in high-precision manipulation is normally limited by
the perception accuracy of sensors, repeatable accuracy of robotic systems, and the performance of
auxiliary mechanisms. Improving the performance of a robot in high-precision manipulation relies on
the collaborative development of multiple research fields such as machinery, materials, control, chips,
and information science, resulting in high cost, long development cycle, and even making it impossible
to complete some high-precision tasks. This restricts the promotion of robotic applications to a great
extent, especially in countries where independent robotic technologies are still in the development stage
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or even in infancy. Therefore, realizing the high performance of ordinary robots has become one of the
core problems in the research field of robotics, which is also the main bottleneck of their wide application
in advanced manufacturing. Under the current conditions, it will be of great significance to make full use
of existing robotic systems with limited repeatable precision and limited sensor precision for achieving
high-precision manipulation.

In response to this challenging research, improving a robotic system by mimicking the mechanisms of
humans is a promising avenue. Human beings have been a long-term reference for the development of
robots. Numerous great inspirations have been brought into the design and improvement of a robot by
mimicking the biological structures, neural mechanisms, and behavioral characteristics of human beings.
Compared with computers and machines, humans have limited computational-energy consumption and
low absolute precision in sensing and movement control of each body unit. However, humans can realize
extraordinary overall performance that is better than the independent performance of each body unit
under such limited condition. It is because humans can process and fuse information from different
brain regions and leverage the flexibility of their own structure. For example, in terms of perception and
cognition, humans are particularly skilled in the recognition of complex objects in open environments,
even if the target has interference factors such as camouflage, ambiguity, and deformation [1]. As for
decision-making, the rational decision-making capacity (slow channel) of humans is good at inferring the
causal relationship, and their instinctive decision-making response (fast channel) is beneficial for taking
a quick action to adapt to a dynamic and complex environment [2]. In terms of motion control, humans
can realize movements and manipulations with high precision and flexibility by efficiently controlling the
highly-redundant and rigid-flexible coupling musculoskeletal system [3].

Therefore, integrating the internal mechanisms of humans into a robotic system by referring to the
information-processing mode of the brain and structural mechanism of the movement system is promising.
By mimicking the appearance, structure, behavior, intelligence, and control mechanisms of humans,
research on human-inspired intelligent robots may be of great enlightening significance and promising for
the development of new generation robots.

In recent years, owing to the instinct of exploring humans and the urgent demand for treating mental
diseases, many countries around the world have put forward brain projects to support the research on
brain science [4, 5]. It provides an important opportunity for further interdisciplinary research on brain
science, information science, and robotics. Typical national brain projects are outlined as follows.

• In April 2013, the United States launched the “Brain Research through Advancing Innovative Neu-
rotechnologies” (BRAIN) project [6]. This project aims to exploit novel technologies for brain science,
including developing new tools to map the brain structure, exploiting large-scale neural network electrical
activity recording technology to explore the dynamic function of the brain and promoting data processing
and analysis technology for neuroscience.

• In October 2013, as one of the “European Commission Future and Emerging Technologies Flagship”,
“Human Brain Project” (HBP) received funding of 1 billion euros to conduct research on the brain and
brain-inspired technologies [7, 8]. The primary goal of HBP is to increase human understanding of the
brain and to build information, modeling and supercomputing technology platforms needed for simulating
the human brain. It is expected to bring new insights for the prevention and treatment of brain diseases
and form advanced computing technologies for new revolution of industry and economy.

• In September 2014, Japan launched “Brain Mapping by Integrated Neurotechnologies for Disease
Studies” (Brain/MINDS) [9, 10]. The brain research of Brain/MINDS mainly focuses on marmosets.
By establishing the animal models of development and disease occurrence in a marmoset brain, and
constructing brain structure and functional maps of non-human primates, this project aims to accelerate
the research on human brain diseases, especially for neurodegenerative diseases.

• In May 2016, the Ministry of Science, ICT and Future Planning of Korea announced the “Korea
Brain Initiative” [11]. This initiative is planned to invest 300 million dollars to develop Korea into a
powerhouse in brain research by 2023. The research and development goal of Korea Brain Initiative is
mainly focused on four essentials: developing novel neurotechnologies for brain mapping, constructing
brain maps at multiple scales, reinforcing artificial intelligence and exploiting personalized medicine for
neurological disorders.

• In September 2021, the Ministry of Science and Technology of China released a major project on
“Brain Science and Brain-Inspired Intelligence”, marking the official launch of the China Brain Project.
The project proposed a scheme of “one body, two wings”, in which the basic research on the neural-circuit
mechanisms of the cognitive function is the main body, and the brain-disease diagnosis/intervention and
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brain-inspired intelligence technology are the two wings [12]. The research results may have important
radiative effects on the treatment of mental diseases, self-exploration of human, artificial intelligence, and
robotics.

Note that the brain projects of various countries have put forward the important deployment of brain-
inspired intelligence, that is, promoting the artificial intelligence technology by leveraging the research
results from brain science. Brain-inspired intelligence is committed to mimic the mechanisms of brain
neural circuits and cognitive behavior by means of computational modeling, and integrating development
of software and hardware platforms. It aims to promote the machine intelligence to realize human-level
cognitive and coordinative ability in a brain-like way, and finally, reach or surpass human intelligence.
Although the current level of brain-science research is still far from completely understanding the struc-
ture and function of the human brain, the research results of the brain that neuroscience has achieved
could potentially address some significant problems faced in artificial-intelligence research from several
perspectives.

As an important part of brain-inspired intelligence, human-inspired intelligent robots could serve as
an integrating platform to integrate and verify achievements of brain-inspired research. By deeply in-
terdisciplinary integrating robotics, artificial intelligence, brain science, and neuroscience, research on
human-inspired intelligent robots can get inspiration from the mechanism of brain circuits and structural
characteristics of the motor system. It is helpful to design new types of intelligent robots with robust
cognition, accurate decision-making, flexible movement, and autonomous learning ability through compu-
tational modeling, and combination of software and hardware. The research direction of human-inspired
intelligent robot attempts to integrate the internal mechanism of the human body into the robotic sys-
tem, so as to improve the cognitive, learning, and motion control abilities of the robot and provide an
experimental platform to verify new mechanisms discovered by neuroscience. Owing to the introduction
of human mechanisms, human-inspired intelligent robots are promising to realize empathy with human,
and generate deeper interaction and cooperation.

However, several substantial differences exist between the existing robotic systems and humans in
their morphological structure, control mechanism, and functional characteristics. Therefore, modeling
the structure and mechanism of a human in intelligent cognition, decision-making, dexterous operation,
and fusing with robotic system is not straightforward. On the one hand, in terms of mechanism modeling,
summarizing the core mechanisms from massive neural mechanisms and diverse behavioral patterns of
humans is still a bottleneck problem. These mechanisms are expected to improve the performance of
robots in cognitive, decision-making, motion control, and human-machine cooperation. However, it poses
an urgent need for interdisciplinary cooperation of neuroscience, information science, and robotics. On
the other hand, limited by the technological development of fields such as materials, machinery, and chips,
simulating the neural mechanisms and compliant-motion structures of humans to form a computable and
realizable software and hardware system is still the core difficulty in developing human-inspired intelligent
robots.

At present, research is being conducted on human-inspired intelligent robots from two perspectives.
The first perspective is based on the behavioral mechanism, and research is conducted according to the
functional requirements of the robot. For the required functions, cognitive, decision-making, and control
algorithms are established by observing and analyzing the appearance and behavior of humans, so that
the robot can exhibit a human-like behavior. The second perspective is based on the neural mechanism,
and robotic research is conducted by mimicking the neural circuits and body structures to investigate
the internal mechanism of humans and improve the performance of robots. By referring to the research
results of brain science, the neural mechanisms and motor properties that have been clearly elucidated in
the biological domain are modeled, forming brain-inspired information-processing algorithms and rigid-
flexible coupling musculoskeletal systems. This may lay the foundation for developing next-generation
robots.

In this review, cutting-edge studies on human-inspired intelligent robots in decision, cognition, motion
control, and system design will be summarized from behavior- and neural-inspired aspects. The remainder
of this review is organized as follows. Section 2 will introduce a human-inspired decision method for robots,
including the theory of “attractive region in environment (ARIE)” inspired by human operation behavior
and emotion-modulated decision making inspired by neural mechanisms. Section 3 reviews the research
progress of robotic cognition based on its requirement of balance between accuracy, energy efficiency,
and speed. Manifold learning and cognitive models based on the visual-cortex mechanism are taken as
representative work to illustrate the research progress. Section 4 summarizes the research achievements
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on humanoid robotic systems and movement-control methods, especially focusing on a musculoskeletal
robot inspired by the human neural mechanism and musculoskeletal system. Finally, Section 5 concludes
this review and presents the prospects of future work.

2 Human-inspired robotic decision making

With the wide application of robots in industrial manufacturing, medical and health care, deep space
exploration, and other fields, high precision, flexibility, and generalization have become the key charac-
teristics and important indicators of robotic manipulation.

The traditional robot mainly relies on the design of auxiliary mechanism to achieve high precision
high compliant manipulation [13], and on sensor-based autonomous methods including goal-oriented
movement planning and torque calculation [14]. For example, in high-precision assembly tasks, the
position and attitude errors of a workpiece are corrected by the robot using visual information [15, 16].
In other operation tasks involving touching movement between the agent and external environment, the
active and passive compliance can be realized by designing the auxiliary flexible mechanism [13] or a
hybrid controller based on force-sensing feedback [14]. However, the structural design increases the cost
of hardware, which makes it difficult to generalize for different complex scenarios. The autonomous
strategy and control highly depend on the precise structure and perception.

With the rapid growth of advanced artificial intelligence technology, some studies have investigated
complex robotic manipulation tasks, such as grasping irregular-shape workpieces and assembly of parts,
by formulating intelligent deep reinforcement learning methods [17]. However, these methods rely on a
lot of learning and iteration, and the learning process is unexplainable, which reduces the reliability of
the algorithm.

Although the traditional method has fruitful applications in the realization of high-performance robot
operation, it has several issues, which are listed as follows.

(1) The traditional method for realizing high-performance manipulation requires highly precise robotic
configuration, control, and sensing. On the one hand, improving the accuracy of the configuration
increases hardware cost [14–16]; on the other hand, the precision of control depends on the optimal design
of related parameters and real-time feedback of system information, which increases the complexity of
the algorithm [14, 18]. In terms of the accuracy of sensors, affected by zero drift and space disturbance,
the reliability of sensors is difficult to be guaranteed. Therefore, formulating a new method is necessary
to reduce its dependence on sensors, configuration, and control with high precision.

(2) The generalization of the traditional method is limited. It is mainly used for operation scenarios
with limited types of objects, acquainted model, and structured environments, and the task-specific
design makes the end-effector less adaptable to different objects and environments. Therefore, to improve
the generalization and application range of the robot for different operating objects and environments,
studying the common characteristics of manipulated objects is necessary.

(3) Traditional methods focus on the pursuit of single performance. For compliant operation tasks,
the flexibility and compliance of the end-effector to the environment can be improved by designing aux-
iliary devices or force control; however, this design will reduce the position stiffness, thus degrading the
accuracy of the operation [15, 19]. In addition to compliance and accuracy, the efficiency needs to be
addressed in the robot operation. For example, in some streamlined assembly scenarios, robots need
to complete the splicing of workpieces within a certain period of time to meet the production require-
ments [20]. Therefore, the robots need to achieve the balance between various performance indicators,
such as accuracy, flexibility, and efficiency, as far as possible according to different requirements in the
actual operation task.

With the development of brain science, the humanoid intelligent strategy has been significantly stud-
ied by scholars. To improve the robustness, autonomy, and generalization of the robot strategy, a large
number of studies have formulated intelligent methods by simulating the human behavior and neural
mechanism of brain [21]. For example, inspired by the accurate manipulation of assemblers that rely on
environmental constraints, Qiao et al. [22,23] proposed a robotic manipulation strategy based on the con-
cept of ARIE, to make the robotic assembly achieve high performance while reducing the dependence on
accurate configuration control and sensing. In addition to the ARIE-based strategy designed by imitating
an external behavior mechanism, it is of great significance to construct a brain-like intelligent decision-
making model that imitates the neural-regulation mechanism to improve the ability of the strategy and
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Table 1 Overview of human-inspired robotic decision making

Human-inspired robotic decision making Ref.

Inspired by

human utilization

of environments

Type of tasks

Grasping [26, 27]

Localization [28, 29]

Assembly [30–35]

Requirements
Low contact force requirement [34, 35]

Imprecise sensing requirement [33, 34]

Robotic systems

Fanuc [23, 27, 28, 30]

KUKA [34, 35]

YASKAWA [33]

Universal Robots [26]

Inspired by

human neural

mechanisms

Neural mechanisms of

emotion modulation

Hormone modulation [36–38]

Neural circuit modulation [39–45]

Modeling methods of

emotion

Impacts of emotion on artificial agents [46–53]

Computational frameworks of emotion [54–56]

Emotion modeling by neurodynamic methods [57–65]

Brain-inspired emotion-modulated models [2, 39, 40, 49, 50, 66–69]

achieve the same high performance of manipulation as that of humans. In response to this point, Qiao
et al. [24, 25] have formulated an emotion-regulated multi-loop method based on the neural mechanism
to achieve a balance between accuracy and efficiency. In summary, formulating an effective method is of
great significance to achieving human-like high performance of manipulation with limited hardware costs,
which can be achieved by integrating the mechanism of external behavior and internal neuroscience.

To sum up, the development of a novel high-performance robot-operating framework combined with
humanoid operating mechanism is of great significance to improve the adaptability and implementation
range of robot operation to different objects. This operating framework helps achieve the unity of high
precision, flexibility, and generalization, thereby reducing the dependence on high-precision sensing and
control and meeting the requirements of intelligent manufacturing in the new era.

Based on the above content, this section mainly discussed the humanoid strategy for robotic manip-
ulation from the following two aspects. First, we introduced the ARIE-based humanoid strategy from
the imitation of human behavior, which includes the proposition, development, and implementation of
ARIE. Secondly, we introduced the neural decision-making mechanism of emotion regulation and its
advantage in achieving the trade-off between accuracy and efficiency. The overview of human-inspired
robotic decision making is shown in Table 1 [26–69].

2.1 Robotic manipulation strategy inspired by human utilization of environments

2.1.1 Characteristics of human manipulation

Inspired by the mechanism of human operation, research on humanoid manipulation strategy and control
design has been conducted, providing new ideas and theoretical technologies to solve high-performance
manipulation. In addition to other methods, ARIE is a typical method that could solve the high-precision
manipulation with less requirement for accurate sensing and control. Long-term study of primate behavior
has indicated that the operation of humans is characterized by flexible, accurate, compliant, and weak
dependence on sophisticated perception and control. For example, while unlocking, the handler only needs
to take a quick look and obtain the general position of the hole, then adjust the pose of key by using the
flexibility of the hand to the environmental constraint until the key is inserted into the hole [21, 25]. In
other words, humans could achieve highly precise and flexible manipulation with low perception by using
the compliant organization to environmental constraints. Inspired by this, the ARIE-based strategy for
robots has been developed to improve the performance of operation while reducing the dependence on
sensing, configuration, and control under the environmental constraints [26, 32–35,70–72].

2.1.2 Proposition, existence condition and significance of ARIE

The concept of ARIE was first proposed by Qiao et al. [22], who pointed out that the effect of ARIE
can be illustrated by the “bean-bowl” system in the physical space. In the peg-in-hole assembly, the
constraint of the hole forms a bowl-shaped region in the configuration space, and, using this constraint,
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Figure 1 (Color online) (a) The “bean-bowl” system; (b) the non-strictly convex environmental constrained region [22].

the state-independent input and movement can be planned such that the pose deviation of the peg relative
to the hole can be eliminated. As shown in Figure 1(a), under the effect of input (gravitational force
G) and environmental constraints (frictional force f , and supporting force N), the location of the bean
converges from the initial feasible range at the opening of the bowl to the target lowest point of the
bowl. Meanwhile, the indeterminacy keeps decreasing throughout the assembly. Therefore, ARIE is a
special constraint region existing in a high-dimensional space, and, under the action of this region, there
is always a state-independent input that can make the system stable at the unique minimum point of
ARIE.

According to the definition of ARIE, the state of a system could converge to a strictly unique target
point under the action of this special constraint region and input force [22,23]. In other words, ARIE only
has one strict stable point corresponding to one input. According to this property, and the relationship
between physical and configuration states in the constraint region, it has been proved that ARIE exists
extensively in the configuration space of a convex-assembly task [73]. As for the non-convex constrained
region shown in Figure 1(b), if there is only one stable point corresponding to the input in a certain
direction, this kind of constrained region can also be regarded as ARIE. In conclusion, ARIE could be
found in the configuration space according to the existence of strict stable points.

Further, Qiao et al. concluded that ARIE exists widely in the configuration space of robot manip-
ulation, such as the peg-in-hole assembly [32–35, 70], four-finger grasping [26, 71, 72], object localiza-
tion [22, 24, 74]. If these attraction regions can be fully utilized and generalized to higher-dimensional
space, a variety of high-performance operation tasks independent of high-precision sensing, configuration,
and control can be realized.

The proposition of ARIE solves the industry problem of high-precision operations independent of the
highly accurate sensors, configuration, and control, which provides a new theory and technology for
the intelligent operation strategy, simplifies the complexity of the algorithm, and breaks through the
bottleneck of achieving high-performance operations using ordinary robots [24]. First, pose uncertainties
of peg and hole are unified as the uncertainty of pose to the hole to simplify the problem analysis;
next, by analyzing ARIE in the subspace formed by physical constraints, a state-independent input can
be planned, such that the configuration of the manipulated object could converge to a unique stable
point where all relative pose errors are eliminated. Therefore, by taking full advantage of environmental
constraints, the strategy for high-performance manipulation can be achieved even when the precision of
sensor, configuration, and control is not as good as expected.

2.1.3 How to achieve high precision manipulation with the ARIE

To better realize the high-precision operations using ARIE on a practical system, a complete systemic
framework including the formation of ARIE, manipulation-strategy design, compliance control design,
and performance verification has been built, as shown in Figure 2.

(1) Formation of ARIE. For specific manipulation tasks, the geometric information of the workpiece is
taken as the input for the formation of the ARIE module. Subsequently, the corresponding environment
constraint region is formed using the projection relationship between the physical and configuration
spaces. According to the definition and condition of ARIE, ARIE for guiding the high-precision assembly
can be obtained in the constraint region, which is the input of the strategy-design module.
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Figure 2 (Color online) The manipulation framework based on ARIE.

(2) Strategy design for manipulation based on ARIE. In the period of strategy design, by analyzing the
configuration of the attractive region, the expected initial pose, input force, and progressive relaxation
strategy for pose error correction of different dimensions are planned, which are used as the basis of
input and parameter design of the controller. Generally, the manipulation strategy based on the theory
of ARIE comprises two steps: (1) the relaxation and correction of position under the fixed attitude and
(2) the relaxation and correction of attitude.

(3) Compliance control design. By formulating the contact-dynamics analysis and compliance control
method, the position and force controls can be unified, and the compliance of the manipulator end to
environmental constraints can be realized. Generalized compliance control methods include impedance
control and admittance control. In the control-design module, the manipulation trajectory of the control
system is planned according to the above strategy, which is the input of the compliant controller and is
used to generate the corresponding control torque. In the control-design module, the control parameters
are designed according to the policy and task performance requirements.

(4) Performance verification. In this module, the generated control torque input and the corresponding
action strategy are input to the hardware and software platforms for performance verification.

2.1.4 Wide use of ARIE for high-performance manipulation

At present, methods based on ARIE have been widely used in multiple types of tasks, such as grasping,
assembly, and localization. Performance improvement has been achieved in different robotic systems with
multiple requirements.

In grasping tasks, ARIE can be used to guide stable grasping without a strict grasping position. For
example, Liu et al. [27] proposed a 3D grasping algorithm based on the decomposition of the four-
dimensional ARIE into a low-dimensional sub-configuration space. By using the designed grasping strat-
egy, a simple 2D gripper was used to grasp 3D objects. Li et al. [26] proposed a robust grasping algorithm,
which was designed by analyzing ARIE during the grasping process, with form closure to obtain stable
grasping points. They established a learning-based network to evaluate the grasping quality. In addition,
a lightweight, three-degrees-of-freedom, four-finger gripper was designed based on the above algorithm.
The effectiveness of the designed gripper and the proposed method were verified by simulation and phys-
ical experiments.

In localization tasks, the configuration space referring to the state of objects on a plane can be analyzed
using ARIE. ARIE can provide guidance for robotic position from any initial state to a stable state [29].
For example, Liu et al. [28] developed a stable senseless ARIE-based localization method for three-
dimensional objects using a simple pushing mechanism.

For assembly tasks, Qiao et al. used ARIE to determine the relationship among the contact force,
motion of the peg, and input of the peg-hole system, which provided the basis for strategy-making of
assembly operations. For example, Su et al. [30] proposed an assembly strategy independent of fixed
piston rod based on ARIE for an automotive engine, whose tolerance is approximately 2–7.5 µm. In [31],
ARIE has been applied to the eccentric crankshaft insertion task of the bearing hole of an automobile air
conditioner. Li et al. [32] proposed a compliant human-inspired strategy based on coarse force information
and environmental constraints for peg-in-hole assembly systems. In the proposed scheme, the motion
is planned using the constraint region to eliminate the initial position error of the peg. Besides, the
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direction of the contact force is detected by a force sensor, which is regarded as an indicator for movement
adjustment of the peg. Su et al. [33] proposed a dual peg-in-hole assembly strategy with yaw-angle error.
High-dimensional attraction and the sub-attraction regions in the low-dimensional space are constructed
in this method. This assembly strategy was applied to the dual eccentric dual-peg-in-hole assembly on
the supporting flange with a clearance of approximately 0.02 mm. Liu et al. [34] designed a compliant
assembly algorithm based on the ARIE theory to solve the jamming problem of a circular peg with grooves
on the side. By replanning the size and direction of active input force, the system state was prevented
from converging to a local optimum. Chen et al. [35] proposed a high-precision compliance assembly
method for the VGA interface by utilizing low-precision robotic systems. In their proposed framework,
assembly strategies were formulated based on the analysis for ARIE, and admittance control methods
were designed to ensure interactive reliability in the assembly process. Finally, physical experiments were
carried out to verify the effectiveness of the proposed method.

In terms of multiple requirements, the method based on ARIE has been applied to tasks with low
contact force requirements and imprecise sensing. For example, in the assembly process of [34], the
contact force was less than 7.6 N to satisfy the low contact force requirement, the repeatable precision of
the robot was only 0.15 mm, and the clearance was 0.02 mm, which achieved the accurate assembly with
low precision of the robot. In [35], the contact force was less than 8 N, which achieved the low contact
force requirement. In [33], a robot with a repeatable positioning accuracy of 0.06 mm was used to achieve
the dual peg-in-hole assembly task while meeting a clearance of 0.02 mm.

In multiple-robot systems, ARIE-based methods have been applied to the manipulation system of
KUKA, YASKAWA, UR, and FANUC robots, which can effectively realize manipulation tasks with high
precision. In [23,27,28,30], ARIE-based methods have been applied to FANUC robot to realize assembly,
grasping, and positioning tasks. In [26], an ARIE-based method was applied to the UR robot to realize
a grasping task. In [33], an ARIE-based method has been applied to YASKAWA robot to realize an
assembly task. In [34, 35], an ARIE-based method has been applied to KUKA robot to realize assembly
tasks.

In summary, ARIE is inspired by the behavior mechanism of making full use of the environmental
constraints in the process of manipulation, which provides a new way for the robot to complete high-
precision tasks under the conditions of limited sensing accuracy and limited ontology accuracy. ARIE has
been widely used in multiple types of tasks, tasks with multiple performance requirements, and multiple
robot systems, which has achieved good results. ARIE is expected to help alleviate the problems of
high cost and poor applicability caused by high-precision sensing and ontology, and has an important
application prospect for ultra-high precision manipulation tasks in the fields of defense and industry.

2.2 Robotic decision-making models inspired by human neural mechanisms

Owing to the improvements in algorithms and software, nowadays robots can achieve high precision
under hardware limits. Nevertheless, robots need to satisfy additional requirements, such as reliability,
adaptability, high learning efficiency, and balance between speed and precision in decision making, to
perform complicated decision-making tasks. Past few years have witnessed a lot of learning-basedmethods
achieving great performance in self-learning of robotic skills and knowledge. However, when such methods
are used in flexible decision-making tasks some problems exist, for example, unacceptable performance
when generalizing, low learning efficiency, difficulty to generate goal-oriented strategies, and inability to
quickly adapt to a changing environment.

Fortunately, humans have overwhelming advantages over robots in the above aspects, which promotes
researchers to pay attention to mimicking the mechanism of human decision making and developing
brain-inspired decision-making methods for robots. Humans are skilled in inducting the relationship
between perceptual states and actions with limited experience and adapt to dynamic environments well,
which reflects high learning efficiency and generalizing ability. A nonnegligible reason is that advanced
cerebral cognition including emotion, memory, and cognitive control is utilized in the brain to modulate
the decision-making process, which helps humans perform flexible decision making. Especially, inspired
by emotion mechanisms in the brain, some studies have integrated emotion into robotic decision-making
modulation, which has improved the performance in robot decision-making tasks. This part reviews some
computational models of emotion in decision making based on the neural mechanism of the emotion-
modulated decision-making system in the human brain.
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2.2.1 Neural mechanisms of emotion modulation in human decision-making

The emotion mechanism is studied both in psychology and cognitive neuroscience. Generally, originating
from the interaction between humans and environment, emotion provides valence guidance for human
learning and decision-making [75]. On the one hand, some researchers in cognitive psychology hold
opinions that emotion generates and is modulated via the interaction between two processes in human
brain: bottom-up and top-down processes [76]. The former generates quick emotional evaluation to
respond to low-level perceptual stimuli from urgent changes in the environment, and the latter quickly
regulates rough emotion analyses by further cognitive appraisal. The cooperation of the two processes
implies the balance between speed and precision. On the other hand, researchers in cognitive neuroscience
have conducted further studies on emotion mechanisms, aiming to illustrate the concerning neural circuit.
According to recent results, the orbitofrontal cortex (OFC), amygdala, hippocampus, striatum, insular
cortex, and some other parts of the limbic system play an important role in emotion processing and
modulation [39,77–79]. For instance, the amygdala is of great importance in fear learning [80]. The stimuli
containing threat information is conducted to the amygdala, from which the feedforward projections are
launched, terminating in the middle layers of OFC, where the meaning of the signal is decoded [81].

Similar to other cerebral cognition, hormone modulation and neural-circuit modulation are considered
two main emotion-modulating approaches. In terms of hormone modulation, the change in emotion and
its influence on decision making are associated with multiple neurotransmitters. According to an explana-
tory model, the different emotion states arise from the integrated modulation of diverse combinations of
monoaminergic neurotransmitter concentrations, such as dopamine (DA), acetylcholine (5-HT), and no-
radrenaline (NE). The roles of the three monoamines are modeled into a cube space, where the eight basic
emotions match the corresponding vertexes on behalf of different combination levels of monoamines [36].
Additionally, neurotransmitters play a significant role in modulating the learning process in decision
making. Related studies show that the dopaminergic neurons in midbrain are responsible for coding
the reward prediction error (RPE), which implicates the bias value between the receiving and predicting
rewards [37]. 5-HT controls the refreshing speed of memory, which influences the learning efficiency in
the decision-making process [38].

Regarding emotion-related neural circuits, Ref. [39] reviewed several emotional neural circuits and
analyzed their effects on decision making. Especially, it emphasizes that, as a kind of subjective appraisal,
emotion participates in the shift of model-free (MF) and model-based (MB) decision-making systems.
Specifically, the striatal region is crucial for the shift between goal-oriented behavior and habitual behavior
of human [40], in which the dorso-lateral part (DLS) is viewed as the functional region for MF learning
and action (relating to habitual behavior) [41], and the dorso-medial part (DMS) mainly participates
in MB ones (related to goal-oriented behavior) [42]. Meanwhile, the emotion is also modulated by
emotional signals from the amygdala, which influences the value-coding process to adjust reward learning
in OFC/mPFC and striatum [43]. It has been pointed out that the habitual and goal-directed systems
in human brain can be arbitrated directly by signals from the amygdala [44,45], which can be considered
as an important way of emotion to modulate the decision-making process.

2.2.2 Modeling methods of emotion in robot decision-making tasks

In terms of the vital effects of emotion on decision making, it is essential to formulate methods to integrate
emotion into artificial systems, which is expected to improve the performance of robots in decision-making
tasks.

A group of studies have focused on the potential impacts of emotion on artificial agents. For instance,
Scheutz [46] proposed 12 potential impacts where emotion may join in artificial systems. They demon-
strated that emotion can be applied to various parts of agents, from memory to strategy, from sensing to
action, and from learning to decision making. Furthermore, based on an adequate survey of studies on
different evaluation methods of emotion in artificial system, including emotion elicitation, type, function,
and test approach, Moerland et al. [47] held the opinion that emotion modulates the decision-making
process through state modification, reward modification, action selection, and meta-learning. For exam-
ple, Savinov et al. [48] designed a curiosity module using episodic memory to generate novelty bonuses.
The module provides abundant information on the dynamics of the environment, making it simpler for
agents to learn under the circumstance of sparse external rewards. Meanwhile, some researchers suggest
that emotion is suitable to modulate the mate parameters, including the learning rate, discount factor,
and temporal-difference error, during the learning process [49–52]. In other studies, emotion models have
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Figure 3 (Color online) Framework of robotic decision-making model inspired by emotional neural mechanisms.

been used to alter the current state to adjust action selections [53], in which emotional states are viewed
as a part in the state space.

Besides, some studies have attempted to draw emotion into a common computational framework
to improve performance. For example, the neural basis of emotional regulation can be modeled into
a reinforcement-learning framework (which is widely used in decision-making tasks) as a value-based
decision-making process according to the task [54], where emotion is described as a sequence of perception,
valuation, and action, thus naturally integrating the emotion and decision making. Other frameworks
have also been evaluated. In the Bayesian framework, emotion is mathematically represented to indicate
emotional control signals throughout the interaction between agents, which enables the system to learn
emotional interaction by optimizing behaviors based on previous experience [55]. Moreover, Ref. [56]
succeeded to explain the emotion in free energy theory, where the negative changing rate of free energy
over time is modeled as the emotional valence. By minimizing the free energy, the agent succeeds in
actively inferring policies with the minimum uncertainty in changing environment.

Although the above methods focus on the realization of the emotional functions in artificial systems
and have achieved significant results, some of them are short in biological plausibility, implying that it
may be challenging to achieve human-like performance in decision making in similar ways. Therefore,
considerable attention should be paid to biologically-inspired approaches.

Biologically inspired models of emotion mostly focus on mimicking neural information processing.
Some early studies used neurodynamic methods to model emotion generation, regulation, and interaction
with other cognitive functions. A series of typical studies on neural-network simulation of emotion were
performed by Grossberg [57–61], who developed several computational models of interaction between
emotion and cognition. The neural network (NN) models succeeded in mimicking emotional processing,
motivation and reward learning. Besides, originating from the emotional learning in the amygdala-OFC
interaction process of mammals, Balkenius and MorÉn’s brain emotional learning (BEL) model [62]
is another biologically inspired model of emotion. In the BEL model, the conditional sensory inputs
are conducted directly to the amygdala, which exports emotional instructions and generates elementary
emotional responses in the thalamus. Then, the advanced cognitive messages from OFC perform further
emotional regulation. The model has been successfully applied to robotic control [63], motor control [64],
and intelligent power system [65], improving the robustness and adaptability of control systems.

In recent years, Huang et al. [2, 49, 69] have designed a series of brain-inspired emotion-modulated
models for robotic decision making, which draw ideas from the hormone regulation and neural-circuit
regulation of emotion, as shown in Figure 3. On the one hand, inspired by the phenomenon that emotion
modulates learning meta-parameters by influencing levels of three types of neurotransmitters [50], Ref. [49]
proposed a kind of emotion-modulated Oja learning rule, in which the emotion valence is modeled as
the information entropy of reward signals, adjusting the RPE, learning rate, and randomness of action
selection. On the other hand, inspired by the neural mechanism of emotion arbitrating the goal-directed
and habitual systems [39, 40, 66–68], Ref. [2] developed a unique decision-making framework, which can
adjust the planning horizon to blend the MB- and MF-control processes. Simultaneously, it builds a
biologically plausible computational model of emotion processing, which can calculate an uncertainty-
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Table 2 Overview of human-inspired perception models

Human-inspired perception model Ref.

Behavior-inspired

Theories

Intrinsic dimension [82]

Data distribution [83, 84]

Explicit mapping [85]

Others [86–88]

Applications

Image retrieval [89]

Human action segmentation [90]

Dynamic visual tracking [91, 92]

Pedestrian tracking [93]

Neuro-inspired

Micro models

Two-dimensional Gabor function [94]

Gain control operation [95]

“Winner is king” model [96, 97]

Gaussian response model [98]

Macro models

Neocognitron model [99]

HMAX model [100, 101]

Three stages model [102]

Models based on attention mechanism [103–105]

Models based on multiple mechanisms [1, 106–109]

related emotional control factor based on RPE as long as the state prediction error (SPE). Furthermore,
the computational emotion model is adopted into another framework of emotion-motivated decision
making for mobile robots in the environment with sparse reward [69], in which not only the interaction
between amygdala and hippocampus is modeled to reflect the effect of emotional memory, but also
other psychological states are mathematically introduced, including valence, novelty, and motivational
relevance. These biologically plausible models are of great help to the human-like performance of robots
in decision-making tasks.

3 Human-inspired perception models

To autonomously complete tasks, robots need to continuously interact with the external environment to
obtain perception information. Visual perception is an important source of information in the interaction
between robots and the external environment. However, unlike computer vision, robot visual perception
involves the motion and control of the robots, which is an active, dynamic and continuous process.
Moreover, because robots are usually used in complex and open environments, the images of objects
usually have problems such as noise, occlusion, deformation, and blur. Therefore, high requirements are
placed on the stability, rapidity, and robustness of the robot visual perception models, and it is necessary
to achieve a balance between accuracy, energy efficiency, and speed of the robot visual algorithm.

Traditional robot visual perception models extract information from the external environment accord-
ing to some fixed designed procedures. These procedures are often designed for a specific objective and
can only extract specific information, that is, the perception of these procedures about the outside world
is passive. However, practical working environments of robots are often dynamic and the actions of
robots also change the surrounding environment. Therefore, to obtain a relatively complete perception
of the surrounding information, the robot’s visual perception system should be active and interactive.
The brain-inspired visual perception technology can provide effective tools for enhancing the working effi-
ciency of robots by learning from the human visual mechanisms. This section will describe two modeling
approaches for the human-inspired robot visual perception technology. One is to simulate the human-
perception behavioral mechanisms. The other is to simulate the human-perception neural mechanisms.
The corresponding references are classified in Table 2 [1, 82–109].

3.1 Robot perception models inspired by human behavioral mechanisms

As mentioned above, robot perception has its unique features of dynamics and continuity, and seeks
a balance between accuracy, energy efficiency, and speed. However, because the images obtained via
visual perception lie in a high-dimensional space, the above requirements face difficulty in robotic ap-
plications. To solve the problem of computational tractability caused by high dimensionality, a class of
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methods dubbed dimensionality reduction (DR) has emerged, which refers to the transformation of high-
dimensional data into a low-dimensional representation while preserving some properties of the original
data that the user is interested in.

Manifold learning is a subfield of DR that works by discovering the low-dimensional manifold structure
underlying the high-dimensional data distribution. Manifold learning is not only well-grounded on human
behavioral mechanisms in terms of visual perception but also a useful tool for robot perception. For
example, when a robot equipped with a camera navigates in an environment, the images captured by the
camera can be assumed as high-dimensional data located on a low-dimensional manifold, and the robot’s
position and orientation can be represented by the intrinsic variables of that manifold. Next, we will
review the biological mechanisms of manifold learning and its applications of manifold learning in robot
perception.

3.1.1 Biological mechanisms of manifold learning

The superior ability of humans in cognitive tasks far exceeds existing computer-vision methods, which
greatly inspires researchers about the potential performance improvement by mimicking human visual
behavioral mechanisms. The nervous system is not only able to distinguish between different objects but
also has an invariant perception of the same object, which means it can accurately recognize the object
even when its physical characteristics vary greatly. For example, mammals can accurately recognize
objects even when the orientation, position, pose, lighting, and background are completely different. The
robustness of biological sensory systems to physical changes is impressive and has attracted extensive
attention in neuroscience. Neuroscientists have proposed that the sensory system has a hierarchical
architecture, and different neural circuits at different levels can transform sensory signals into distinct
neural representations. Studies in high-level sensory systems, such as the inferior temporal cortex of
vision, have demonstrated that neural circuits remain significantly sensitive to physical variables in the
late stages of perception. Therefore, representations of objects generated at different perceptual levels
can be easily decoded by downstream systems in a nearly invariant manner [110]. This phenomenon in
human visual behavior is formalized as perceptual manifold, which has brought important inspiration to
the development of artificial intelligence.

Perceptual manifold refers to the population structures of sensory neuron that represents identity-
preserving variabilities in the input stimulus space [111]. A representative work on the biological mech-
anisms of perceptual manifold learning was accomplished by Seung et al. [112], which presented the
biological basis of manifold learning by discussing the manifolds resulting from the continuous variability
of images in visual perception. Later, Singh et al. [113] found the two-sphere topological structure of
activity patterns in the primary visual cortex (V1), which is similar to those evoked by natural image
stimulation. In recent years, more findings have been reported on the manifold representations of percep-
tual neural activities [110, 111, 114]. Meanwhile, what later became the prototypes of manifold learning
algorithms also appeared, that is, the isometric feature mapping (ISOMAP) [115], which maintains the
geodesic distances induced by a neighborhood graph in the transformation from high-dimensional to
low-dimensional data, and the locally linear embedding (LLE) [116], which represents the data points
as a linear combination of their neighbors and maintains the local properties of data in dimensionality
reduction. Based on the idea of neighborhood preservation, more algorithms have been proposed, such
as locality preserving projections (LPP) [117], neighborhood preserving embedding (NPE) [118], and
orthogonal neighborhood preserving projections (ONPP) [119].

3.1.2 Robot perception models based on manifold learning

In this subsection, we will review some typical studies on robot perception based on manifold learning,
from both theoretical and applied perspectives.

Although the methodology of manifold learning has witnessed great development over the years, there
still exist some open issues, such as determining the intrinsic dimension, coping with the diversity of data
distribution, and finding an explicit embedding. Here we review some theoretical studies that address the
above issues. To determine an appropriate intrinsic dimension, Fan et al. [82] proposed a novel method
to estimate the intrinsic dimension by establishing an exponential relationship between the radius of the
incising ball and the amount of samples in the ball. To cope with diverse data distributions, Zhang
et al. [83] developed the local tangent space alignment (ILTSA) algorithm which, by computing proper
approximations to the local tangent spaces, may efficiently reconstruct the geometric structure of data
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manifolds. Fan et al. [84] introduced multi-manifold proximity embedding (MPE), an isometric multi-
manifold learning approach that can isometrically learn data scattered across several manifolds and is
highly reliable in maintaining both intra-manifold and inter-manifold geodesic distances. To construct an
explicit nonlinear mapping in manifold learning, Qiao et al. [85] drew on the assumption that there exists
a polynomial mapping from the high-dimensional data space and the low-dimensional embedding space.
Some studies have applied manifold learning to other theoretical problems. For semi-supervised distance
metric learning which finds its applications in classification and image retrieval, Ying et al. [86] deduced
an intrinsic steepest descent method by exploiting the manifold topology of the positive-definite metric
matrix. For online semi-supervised learning, Ding et al. [87] proposed a manifold regularized algorithm
dubbed model-based online manifold regularization (MOMR), which iteratively solves a Lagrange dual
problem in a reproducing kernel Hilbert space. To conclude this paragraph, we refer to a unification
of various manifold learning algorithms provided by Fan et al. [88]. This work reinterpreted manifold
regularization as a kernelized fitting problem regularized by one complexity term and one smoothness
term, and proposed the manifold regularized kernel least squares (MR-KLS) algorithm as an example.

Manifold learning has various applications in robot perception, such as the segmentation of objects, the
recognition of human actions, the tracking of dynamic objects, etc. Here we list some examples. For image
retrieval, Liu et al. [89] proposed a novel image descriptor based on Gestalt psychology named perceptual
uniform descriptor (PUD), which was combined with manifold learning to solve the incompatibility
between image descriptors and ranking. For human action segmentation, Liu et al. [90] proposed a novel
physical-based human action descriptor with the manifold learning algorithm named curvature sequence
warp space alignment (CSWSA). For dynamic visual tracking, Qiao et al. [91] constructed a manifold
in training by maintaining the continuity of intrinsic variables, for tracking a human who can move and
rotate freely. Qiao et al. [92] tackled tracking feature extraction from the manifold learning perspective
and applied the proposed method to several real-world robotic systems. For pedestrian tracking, Wang
et al. [93] introduced a new class of manifold subspaces, which can best preserve the intrinsic variables
of the target motion while having a very low dimensionality of features. By using manifold learning,
the high-dimensional tensor of features is reduced to the low-dimensional tensor of intrinsic variables,
achieving the purpose of high-speed robot perception.

3.2 Robot perception models inspired by human neural mechanisms

To make robots have brain-like visual cognitive ability, in addition to modeling the behavioral mechanisms
of human visual cognition as described in Subsection 3.1, many researchers have analyzed and modeled
the neural working mechanisms of the human visual system. By the cooperation of multiple visual cortex
regions, the human visual system can achieve the complete perception of visual information. By analyzing
and modeling neural mechanisms in different visual cortex regions, a robot can simulate the balance of
accuracy, energy efficiency, and speed of the human visual perception system to a certain extent.

3.2.1 Neural mechanisms of human visual perception

Among many perception organs of the human body, the visual organ has fast perception speed and high
accuracy. In the human body, this organ gathers maximum external information. For most primates,
visual perception is the basis of all advanced behaviors. Structurally, the human visual perception
system mainly includes the eyeball, ocular adnexal, visual conducting pathway, and visual center. The
area of the cerebral cortex responsible for visual information processing is located in the occipital lobe,
including the striate cortex, extrastriate cortex, inferior temporal (IT) gyrus, and prefrontal cortex (PFC).
Neurobiologists have unraveled many working mechanisms of the human visual neural circuits through
various experiments. These neural mechanisms ensure that the human visual perception system can
maintain good performance in complex environments and achieve a balance between perception accuracy,
energy efficiency, and speed.

First, the human visual system can map the image information of the same object in different envi-
ronments into some essential features and hence has high recognition accuracy for objects in different
environments. Many areas of the visual cortex have the capacity for this kind of cognitive invariance. For
example, the V4 cells only respond to certain curvature of an object and are not affected by their spatial
position [120]. Features such as shape, size, and location of an object stimulate different neurons in the
IT cortex [121–123]. Moreover, the human visual system can perceive key information through attention
mechanism, thereby achieving high recognition accuracy. Experimental studies have demonstrated that
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the frontal eye fields (FEF), the lateral intraparietal cortex (LIP), and the superior colliculus (SC) are
the areas where attention mechanisms may arise. Direct mapping from the FEF and the LIP to the
extrastriate cortex has both been observed experimentally [124, 125].

Second, the human visual perception system represents rich information as a low-dimensional represen-
tation by perceiving and memorizing semantic features, thereby reducing storage capacity and improving
perception energy efficiency. The objects’ orientation, location, and color provide important information
for feature learning in visual perceptual processes. For example, the neurons in area V1 can discrimi-
nate small differences in orientation and spatial frequency, and can preserve the information about the
spatial location. The neurons in area V2 can distinguish between foreground and background stimuli,
and their responses can be affected by the illusion contours [126]. Area V4 is sensitive to the objects’
simple geometric shapes that are intermediate-level features. Complex object features are achieved in
area IT. The color neurons in LGN and V1 are sensitive to color in two axial directions, namely red-cyan
and blue-yellow [127, 128]. In area V1, pairs of opposing neurons compute local color’s contrast and
agreement [129, 130]. The color information in the IT layer may help shape perception [131].

Third, the human visual perception system can achieve fast learning and recognition through similarity
discrimination and population coding. Recognition memory used to identify, judge and recall whether an
object or event has been consciously seen or experienced is a type of declarative memory [132, 133]. It
consists of two parts: similarity discrimination and recall matching. Compared with deep recall matching,
which takes a long time, a simplified visual system based on similarity discrimination can serve for quick
decision-making and speed up the response in emergencies [134,135]. The population coding theory [136]
believes that the objects are defined by using a group of feature units that are simultaneously activated.
Hence, the population coding theory supports distributed feature learning and memory storage. This
theory can explain human’s ability about recognizing novel objects. When novel objects have some
similarity with familiar objects, the units that represent similar features will be activated. Then, the
recognition of novel objects through associative learning with semantic memory can be rapidly realized.

The above biological evidence indicates that the human visual system can form a balance between the
accuracy, energy efficiency, and speed of perception through the cooperation of various neural mechanisms
among different brain areas. These visual neural mechanisms have important significance for promoting
the study on robot dynamic vision.

3.2.2 Brain-inspired visual models

The design of a visual perception model inspired by human neural mechanisms can provide tools for
neuroscientists to analyze the working mechanisms of brain’s visual perception and can provide ideas for
information scientists to solve the shortcomings of traditional visual computing algorithms. The designs
of these brain-inspired computing models fall into two main categories: micro-modeling methods and
macro-modeling methods.

(1) The micro-modeling method mainly simulates the electrophysiological characteristics of visual neu-
rons. Hubel and Wiesel [137] used electrodes to stimulate the V1 neurons of cats and observed the
characteristics of their responses. They proposed a qualitative description model including simple and
complex neurons. Daugman [94] used a two-dimensional Gabor function to simulate the spatial charac-
teristics of the visual neural cortical receptive field. Adelson and Bergen [138] used paired orthogonal
filters with the same direction to simulate simple neurons and designed the energy model of complex
neurons through summation calculation. Carandini et al. [95] proposed gain control operation, which
uses shunting inhibition to describe the response characteristics of V1 neurons. A “winner is king” visual
computing method which selects and transmits the strongest response in neural inputs was proposed
in [96,97]. Poggio and Bizzi [98] found that the response of visual cortical neurons to their most sensitive
patterns was similar to Gaussian response.

(2) The macro-modeling method mainly simulates the transmission of visual neural signals. Marko
and Giebel [139] proposed the earliest feedforward homogeneous multilayer cognitive model. Subse-
quently, Fukushima [99] proposed the Neocognitron model. Riesenhuber and Poggio proposed the HMAX
model [100,101]. The basic idea of these models is to gradually improve the invariance representation abil-
ity of high-level output to complex objects and scenes by integrating low-level inputs. Marr and Poggio
used three independent layers to describe visual-information processing: computing, algorithm represen-
tation and hardware layers. A visual computing framework including three stages: primal sketch, 2.5D
sketch, and 3D model, is proposed in the algorithm layer [102]. Marr’s visual computing model integrates
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Figure 4 (Color online) Perception model of robot inspired by neural mechanisms. (a) Model of distributed storage (V1–V4) and

AIT; (b) recognition model based on semantic and situational memory (V1–V3 and V4-AIT); (c) preliminary cognitive and active

regulation model for hierarchical robust recognition (V1, V4 and AIT); (d) computational model of dynamic semantic learning and

conceptual integration (V1–V4 and AIT).

multiple independent research contents, including feature analysis [137,140], receptive field [141], spatial
frequency analysis [142], Gestalt psychology [143], and random point stereo vision [144]. This model
has a great impact on neuroscience and information science. Itti et al. [103–105] added the attention
mechanism to the object recognition model based on the saliency mapping theory.

Although the above models simulate some aspects of the working mechanisms of human visual per-
ception, they are still unable to match the real human visual perceptual ability in many characteristics.
First, these models do not consider the particularity of the recognition process when recognizing a type
of special object, resulting in their poor effect under some specific scenes. Second, these models do not
consider complex neural mechanisms that can efficiently process visual information such as semantics,
memory, and concepts. Third, these models cannot well complete the perception of the objects with
occlusion, deformation, and blur. Furthermore, the outputs of these models can be affected by even small
disturbances [145]. At present, some studies on robot vision have analyzed and utilized these complex
mechanisms, as shown in Figure 4.

The visual cortex of the human brain has a particularity in the perception of specific objects. For ex-
ample, the process of facial perception is two-stage. The first stage processes the structural information
of the face. Then, the second stage uses two interacting functional pathways to perceive more specific
facial information. These two pathways have different functions, dealing with the invariable and variable
features of the face, respectively. In addition, encoding, storage, and recall constitute the three parts of
memory in brain. Recall begins with retrieval, followed by identification and decision making. Based
on the above mechanisms, Xi et al. [109] proposed a neural-inspired face-perception model. To recog-
nize facial expressions, this model uses convolutional deep belief networks (CDBNs) to automatically
find highly discriminative regions, and simultaneously implements feature learning and feature selection.
This model uses HMAX to encode salient features and proposes a new memory model including initial
decision making, expression modulation, and expression recognition for the recognition of facial identity
perception.

The human brain has selectivity in memorizing visual information, and the storage of features is
distributed in the brain. According to some physiological studies on the cerebral cortex, researchers
have found that memory includes two parts: episodic and semantic. Information is first processed into
semantic memory and then into episodic memory. Specific cortical areas have specific features to address.
Recognition memory includes recall matching and familiarity discrimination, which is fast and accurate,
and requires few neurons. Based on the above evidence, Qiao et al. [106] modeled the memory and
association mechanism of the human brain and added them to the HMAX model, obtaining a visual
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perception model that can actively filter key features. If the semantic description of an object exceeds
the predefined threshold in the memory process, the feature corresponding to this semantic is considered
salient, and then the feature is stored and learned. The features of different key components (semantic
and situational features) are stored in separate brain areas. Similar features about different objects are
clustered together to facilitate fast feature matching and recognition through association comparison.
The recognition is realized in two ways: recognition memory and population coding. The results of their
experiments indicated that the new model requires less storage and has a better recognition effect than
the HMAX model. In addition, Qiao et al. [107] established an active and dynamic visual learning model
by imitating the perception process of the infant visual cortex about unseen objects. The experimental
results indicated that the model is effective in the learning semantic descriptions.

Humans can recognize and understand objects well under complex conditions, such as occlusion, defor-
mation, and blur. Inspired by the findings in neurophysiology and psychophysics of the human abilities
above, Qiao et al. [108] proposed a general visual perception model, which consists of three processes:
encoding, storage, and recall. In the encoding phase, a deeply improved HMAX model is proposed by
simulating the modulation ability of the anterior inferotemporal cortex (AIT) to view angles, compo-
nents, and object categories. The storage phase simulates the characteristics of the brain’s distributed
storage, which supports the model implementation of the encoding and recall phases. In the recall phase,
a recognition framework based on the fusion of similarity probability was proposed. The validity and
generality of the model are proved experimentally, especially the robust recognition performance in the
case of occlusion reflects that the model has a deep understanding and simulation of the human visual
cognitive process. This model can provide a reference for the structured modeling of visual cognition
and facilitate the effective fusion between biological mechanisms and information models. By simulating
semantic-information extraction, concept formation and feature reselection in the visual signal process-
ing of cerebral cortex, Yin et al. [1] designed an integrated and dynamic visual recognition framework to
realize perception under highly complex conditions. The experimental results on four different datasets
indicate that the model has stronger robustness than the traditional models in visual-perception tasks.
Especially, if the training data is small or the test samples have semantic confusion, the model can still
maintain good performance.

The particularity of perception about specific objects, selective memory, distributed storage of features,
and robust recognition can help humans realize better recognition and understanding of objects in complex
scenarios. The above studies applied these mechanisms to the robots’ visual recognition and achieved
good results, providing an idea for the robot researchers to reproduce or even surpass the human visual
perception ability.

4 Human-inspired robotic systems and control

Continually investigating the nature of human beings and trying to understand what it means to be human
have always been a fascinating topic in science. No matter in scientific fiction or reality, robots are often
thought to be the potential candidate for mimicking and producing humanity. At present, although
articulated robots composed of rigid links and motor joints have been widely applied in plenty of fields,
such as industry and medical treatment, they have certain limitations and are far from approaching
people’s expectations. For example, articulated robots are considerably different from human beings in
their shape, structure, and movement characteristics, which makes it difficult for human cooperator to
understand and predict their movement, thus bringing challenges to realize safe cooperation. Meanwhile,
sophisticated structure, highly accurate sensors, and well-designed controllers are all necessary for an
articulated robot to achieve high-precision movement.

As a comparison, humans can naturally realize compliant interaction, robust movement, and accurate
manipulation by leveraging their flexible body and abundant neural modulation. Therefore, developing
humanoid robots that not only resemble humans but also can think, act, and cooperate like humans has
been an attractive area in robotics. In this section, the advances in human-inspired robotic systems and
control will be summarized, including robots with human-like appearance (from outside-in) and those
inspired by neural mechanisms (from inside-out). Typical references to these two types of robots are
listed in Table 3 [3, 146–207].



Qiao H, et al. Sci China Inf Sci December 2022 Vol. 65 221201:17

Table 3 Overview of human-inspired systems and control

Human-inspired systems and control Ref.

Systems with human-like

appearance and function

Bipedal locomotion

Zero mement point [146–150]

Capture point [151–153]

Central pattern generator [154–156]

Behavior-based [157–159]

Autonomous manipulation
Model-based [160, 161]

Learning-based [162–169]

Systems inspired by neural mechanisms

Brain
Cerebral cortex [170–181]

Cerebellum [182, 183]

Body
Spinal cord [184–188]

Muscle model [3, 189–207]

4.1 Humanoid robots with human-like appearance and function

Making robots increasingly similar to humans in appearance, function, and intelligence for them to be
real assistants and friends of humans, has been a long-term dream of roboticists. In general, humanoid
robots have human-like appearance and adopt bipedal locomotion. The first humanoid robot, WABOT,
was created in 1972 by Ichiro Kato of Waseda University. WABOT can realize stable walking, recognize
and manipulate objects, and synthesize voice [208]. Afterwards, many scientists and engineers dedicated
themselves to the research on humanoid robots and designed plenty of remarkable robots [209–213], as
shown in Figure 5.

• Honda Motor Company developed and announced their first humanoid robot Humanoid P2 in 1997.
Based on Humanoid P2, they further developed the famous humanoid robot ASIMO. Owing to its fa-
vorable human-like appearance, natural gait, ability to walk up and down stairs, and friendly interaction
with humans, ASIMO has drawn considerable attention of public [214, 215].

• Since 2000, the Beijing Institute of Technology has been developing a series of humanoid robots called
BHR [216]. These research projects have continually made breakthroughs in plenty of core technologies
such as bionic-mechanism design, bipedal stable walking, complex motion design, human expression
simulation, dexterous motion generation, and rigid-flexible coupling motion control. The latest released
humanoid robot in the series, BHR-T, is approximately of human size. It weighs 43.2 kg and has one
degree of freedom in each arm and six in each leg. BHR-T has significant resistance to environmental
interference to achieve stable and compliant walking [157].

• In 2007, the National Aeronautics and Space Administration (NASA) teamed up with General
Motors Company (GM), and jointly developed the second-generation astronaut robot Robonaut-2 [217].
The robot is equipped with a tendon-driven 5-finger dexterous hand, which has 12 degrees of freedom
and controls the movement of fingers and wrist using 18 actuators. Robonaut-2 can complete a variety
of extra-vehicular operations in the international space station.

• A child-like humanoid robot named iCub was developed by the Italian Institute of Technology to
advance research on cognitive development and embodied artificial intelligence [218]. iCub is capable of
cognitive and behavioral interaction with the world through head movements, eye contact, hand manipu-
lation, and bipedal locomotion, providing a physical body for neuroscientists and roboticists to investigate
how a human cooperates with the robot and how the robot fits into the real world.

• Boston Dynamics has released a series of brilliant videos to demonstrate the high mobility of the
humanoid robots called Atlas in recent years, including backflips, gymnastics and parkour. Atlas is
a full-sized hydraulic humanoid robot. It stands 150 cm tall, weighs 75 kg, and has 28 degrees of
freedom [209, 219]. The high mobility of Atlas, including stable walking in uneven terrain and force
interaction with the environment, is of great significance for its further application to complex tasks such
as disaster relief.

Different from the human motor system, which uses muscle traction to complete the target movement,
the humanoid robots reviewed above normally leverage high-performance servo motor as their power
source. In extreme cases, such as running and jumping, hydraulic actuators are adopted to provide high
torque; however, this incurs a high cost. To generate sufficient joint torque for a low-cost electric motor,
two common methods are used [209]. One approach is to use harmonic drive, in which multiple motors
operate simultaneously to provide high torque for each joint [209]. The other approach is to guarantee
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Figure 5 (Color online) Representative achievements in the development of humanoid robots.

sufficient heat dissipation by water- [220–222] or air-cooling [213] so that the electric motor can work in
the optimal temperature range for a long time.

By deploying highly redundant actuators, humanoid robots can achieve high flexibility similar to
humans while increasing the barrier of system control. In general, the challenges for controlling humanoid
robot mainly come from two aspects: (i) realizing stable bipedal locomotion and (ii) developing planning
and control algorithm to complete diverse manipulation.

Bipedal walking ability is the main difference between humanoid robots and most existing robots. The
primary research goal of bipedal locomotion is to enable humanoid robots to achieve robust and flexible
movement on different terrain and irregular surfaces. The control methods of bipedal walking can be
categorized into model-based and bio-inspired algorithms. Based on the dynamic model of the humanoid
robot, the model-based algorithms leverage stability criteria to plan the trajectories of the center of mass
and legs and then calculate the time sequence of each joint angle by inverse kinematics and further solve
the joint torques for realizing stable bipedal locomotion.

The stability criteria that are widely applied mainly include zero moment point (ZMP) [146–150] and
capture point (CP) [151–153]. The ZMP method was first proposed by Vukobratović et al. [146,147] and
has been widely used in the balance control of biped robots. Kim et al. [148] designed an online controller
that can maintain stability during the walking cycle for KHR-2 robot using force/torque sensors and an
inertial sensor. Urata et al. [149] proposed an online walking trajectory generalization algorithm using
the ZMP method with nondivergence conditions of center of mass, so that a biped robot can change
its walking direction and speed under an unknown external force. Fu et al. [150] realized humanoid
stair climbing using the sensory feedback controller which is composed of the torso attitude controller,
ZMP compensator, and impact reducer. Pratt et al. [151–153] defined the concept of CP and the capture
region, and proposed an algorithm to compute the exact solutions of the capture region which a humanoid
robot must step into to avoid a fall due to an unexpected push.

Bio-inspired walking algorithms are normally designed by analyzing human walking data or biological
movement mechanisms. Control methods based on central pattern generator (CPG) are representative
studies on bio-inspired walking algorithms. CPG is a neural control mechanism which has been verified
in the spinal cord of vertebrates and the thoracic ganglion of invertebrates. It plays a pivotal role in
completing rhythmic movements of organisms, such as walking and swimming. By adopting the CPG-
based algorithm, the active joints of biped robots are designed as neuronal oscillators so that stable
gaits can be generated by adjusting the parameters of oscillators [154–156]. Miguel-Blanco et al. [154]
leveraged a CPG-based fast learning method for online sensory adaptation. It allows robots with different
number of legs to perform self-organized walking and deal with damage within a few walking steps. Thor
et al. [155] proposed a generic walking control framework by combining a CPG and radial basis function
network. Huang et al. [156] extended the concepts of controlled passive walking using structured control
parameters and a CPG-based method.

Another important approach for designing a bio-inspired walking control algorithm is to extract mecha-
nisms from human movement data. Inspired by the behavioral mechanism of human resistance to external
forces by posture adjustment, Huang et al. [157] proposed a resistant compliance strategy for biped robots
to handle long-term external disturbances, which effectively improves the stability and safety of the hu-
manoid robot in environmental interaction. Srinivasan et al. [158] proposed an energetically optimal gait
pattern of a biped system for low-speed walking and high-speed running by analyzing the experimental
data on human walking and running. Sinnet et al. [159] formulated a black-box model to generate a
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human-like gait for a biped robot using measured human kinematics data.

Developing control algorithms for humanoid robots to fulfill complex manipulation tasks is another
core challenge. Manipulation is a fundamental way by which robots can interact with and affect the
real world. When designing and building working and living environments, humans naturally take their
physical size, behavior customs, and convenience requirement into consideration, such as the height of
doorknobs, weight of tools, and width of stairs. Humanoid robots are similar to humans in size, structure,
and movement mode, which lays the foundation for utilizing tools and adapting to the environment of
human life, so as to complete different manipulation tasks like humans.

To complete human-like tasks, some researchers tried to establish the dynamic model of humanoid
robots. He et al. [160] used the recursive Newton-Euler formula and particle swarm optimization to
estimate and optimize the manipulator dynamic model of the HUBO humanoid robot, and they proposed
an adaptive control algorithm to improve its tracking performance. Vaz et al. [161] modeled the slosh
dynamics of a liquid-filled container and proposed model-based suppression control of a humanoid robot
to complete liquid vessels carried task during stair-climbing.

However, owing to the redundancy and nonlinearity of humanoid robots, as well as the disturbance and
uncertainty caused by environmental contact during their operation, it is difficult to establish an accurate
dynamic model to represent the process of humanoid robots in manipulation. Therefore, learning-based
algorithms have attracted wide attention in recent years. Typical learning-based algorithms include
model-free reinforcement learning [162, 163], imitation learning based on demonstration [164, 165] and
the control method inspired by human behavior [166–168]. Although the study of humanoid robotic
manipulation with learning-based methods is still in its infancy, it is expected to be a promising avenue
for further improving the adaptability of robots in unstructured environments [169].

The technological progress of the two challenges, walking and manipulation, will be of great significance
in promoting the application of humanoid robots in complex and unstructured real world. In 2015,
Defense Advanced Research Project Agency (DARPA) Robotic Challenge was held for seeking potential
solutions to high-risk disaster relief using humanoid robots. However, the practical effects are still far
from expectations [214,223]. Achieving high performance of humanoid robots by integrating perception,
decision making, control, and mechanical system still has a long way ahead.

4.2 Humanoid robots inspired by neural mechanisms

Traditional articulated robots have partially imitated the function and structure of humans, thus ob-
taining particular performance. The precision of motion control with designed controllers in certain and
structured environments can be of micron level. However, the precision of movements and manipulations
depends excessively on the precision of sensors and the mechanical body. With the growing requirements
of compliant multi-task operations in industrial manufacturing and flexibility in human-machine inter-
action, existing joint-link robots have some limitations and bottlenecks. Their relatively rigid bodies
are not suitable for realizing a safe interaction with humans. Furthermore, their overall performance is
affected by their every single actuator.

Compared with articulated robots, bio-inspired musculoskeletal robots have considerable advantages
[224–226]. First, with more degrees of freedom, musculoskeletal robots are sufficiently flexible to complete
a task with multiple postures. Second, owing to the non-linear muscle driven and variable-stiffness
joints, musculoskeletal robots have better compliance for interacting with environments and humans. By
adjusting the activation patterns of agonist and antagonist muscles, continuous stiffness variation can be
realized. Furthermore, system robustness is improved because of the parallel and redundant muscular
actuators. The fatigue or damage of a muscle can be compensated by recruiting other neighboring muscles
with similar functions.

However, two main challenges slow down the development of musculoskeletal robotics: muscle actuator
imitation and control-system design. On the one hand, muscle tissue is able to contract, thus producing
a pulling force to generate movements. The mathematic model established by bio-mechanical research
suggests that muscle dynamics is highly non-linear and highly coupled with the skeletal system [227,228].
Moreover, the cooperation of redundant muscles is hard to be realized using existing drive-mode like mo-
tors. The mode changing between motor and generator when simulating the active and passive working
states of muscles extremely reduces the control performance. New drive modes such as pneumatic mus-
cle [229] and electromagnetic drive [230,231] have been investigated and obtained exciting achievements.
On the other hand, the controller design for such a multi-input multi-output, nonlinear, and highly cou-
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pled system is difficult, thus increasing the barrier of developing musculoskeletal robots. Because neural
mechanisms of motion control and learning have not been clearly investigated, current research on the
control of musculoskeletal systems are mainly based on control theory and artificial intelligence. How-
ever, human-like manipulations with high precision and biologically plausible algorithms require further
development. Considering the core problem mentioned above, some bio-inspired control algorithms have
been investigated to imitate humanoid control mechanism and have yielded some exciting results.

4.2.1 Neural mechanisms of movements

Humans can robustly complete intricate tasks in a flexible manner under a variable unstructured envi-
ronment; therefore, the musculoskeletal and central neural systems are two key parts that can be further
studied and imitated.

Human musculoskeletal structure and dynamics play an important role in adaptive and flexible lo-
comotion. To understand its driving mechanism, researchers in the biomechanical field have proposed
mathematical models of muscle dynamics by testing the changes in muscle heat during different move-
ments [189–192]. These mathematical models express the relationship between muscle force, muscle
states, and muscle active signal. To improve the bioaccuracy and computational speed, many modified
models based on the Hill-type muscle model have been proposed and developed [193–201]. The most
widely used muscle model in system analysis and simulations was proposed by Thelen in 2003 [197,202],
which used relatively fewer parameters to realize higher bio-accuracy and generalization.

Neural-circuit research on motion control in brain and spinal cord has always been a hotspot in neu-
roscience. Neuroscientists have proposed a concept in humanoid motion control called motor primitives,
which might be the component of the movements of people and animals [98, 184, 232]. The equilibrium-
point hypothesis is an important example of a motor primitive [185, 186]. This hypothesis suggests that
the electric stimulation in a particular part of spinal cord elicits muscle contraction and limb motion.
The direction and magnitude depend on the position of the limb in space. The force vector converges to
a particular point, called the equilibrium point, where the force elicited is zero [187].

Mussa-Ivaldi et al. [184] found that the force-field vector generated by simultaneously stimulating two
different positions of a spinal cord is the vector superposition of the force fields generated by separately
stimulating the two positions. This observation by analyzing electromyography signals indicated that
muscles with strong structural and functional correlations are always co-activated. These groups of
co-activated muscles can be regarded as a specific movement primitive, which are defined as muscle
synergies [203–205].

Furthermore, besides the regulation of motoneurons and interneurons in the spinal cord, the motor
cortex is the primary center of motion control and has an important role in generating motion instructions.
However, the encoding mechanisms of movement information and muscle excitations in motor cortex
are controversial. Some neuroscientists proposed that the muscle commands are directly encoded and
generated by motor cortex [170,171], whereas others believe that the motor cortex mainly encodes abstract
movement information [172–174]. Churchland et al. [175,176] and Russo et al. [177] further proposed that
the motor cortex is a dynamic system, and the population response of neurons reflects the fundamental
dynamic characteristics of the system. Muscle-like commands are regulated and embedded in such a
chaotic and dynamic system. Neuroscientists have also found some sufficient evidence to support the
movement-preparation phase of the movement-execution process in the motor cortex [178]. Churchland
et al. [179,180] proposed an optimal subspace hypothesis to explain the neural activity about movement
preparation.

4.2.2 Bio-inspired control algorithms of musculoskeletal systems

Inspired by the high performance of humanoid motion control and manipulations, the interdisciplinary
research between control science and neuroscience has been developed for decades. To improve the
control performance of musculoskeletal robots, numerous model-based and model-free approaches have
been proposed in this area. Because the musculoskeletal system has a sophisticated relationship between
muscles and joints, plenty of control algorithms have been proposed using explicit muscle-joint state
mapping [233–235]. Based on computed torque control, Jäntsch et al. [233] proposed a scalable joint-
space control scheme for a musculoskeletal robot. The control scheme employs the hierarchical control
architecture formed by the inner-loop muscle force control and outer-loop joint torque control in series. A
neural network is used for mapping the muscle force to joint torque. In another work, Jäntsch et al. [234]
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proposed a general control framework for a musculoskeletal robot. High-dimensional dynamic surface
control was applied to settle the computational-complexity problem of solving continuous differential
equations of system state. Inspired by the neural mechanism of reciprocal innervation, Kawaharazuka
et al. [235] proposed antagonist inhibition control for a musculoskeletal humanoid to complete wide
range limb motion. Based on these algorithms, the function of state mapping was established, and
thus the controller was developed. However, the modeling errors inevitably reduced the performance
when it was applied to a real system. Various model-free methods, such as deep learning [236, 237],
reinforcement learning [49,238–241] have been proposed to control sophisticated musculoskeletal systems
without establishing realistic models. These data-driven methods perform relatively better than model-
based control on complex robotic models; however, their effectiveness and generalization need to be
further studied.

Based on the biological structure and neural mechanisms mentioned above, some inspirations can be
drawn for the control of musculoskeletal robots, and bio-inspired algorithms can be proposed correspond-
ingly. With these inspirations, the muscle dynamics was analyzed to ameliorate the system’s robustness
and the recurrent dynamics of motor cortex was analyzed, then utilized to realize generalization and
sparse control. The operational performance and biological plausibility were further improved in these
studies. First, the performances of motion, generalization, and, multi-task learning were improved. Fur-
thermore, the muscle command generation and muscle control mechanism of movements can be better
explained.

Inspired by the humanoid advantages in flexible and robust operations, Wu and Qiao [206] mathe-
matically and experimentally analyzed the nonlinear and highly coupled muscle dynamics. In this study,
the anti-interference ability of structure and dynamics were analyzed and proved. Then, the low control
frequency and robust controllers inspired by the equilibrium-point hypothesis were proposed to utilize
muscular properties to complete target-reaching tasks. Zhong et al. [188] combined ARIE and equilibrium
point hypothesis for musculoskeletal-robot control, and proposed constraint force field (CFF) to guide
robot movements. This method constructs the CFF through a structure transforming optimization algo-
rithm to guarantee the target point being the convergence point of the CFF; then, the control signal can
be constant. The target point can be reached using musculoskeletal recurrent dynamics. This method
reduces the cost of computational effort of control signal, and its precision can also be guaranteed.

The motor primitives theory suggests that redundant muscles can be controlled by a combination of
motor primitives. Qiao et al. [182] introduced a novel musculoskeletal robot control approach. The
muscle excitations of a new target are calculated using this approach, which uses a linear combination
of movement patterns. The muscle excitations of specific targets are used to select movement patterns.
These targets are close to the new target and can create a convex polygon around it. The calculation of
muscle excitations is minimized using this approach, and a quick reaction and some generalization are
accomplished.

According to the concept of muscle synergy, the intrinsic properties of muscles can be identified by
taking the coactivated muscle patterns as specific motor primitives.

Chen and Qiao [207] proposed a neuromuscular control method based on the concept of muscle synergy.
The coupling relationship among muscles in terms of their structure and function was represented by
phasic and tonic muscle synergies. Muscle excitations for fulfilling target movement can be generated by
leveraging the combination of phasic and tonic muscle synergies. Experiences learned from the training
targets are able to directly transfer to new targets through brain modulation between movement objectives
and muscle synergies. This strategy allows for more precision and generalization in motion learning.
Chen et al. [3] developed a muscle-synergy-based control scheme for manipulation tasks. The motion
planning for the assembly task was completed by applying an algorithm based on the ARIE. Based on
path planning, muscle excitations were computed by combining time-invariant muscle synergies in a low-
dimensional space using an iterative learning controller. Thus, the control problem can be effectively
simplified from a high-dimensional muscle-excitation space to a relatively low-dimensional space. The
robustness, flexibility, and high-precision manipulation can be realized under relatively low-precision
sensor information.

Inspired by the movement-preparationmechanism of motor cortex, Wang et al. [181] proposed a motion-
learning framework with two recurrent neural networks (RNN). In this study, the preparation network
provides initial states to the modulated-execution network, which can generate time-varying motor com-
mands for movement. With this learning framework, the initial states of unlearned movements can be
computed through searching for the latent space constructed by the learned initial states. Then, the en-
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Figure 6 (Color online) The hardware platform of bio-inspired musculoskeletal robotic system.

tire neural space can be established through transformation. Using the proposed method, target-reaching
movements of the musculoskeletal system with high generalization efficiency and precision can be realized.

Inspired by the forecast and correction mechanisms of the cerebellar internal model, Capolei et al. [183]
proposed a novel methodology to replicate the learning and adaptive principles into robotic feedback
controllers. Owing to its neural network-based nature, this architecture can be applied to different robots.
The combination of models and structural, learnable features of this network benefit the adaptation
mechanism, and system response to nonlinearities, noise, and external forces.

Although neural mechanisms of motion control are sophisticated and have not been sufficiently studied,
the important role of related organs has been found in high-performance operations of human. The
mentioned algorithms and models inspired by the function of these organs have significantly improved
the anti-interference ability and sparse control of robotic systems. High-precision operation with low-
accuracy body and low-accuracy sensors can be further enhanced using bio-inspired robotic systems.

4.2.3 Integration of bio-inspired robots

To realize human-like motion control and high performance of manipulations, not only efficient motion-
control algorithms but a flexible and compliant robotic body are required. Based on the muscular-dynamic
analysis and mechanical-structure design, we built a software and hardware bio-inspired musculoskeletal
robotic system, as shown in Figure 6. Its muscle distribution and dynamic features are the same as that
of the musculoskeletal system, which provides the robot flexibility, robustness, and high-performance
potential. Considering improving the accuracy of this robot, a software system which has the same
parameters was also established. Owing to the virtual-real simulations, the brain-inspired algorithms can
be used to complete high-performance manipulations. The calculation of perception, decision making, and
motion control of the musculoskeletal robot is completed by the master chip, so that the robot can realize
complicated tasks, such as grasping, assembly, and catching tasks. According to the feedback information,
the performance of the brain-inspired algorithms can be further improved. Therefore, with the integration
of visual cognition, emotion-modulated decision making, motion control, and musculoskeletal systems,
the brain-inspired intelligent robot has the potential to achieve high speed, robustness, and precision in
manipulation.
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5 Conclusion

This review reviewed the cutting-edge progress of human-inspired intelligent robots in decision making,
cognition, motion control, and system design from behavior- and neural-inspired aspects. Based on the
characteristics of humans that their overall performance is significantly better than the independent per-
formance of each body component, research on human-inspired intelligent robots can get inspiration from
the internal mechanisms to external structures of humans, by integrating robotics, artificial intelligence,
brain science, and neuroscience. As reviewed in this review, studies along this route have primarily
demonstrated the effectiveness of improving the performance of robots with limited system and sensor
precision.

In the future, human-inspired intelligent robots will attract more attention and greater developmental
opportunities. On the one hand, the progress of brain science and neuroscience will continuously pro-
mote the understanding of the human body, providing significant research evidence to reveal the essence
of biological intelligence, including the principle of multimodal integration and generation mechanism
of autonomous behavior. This will be the source of fundamental theories for continuously improving
the performance of human-inspired intelligent robots. On the other hand, in terms of the practical re-
quirement that autonomous systems need to be upgraded from the static enclosed environment to a
dynamic open environment, and from independent operation to group and human-machine collaboration,
human-inspired intelligent robots will provide a firm basis for better understanding and predicting the
requirements of the human collaborator, efficient experience sharing, and friendly responses, owing to its
similarity to humans in its intrinsic mechanism and external structures. It will be a promising avenue for
realizing tacit human-robot collaboration in unstructured environments and for realizing new tasks.
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36 Lövheim H. A new three-dimensional model for emotions and monoamine neurotransmitters. Med Hypotheses, 2012, 78:

341–348

37 Bayer H M, Glimcher P W. Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron, 2005,

47: 129–141

38 Hasselmo M E. The role of acetylcholine in learning and memory. Curr Opin Neurobiol, 2006, 16: 710–715

39 Phelps E A, Lempert K M, Sokol-Hessner P. Emotion and decision making: multiple modulatory neural circuits. Annu Rev

Neurosci, 2014, 37: 263–287

40 Khamassi M, Humphries M D. Integrating cortico-limbic-basal ganglia architectures for learning model-based and model-free

navigation strategies. Front Behav Neurosci, 2012, 6: 79

41 Yin H H, Knowlton B J. Contributions of striatal subregions to place and response learning. Learn Mem, 2004, 11: 459–463

42 Yin H H, Knowlton B J. The role of the basal ganglia in habit formation. Nat Rev Neurosci, 2006, 7: 464–476

43 Rudebeck P H, Mitz A R, Chacko R V, et al. Effects of amygdala lesions on reward-value coding in orbital and medial

prefrontal cortex. Neuron, 2013, 80: 1519–1531

44 Daw N D, Niv Y, Dayan P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral

control. Nat Neurosci, 2005, 8: 1704–1711

45 Lee S W, Shimojo S, O’Doherty J P. Neural computations underlying arbitration between model-based and model-free

learning. Neuron, 2014, 81: 687–699

46 Scheutz M. Useful roles of emotions in artificial agents: a case study from artificial life. In: Proceedings of National

Conference on Artifical Intelligence, 2004. 42–48

47 Moerland T M, Broekens J, Jonker C M. Emotion in reinforcement learning agents and robots: a survey. Mach Learn, 2018,

107: 443–480

48 Savinov N, Raichuk A, Marinier R, et al. Episodic curiosity through reachability. 2018. ArXiv:1810.02274

49 Huang X, Wu W, Qiao H, et al. Brain-inspired motion learning in recurrent neural network with emotion modulation. IEEE

Trans Cogn Dev Syst, 2018, 10: 1153–1164

50 Doya K. Metalearning and neuromodulation. Neural Networks, 2002, 15: 495–506

51 Shi X, Wang Z, Zhang Q. Artificial emotion model based on neuromodulators and Q-learning. In: Proceedings of Future

Control and Automation, 2012. 293–299

52 Williams H, Lee-Johnson C, Browne W N, et al. Emotion inspired adaptive robotic path planning. In: Proceedings of IEEE

Congress on Evolutionary Computation (CEC), 2015. 3004–3011

53 Ficocelli M, Terao J, Nejat G. Promoting interactions between humans and robots using robotic emotional behavior. IEEE

Trans Cybern, 2015, 46: 2911–2923
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