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Abstract As the impairments of hardware circuits, such as the nonlinearities of power amplifiers (PAs),

limit the self-interference suppression performance in full-duplex systems, nonlinear self-interference can-

cellation (SIC) has attracted much research attention. According to some existing studies, nonlinear SIC

in full-duplex systems can be implemented with either nonlinear modeling or radio frequency (RF) signal

feedback. However, to the best of our knowledge, there is no theoretical analysis and comparison of the

cancellation performance with the two methods. In this paper, the performance of the digital nonlinear SIC

with RF signal feedback and nonlinear modeling is analyzed and compared for the first time. The theoretical

SIC capabilities of the two methods are derived, and the closed-form solutions are obtained. The factors

affecting the performance of the two methods are discussed with the theoretical analysis. Then, by simula-

tions, the theoretical results are verified and the performances of the nonlinear SIC with the two methods

are compared in different environments.
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1 Introduction

Driven by the accelerating process of informatization, researches on sixth generation (6G) wireless com-
munication networks have begun, in which enhanced spectral efficiency is an important performance
metrics [1]. In recent years, in-band full-duplex technology has received extensive attention and been a
focus of research in the wireless communication domain [2–23], as it is capable of improving the spectrum
efficiency and flexibility [2, 3]. The self-interference (SI) signal generated by simultaneous transmission
and reception at the same frequency, generally composed of linear and nonlinear components, is the
main factor hindering full-duplex communication, and effective suppression of the SI is the basis of the
implementation of full-duplex technology [2, 3]. A three-stage self-interference cancellation technique is
usually adopted in typical duplex systems [3], which involves the cancellation in propagation domain [4,5],
analog domain [6, 7] and digital domain [9–22], and high cancellation capabilities without consideration
of nonlinear SI have been achieved in existing researches [4–7]. However, in high-power communication
systems, the nonlinear SI components, including phase noise, in-phase/quadrature (IQ) imbalance and
power amplifier (PA) nonlinearity, are the main factors causing a technical bottleneck for full-duplex SI
cancellation (SIC), and the impact of PA nonlinearity is the largest [8]. Research shows that when the
transmit power is 25 dBm and a total of 60 dB of cancellation capability is provided in the propagation
and radio frequency (RF) domains, the power of the rest of the SI nonlinear components is still approx-
imately 41 dB higher than the noise floor after digital SIC [8]. Therefore, nonlinear SIC has attracted
much research attention, and some nonlinear SIC methods have been proposed [9–22], among which the
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SIC with RF signal feedback and that with nonlinear modeling are the two main methods for nonlinear
SIC in existing researches.

The SIC with RF signal feedback uses a feedback channel at the end of the RF transmission link,
through which the transmission signal including impairments of the RF circuits, such as the nonlinearity
in the PA, can be transmitted back to the digital domain as a reference signal and then convolved with
the SI channel estimation result so that the SI can be reconstructed and canceled. With the help of the
feedback channel, Refs. [9–11] achieved a nonlinear SIC performance of 0–3 dB above the noise level at
a transmit power of 20–30 dBm and a bandwidth of 20–100 MHz. The SIC with RF signal feedback
does not need to consider the complex characteristics of nonlinearity. However, additional hardware costs
are introduced, and some hardware imperfections in the feedback channel will affect the cancellation
performance.

The SIC with nonlinear modeling uses the baseband signal as a reference signal, models the nonlinear
SI, and estimates the model parameters from the received SI to reconstruct the SI and cancel it in the
presence of nonlinearity. Refs. [12–22] used different nonlinear models to achieve a simulated nonlinear
SIC performance of 0–4.3 dB above the noise level at a transmit power of 10–30 dBm and a bandwidth
of 10–80 MHz. SIC with nonlinear modeling does not require the assistance of RF circuits but relies on
appropriate nonlinear modeling and has a high computational complexity. Generally, only odd and low-
order components in the nonlinearity are considered, as they have larger power and smaller separation
in the spectrum from the intended signal, making them difficult to filter out. However, for broadband
signals, high-order nonlinear components are also difficult to remove with a filter. Moreover, as the
transmit power increases, the power of high-order components will grow faster than that of low-cost
components according to the nonlinearity model [24]. When the order of the nonlinear components
higher than the noise floor in the SI is greater than the modeling order, the SIC with nonlinear modeling
cannot guarantee sufficient SIC performance.

To further guide engineering practice, investigations into the performance bounds and influencing
factors of nonlinear SIC with these two methods are needed. However, to the best of our knowledge,
most of the current researches have focused on the explanation and implementation of nonlinear SIC
methods and lack a corresponding theoretical analysis and comparison of the cancellation performance.
In this paper, we analyze the theoretical performance and influencing factors of nonlinear SIC with RF
signal feedback, which is significant as a reference for the analysis and selection of nonlinear SIC methods
in engineering. The main contributions are summarized as follows.

• First, we consider the main relevant impairments of RF circuits, including PA nonlinearity, and ana-
lyze the performance of nonlinear SIC with RF signal feedback and nonlinear modeling. After derivation
in details, the closed-form solutions of the cancellation capabilities with two methods are obtained which
have not been proposed in existing researches. It is shown that the cancellation capabilities with the two
methods have the same upper bound, but are limited by different factors.

• Then, based on the closed-form expressions of the cancellation capabilities with two methods, we
discussed the factors affecting the performance of the two methods for the first time, respectively. We
compare the two SIC methods in terms of SIC performance, hardware cost and computational complex-
ity. Some suggestions of which method should be used under different conditions are provided for the
implementation of full-duplex engineering for the first time.

• Finally, by simulation, the theoretical results are verified, the performance of nonlinear SIC with
the two methods are compared in different environments. The results have certain reference value to
engineering practice.

The rest of this paper is organized as follows. In Section 2, the model of SI including nonlinearity is
provided. Sections 3 and 4 introduce the principles and analyze the theoretical cancellation performance
of the SIC with RF signal feedback and nonlinear modeling, respectively. Section 5 first analyzes the pros
and cons of the two methods from a theoretical point of view and then shows the numerical results under
different parameter environments. Finally, Section 6 summarizes the full text and gives conclusion.

Notations. The following notations are used in this paper. Matrixes and vectors are denoted as
bold capital letters and I is the identity matrix. (·)T, (·)H, and (·)∗ are the transpose, the conjugate
transpose, and the complex conjugate, respectively. E[·] means the statistical expectation and ⊗ denotes
the convolution. Tr[·] and ‖·‖ are the trace and the F norm of a matrix, respectively.



Hu N Z, et al. Sci China Inf Sci November 2022 Vol. 65 212301:3

h
SI

h
ASIC

h
ASIC

x
T

x
F

x
T

f
NL

 (·) f
NL

 (·)

y
ASIC

y
SI

y
SI

y
ASIC

y
R

y
R

~
h

SI

~

Analog SI

cancellation

Analog SI

cancellation

PA

Up

converter

Down

converter

DAC ADC

Auxiliary

feedback

channel

F(·)

Channel

estimation

ADC ADCDAC

LNA LNA

Down

converter

Down

converter

PA

Up

converter

Nonlinear model

estimation

h
RSI
FB

y
RSI
FB

f
RSI
NM

y
RSI
NM

eNMeFBx x

Nonlinear SIC

with digital nonlinear modeling

Digital

reconstruction

Nonlinear SIC

with RF signal feedback

Digital

reconstruction

(a) (b)

Figure 1 Block diagrams of systems using nonlinear SIC with (a) RF signal feedback and (b) nonlinear modeling

2 SI model and cancellation capability

2.1 SI signal model

Figure 1 depicts the architecture of the full-duplex systems using nonlinear SIC with feedback from an RF
signal and nonlinear modeling. As shown in Figure 1(a) and (b), after the baseband signal is upconverted
to the RF domain, nonlinear components such as the phase noise, IQ imbalance, and PA nonlinearity
are introduced. By denoting the digital baseband signal as x, the local transmission signal that includes
nonlinearity at the end of the transmission link can be expressed as

xT (n) = xL (n) + xNL (n) + wT (n) , (1)

where xL (n) and xNL (n) are the linear and nonlinear components, respectively, and wT (n) is the noise
of the transmission link with variance σ2

R,w.
The combination of linear and nonlinear components can be described by the memory polynomial

model [24], which is given by

xT (n) = fNL [x (n)] + wT (n) =

PNL
∑

p=1
p is odd

MNL
∑

m=0

fp,mψp,m [x (n)] + wT (n) , (2)

where fNL (·) is the transfer function of the nonlinear process, PNL is the maximum order of the nonlin-
earity, MNL is the memory depth, ψp,m is the coefficient of order p and delay m, and

ψp,m [x (n)] = x (n−m) |x (n−m)|
p−1

. (3)

After the local signal is transmitted and propagates through the SI channel, SI is introduced into the
receiving antenna. Suppose that the response of the SI channel is h̃SI; then, the received SI signal is

yR (n) = h̃SI (n)⊗ xT (n) + wR (n) , (4)

where wR is the noise of the receiving link and has variance σ2
R,w.
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Since the reference signal is drawn from the end of the transmission link, analog SIC can simultaneously
suppress the linear and nonlinear SI components. Suppose that the response of analog SIC is hASIC; then,
the SI signal reconstructed in the RF domain is

yASIC (n) = hASIC (n)⊗ xT (n) . (5)

After the analog SIC in the RF domain, quantization noise is introduced into the SI during quantization.
Unless otherwise specified, all the SI mentioned in the following text refers to the SI signal received in
the digital domain, which is given by

ySI (n) = yR (n)− yASIC (n) + qR (n)

=[h̃SI (n)−hASIC (n)]⊗ xT (n)+wR (n)+qR (n)

= hSI (n)⊗ xT (n) + wR (n) + qR (n) ,

(6)

where

hSI (n) = h̃SI (n)− hASIC (n) (7)

is the response of the SI channel after RF domain SIC, and qR (n) is the quantization noise. In this paper,
the quantization noise is regarded as Gaussian noise independent of the signals, and it is established for
uniform quantization and general bandpass signals [25]. Suppose that the variance of the quantization
noise is σ2

R,q , the signal transmit power is Ps, and the total gain of the SI channel after RF cancellation
is Ph; then, the interference-to-noise ratio of the receiving channel is given by

ηR =
PsPh
σ2
R

, (8)

where σ2
R = σ2

R,w + σ2
R,q + Phσ

2
T,w and Ph = Gh/GRF is determined by the SI channel gain Gh, the total

SIC capability in the propagation domain and RF domain GRF. The SIC in the propagation domain
and RF domain is usually realized by physical isolation, beamforming, SI reconstruction with RF circuit,
etc. [3]. Here, we ignore the specific method in the propagation domain and RF domain, and only give a
reasonable assumption used in [8] that the total SIC capability in the propagation domain and RF domain
GRF ≈ 60 dB. Generally, the SI channel gain Gh is small so that Ph ≪ 1. Thus, σ2

R = σ2
R,w + σ2

R,q is
established, and the influence of the transmission link noise in the received SI signal can be ignored.

2.2 Cancellation capability

In this article, the relative power ratio of the SI signal to the residual SI and noise is used to evaluate
the nonlinear SI digital cancellation performance, and the SIC capability is defined as

ρ = 10 lg
PSI

Pe
, (9)

where PSI is the power of the received SI signal, and Pe is the power of the residual SI and noise after
SIC. Then, the performance of the SIC with RF signal feedback and nonlinear modeling is defined as

ρFB = 10 lg
PSI

PFB
e

, (10)

and

ρNM = 10 lg
PSI

PNM
e

, (11)

respectively.

The following two sections introduce the principles of the SIC with RF signal feedback and that with
nonlinear modeling and analyse their theoretical cancellation performance and influencing factors.
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3 SIC with RF signal feedback

The idea of nonlinear SIC with RF signal feedback is to couple the signal at the end of the transmission
link back to the digital domain as a reference signal. Since the reference signal contains nonlinear
components, the nonlinear SI can be canceled with only channel estimation and linear reconstruction.
However, quantization noise and thermal noise are introduced into the reference signal in the feedback
channel; thus, the reference signal obtained in the digital domain is not an ideal local transmission signal,
which affects the cancellation performance. In this section, the expressions of related signals in the
cancellation process are given first, and then, the theoretical cancellation performance is derived and
analysed.

3.1 Models of related signals

Suppose that the feedback response is F (·); then, the actual reference signal is xF (n) = F [xT (n)], which
can be expressed by

xF (n) = F (xT (n)) = xT (n) + wF (n) + qF (n) , (12)

where wF (n) is the thermal noise of the feedback channel with variance σ2
F,w and qF (n) is the quantization

noise of the feedback channel with variance σ2
F,q. Then, the signal-to-noise ratio of the feedback channel

can be given by

ηF =
Ps
σ2
F

, (13)

where σ2
F = σ2

F,w + σ2
F,q + σ2

T,w.
After the transmitted signal is fed back to the digital domain as a reference, it is used to estimate

the SI channel together with the received SI signal and then convolved with the estimated SI channel
response to reconstruct the SI, namely,

yFBRSI (n) = hFBRSI (n)⊗ xFBF (n) , (14)

where hFBRSI is the channel estimation result (SI reconstruction response function) and yFBRSI (n) is the
reconstructed SI signal.

Then, the residual SI can be given by

eFB (n) = ySI (n)− yFBRSI (n)

=
[

hSI (n)⊗xT (n)−hFBRSI (n)⊗ xF (n)
]

+wR (n)+qR (n)

=
[

hSI (n)−h
FB
RSI (n)

]

⊗xT (n)+zR (n)−hFBRSI (n)⊗zF (n) ,

(15)

where
zR (n) = wR (n) + qR (n) , (16)

zF (n) = wF (n) + qF (n) . (17)

3.2 Analysis of the cancellation capability

Eq. (15) shows that the power of the residual SI is determined by the channel estimation error, thermal
noise and quantization noise of the receiving and feedback channels. We can write (15) in vector and
matrix form with a number of samples N and channel length L:

eFB = ySI−yFB
RSI = XT

(

hSI−hFB
RSI

)

−ZFh
FB
RSI+zR, (18)

where eFB, ySI, y
FB
RSI and zR are vectors composed of N samples of eFB, ySI, y

FB
RSI and zR, respectively, hSI

and hFB
RSI are vectors of SI channel and reconstructed SI channel with the channel length L, respectively,

XT =















xT (0) xT (−1) · · · xT (−L+ 1)

xT (1) xT (0) · · · xT (−L+ 2)

...
...

. . .
...

xT (N − 1) xT (N − 2) · · · xT (N − L)















, (19)
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ZF =















zF (0) zF (−1) · · · zF (−L+ 1)

zF (1) zF (0) · · · zF (−L+ 2)
...

...
. . .

...

zF (N − 1) zF (N − 2) · · · zF (N − L)















. (20)

The least-squares method is adopted for channel estimation, and the result is given by

h
FB

RSI =
(

X
0

F

H
X

0

F

)

−1

X
0

F

H
y
0

SI

=
(

X
0

F

H
X

0

F

)

−1

X
0

F

H
(

X
0

Th
0

SI + z
0

R

)

= h
0

SI +
(

X
0

F

H
X

0

F

)

−1

X
0

F

H
z
0

R −

(

X
0

F

H
X

0

F

)

−1

X
0

F

H
Z

0

Fh
0

SI.

(21)

In practical communication, channel estimation is performed with the pilot symbols in a frame. In the
above equation, the superscript 0 is used to indicate that the vectors and matrix are of pilot symbols.
The channel estimation result is used for cancellation in a coherent period, and the SI channel can remain
approximately unchanged in a coherent period.

After some derivation and approximation (as shown in Appendix A), the power of the residual SI and
noise can be obtained as

PFB
e = E

∥

∥eFB
∥

∥

2
≈ N

(

σ2
R + Phσ

2
F

)

(

1 +
L

N − L

)

. (22)

We transform the above expression to obtain the relative energy (power) ratio between the SI signal
and the residual SI, which can be used to evaluate the nonlinear SI digital cancellation performance. The
SIC capability is defined as

ρFB = 10 lg
PSI

PFB
e

≈ 10 lg
ηRηF

(ηR + ηF) (1 +
L

N−L)

= 10 lg ηR + 10 lg ηF − 10 lg (ηR + ηF)− 10 lg

(

1 +
L

N − L

)

,

(23)

where PSI = PsPh is the power of the received SI signal.
The above equation indicates that the cancellation performance is related to the interference-to-noise

ratio of the receiving channel, the signal-to-noise ratio of the feedback channel, the number of sampling
points used for estimation and the number of paths in the SI channel. The larger the number of channel
paths and the smaller the number of sampling points used for estimation, the worse the SIC performance
is. Generally, the number of sampling points used in channel estimation is much larger than the number
of paths in the SI channel, that is, N ≫ L; thus,

ρFB ≈ 10 lg ηR + 10 lg ηF − 10 lg (ηR + ηF) . (24)

Therefore, in general, the cancellation performance is limited only by the interference-to-noise ratio of
the receiving channel ηR and the signal-to-noise ratio of the feedback channel ηF. Let us consider the
extreme cases first to obtain an intuitive conclusion. Two situations arise, as shown below:

ρFB ≈

{

10 lg ηR, ηF ≫ ηR,

10 lg ηF, ηR ≫ ηF.
(25)

For ηF ≫ ηR, the SIC capability is infinitely close to the interference-to-noise ratio of the receiving
channel, which means that the SI is almost completely canceled; for ηR ≫ ηF, the SIC capability is
approximately the interference-to-noise ratio of the feedback channel. Based on the above, the upper
bound of the SIC capability is the smaller of ηF and ηR in the extreme cases, and noise in the feedback
channel will cause the SIC capability to be lower than the interference-to-noise ratio of the receiving
channel.
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Assuming that the same devices are used in the receiving and feedback channels, the noise floors of the
two can be regarded as consistent. However, since the intended signal and SI exist in the receiving channel
at the same time, the dynamic range cannot be fully used as in the feedback channel during quantization,
so the interference-to-noise ratio of the receiving channel will be lower than the signal-to-noise ratio of
the feedback channel. Generally, ηR 6 ηF holds. Specifically, the feedback channel is generally higher
than the receiving channel by approximately 10 dB or more in engineering practice. Therefore, we have

ρFB ≈ 10 lg ηR + 10 lg ηF − 10 lg (ηR + ηF) = 10 lg ηR + 10 lg
1

ηR/ηF + 1

> 10 lg ηR + 10 lg
1

2
= 10 lg ηR − 3 = 10 lg

ηR
2

= 10 lg
PSI

2Pw,R
,

(26)

where Pw,R is the power of the noise of the receiving channel. The above inequality indicates that the SI
can be canceled to less than 3 dB above the signal-to-noise ratio of an ideal full-duplex system through
SIC with RF signal feedback when ηR 6 ηF holds. The residual SI level is equal to the noise level of the
receiving channel when the equation is established; that is, the SI is canceled to the noise floor. Generally,
in actual engineering applications, it is enough that the SI is suppressed to below the noise floor.

In conclusion, the range of the capability of SIC with RF signal feedback is

10 lg ηR − 3 6 ρFB ≈ 10 lg ηR + 10 lg ηF − 10 lg (ηR + ηF) < 10 lg ηR. (27)

For ηR = ηF, the equal sign on the left holds, and the power of the residual SI is equal to that of the
noise of the receiving channel, with a 3 dB loss of the signal-to-noise ratio at the receiver; as ηF − ηR
increases, the SIC capability ρ tends toward the interference-to-noise ratio ηR. For ηF ≫ ηR, the SI is
almost completely canceled.

4 SIC with digital nonlinear modelling

In nonlinear SIC with nonlinear modeling, the baseband signal is used as the reference signal, i.e.,
xNM
ref (n) = x (n), and the memory polynomial model is used to reconstruct the SI including nonlinearity.

After the signal is received in the digital domain, the reference signal is used together with the received SI
signal to estimate the model coefficients, and the SI is reconstructed with the memory polynomial model.
The SIC with nonlinear modeling does not need the assistance of additional RF circuits but requires the
model to have a higher fitting degree to the actual nonlinearity; otherwise, nonlinear components that
cannot be canceled will exist. In addition, the computational complexity of this method is relatively high.
In this section, the expressions of related signals in the cancellation process are given first, and then, the
theoretical cancellation performance is derived and analysed.

4.1 Models of related signals

Suppose that the transfer function of the nonlinear SI reconstruction process is fNM
RSI (·); the reconstruction

signal can be expressed by

yNM
RSI (n) = fNM

RSI [x (n)] =

PNM
RSI
∑

p=1
p is odd

MNM
RSI
∑

m=0

fNM
RSIp,mψp,m [x (n)] + wT (n) , (28)

where ψp,m is defined in (3), fNM
RSI p,m is the polynomial coefficient of the nonlinear SI reconstruction

process, PNM
RSI is the maximum polynomial order of the reconstruction, and MNM

RSI is the reconstruction
memory depth.
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Then, the residual SI of the final output is

eNM (n)

= ySI (n)− yNM
RSI (n)

= hSI (n)⊗ xPA (n)− fNM
RSI (x (n)) + zR (n)

=

L
∑

l=0

hSI (l)

PNL
∑

p=1
p is odd

MNL
∑

m=0

fp,mψp,m [x (n− l)]−

PNM
RSI
∑

p=1
p is odd

MNM
RSI
∑

m=0

fNM
RSI p,mψp,m [x (n)] + zR (n)

=

PNL
∑

p=1
p is odd

MNL+L
∑

m=0





min{L,m}
∑

l=0

hSI (l) fp,m−l



ψp,m [x (n)]−

PNM
RSI
∑

p=1
p is odd

MNM
RSI
∑

m=0

fNM
RSI p,mψp,m [x (n)] + zR (n) ,

(29)

where
zR (n) = wR (n) + qR (n) . (30)

According to the above formula, the joint response of the nonlinear process and the SI channel can be
expressed by a memory polynomial model with the same basis functions, same order and increased mem-
ory depth. The coefficients become the convolution of the original memory polynomial coefficients and
the SI channel coefficients. Therefore, the entire SI transfer process can be directly modeled, estimated
and reconstructed with memory polynomials. However, as the transmit power increases, the high-order
nonlinear power that was originally lower than the noise floor will gradually increase until it affects the
receiving end, which may cause the nonlinear modeling order in practical applications to be less than
the actual order, resulting in the inability to completely cancel the SI. Since the memory depth of PAs
is often limited, the memory depth considered in the SIC with nonlinear modeling can be assumed to
be sufficient, that is, MRSI > MNL + L. For the convenience of expression, the follow-up is performed
after satisfying this assumption, and the order and memory depth of the SIC with nonlinear modeling
are recorded as P and M + L. Then,

eNM (n) =

P
∑

p=1
p is odd

M+L
∑

m=0









min{L,m}
∑

l=0

hSI (l) fp,m−l



− fNM
RSI p,m



ψp,m (x (n)) + zHO (n) + wR (n) + qR (n) ,

(31)
where zHO is the high-order nonlinearity that cannot be canceled due to insufficient modeling order,
which can be expanded as

zHO (n) =

PNL
∑

p=P+2
p is odd

M+L
∑

m=0





min{L,m}
∑

l=0

hSI (l) fp,m−l



ψp,m (x (n)). (32)

4.2 Analysis of the cancellation capability

Eq. (31) shows that the residual SI of the digital modeling method depends on the reconstruction order
P , actual order PNL, reconstruction memory depth M , actual memory depth MNL, and estimation error
of the polynomial coefficient fNM

RSI p,m. It can be written as the vector or matrix form of the corresponding
signal formed by N sampling points, that is,

e = ySI − yNM
RSI = Ψ

(

f − fNM
RSI

)

+ zR + zHO, (33)

where

Ψ =







ψ1,0(x(0)) ψ3,0(x(0)) ··· ψP,M+L(x(0))

ψ1,0(x(1)) ψ3,0(x(1)) ··· ψP,M+L(x(1))

...
...

. . .
...

ψ1,0(x(N−1)) ψ3,0(x(N−1)) ··· ψP,M+L(x(N−1))







=







x(0) x(0)|x(0)|2 ··· x(−M)|x(−M−L)|P−1

x(1) x(1)|x(1)|2 ··· x(1−M)|x(1−M−L)|P−1

...
...

. . .
...

x(N−1) x(N−1)|x(N−1)|2 ··· x(N−1−M)|x(N−1−M−L)|P−1







(34)
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is the memory polynomial matrix of the baseband signal,

f =
[

f1,0 f1,1 · · · fP,M

]T

(35)

and

fNM
RSI =

[

fNM
RSI 1,0 f

NM
RSI 1,1 · · · fNM

RSIP,M+L

]T

(36)

are the memory polynomial coefficients obtained during the actual transmission and the estimation (the
model of the convolution of the PA response and the channel response), and

zHO =
[

zHO (0) zHO (1) · · · zHO (N − 1)
]T

. (37)

Same as Subsection 3.2, the subscript 0 indicates that the vectors and matrix are of pilot symbols, and
the least-squares estimation is used; then,

fNM
RSI =

[

(Ψ0)HΨ0
]−1

(Ψ0)HY 0
SI

=
[

(Ψ0)HΨ0
]−1

(Ψ0)H
(

Ψ0f + z0
R

)

.
(38)

With some derivation and approximation in Appendix B, the power of the residual SI and noise can
be expressed as

PNM
RSI = σ2

R + PHO +
M + L+ 1

N
σ2
RTr

[

R0
V · (RV )

−1
]

≈

[

1+
(M + L+ 1) (P + 1)

2N

]

σ2
R + PHO.

(39)

The power ratio of the SI and residual SI ρ is used to evaluate the nonlinear SIC performance, namely,

ρNM = 10 lg
ESI

PNM
RSI

= 10 lg
NPhPs

[N + (M + L+ 1) (P + 1)/2N ]σ2
R + PHO

= 10 lg ηR + 10 lg ηHO − 10 lg

[(

1 +
(M + L+ 1) (P + 1)

2N

)

ηR + ηHO

]

,

(40)

where ηHO = PSI

PHO
is the power ratio between the total SI and residual high-order nonlinear SI components.

The above formula shows that the cancellation performance of the SIC with nonlinear modeling is related
to the interference-to-noise ratio of the receiving channel, the power ratio between the total SI and residual
high-order nonlinear SI components, the number of sampling points used for estimation, the number of
channel paths, and the order and memory depth of the nonlinear modeling. Generally, the number of
sampling points used for estimation can be sufficiently large, that is, N ≫ (M + L+ 1) (P + 1)/2; then,

ρNM = 10 lg ηR + 10 lg ηHO − 10 lg

[(

1 +
(M + L+ 1) (P + 1)

2N

)

ηR + ηHO

]

≈ 10 lg ηR + 10 lg ηHO − 10 lg (ηR + ηHO) .

(41)

The cancellation performance of the SIC with nonlinear modeling is limited by the interference-to-noise
ratio of the receiving channel and the ratio of the SI to residual high-order nonlinear SI components. The
residual high-order nonlinearities mainly depend on the transmit power and the modeling order. As the
transmit power increases, the power of high-order nonlinearities gradually increases, and when this power
approaches or exceeds the noise floor, the performance of the receiver will deteriorate. Therefore, the
nonlinear order of which nonlinear components actually affect the performance of the receiver increases
with the transmit power. If the modeling order was greater than the maximum order of actual influ-
ential nonlinearities, then no residual high-order nonlinearities would exist. Therefore, the cancellation
capability of the SIC with nonlinear modeling will be

ρNM = 10 lg ηR; (42)
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Table 1 Comparison of the SIC with nonlinear modeling and the SIC with RF signal feedback

SIC with nonlinear modeling SIC with RF signal feedback

Upper-bound
Interference-to-noise ratio Interference-to-noise ratio

of SIC capability

High transmit power and deficiency
Hardware impairments in the feedback

Affected factors
of the modeling order

channel and 0∼3 dB signal-to-noise ratio

loss for general devices

Computational complexity O
[

[(P + 1) (M + L+ 1) /2]3
]

O
(

L3
)

Hardware cost No need for additional hardware A complete feedback channel

that is, it will be equal to the interference-to-noise ratio of the receiving channel, which can be regarded
as the SI being canceled completely. However, if the modeling order was less than the maximum order
of actual influential nonlinearities, then residual high-order nonlinearities would exist that could not be
effectively canceled, thereby reducing the nonlinear SIC capability. Due to the lack of understanding of
the statistical characteristics of high-order nonlinearities with changing transmit power, specific mathe-
matical expressions regarding this issue are not presented in this article and will observe it in subsequent
simulations.

5 Comparison and discussion

Sections 3 and 4 introduce the two main nonlinear SIC methods and derive their theoretical cancellation
capabilities. In this section, the performances of the two methods are compared based on the above
derivation results, and the analysis results are verified through simulation. The two methods will be
compared from four aspects, which are shown in Table 1.

5.1 Theoretical analysis and comparison

Eqs. (24) and (41) give the theoretical performance expressions of the two nonlinear cancellation methods.
Comparing the two, the SIC capabilities of the two nonlinear SIC methods are similar in the structure
of the theoretical expressions but are limited by the feedback channel noise and residual high-order
nonlinearity, respectively.

The SIC with nonlinear modeling is not affected by the additional noise in the feedback channel.
However, the order of the nonlinear components that actually deteriorate the performance of the receiver
increases with increasing transmit power, and if the modeling order was less than the actual order, then
the performance of the receiver would be affected because the nonlinear components with higher order
could not be effectively canceled by the SIC with nonlinear modeling. Therefore, to ensure an effective
SIC, the SIC with nonlinear modeling should increase the modeling order as the transmit power increases.
When the modeling order is sufficiently large, the SI can be completely canceled.

The SIC with RF signal feedback directly returns the local transmitted signal containing nonlinearity
to the digital domain; thus, it is not influenced by the specific nonlinear characteristics, but the feedback
process will introduce some noise. If the signal-to-noise ratio of the feedback channel was close to or
even smaller than the interference-to-noise ratio of the receiving channel, then the noise introduced in
the feedback channel would result in a decrease in the SIC capability. The SIC with RF signal feedback
requires a larger dynamic range and quantization of the devices of the feedback channel. Generally, in
engineering, the feedback channel has a higher signal-to-noise ratio than the receiving channel, which is
sufficient to ensure that SI is canceled close to the noise floor with a 0∼3 dB signal-to-noise ratio loss.

In addition to the SIC performance, the SIC with nonlinear modeling has a higher computational
complexity, which is O[[(P + 1) (M + L+ 1) /2]

3
], while that of the SIC with RF signal feedback is only

O(L3). According to the above analysis, high-transmit-power communication systems often require a
higher modeling order P , which leads to a further increase in the computational complexity.

Hardware cost is also a consideration in engineering practice. Compared with the SIC with nonlinear
modeling, the SIC with RF signal feedback will introduce additional hardware costs, especially in FD-
MIMO communication systems. In practical engineering, there is an independent power amplifier on
each antenna branch. Therefore, each antenna branch needs a feedback channel to get the different PA
nonlinearities in each branch back to digital domain. It means that the additional hardware costs are
proportional to the number of antennas for the SIC with RF signal feedback.
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Figure 2 Capability ρ vs. signal-to-noise ratio ηF with trans-
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Figure 3 Capability ρ with RF signal feedback and only a

linear process vs. interference-to-noise ratio ηR.

As higher computational complexity is more likely to accept than more hardware costs, we think the
SIC with nonlinear modeling is a better choice for engineering in most cases. However, if the FD radio
works under a rapidly time-varying environment, real-time parameter estimation is necessary to obtain
enough SIC capability. For this scenario, the SIC with RF signal feedback has superiority because lower
computational complexity means less parameter estimation delay.

5.2 Simulation results and discussion

In this section, the capability of SIC with RF signal feedback and only a linear process is simulated
with MATLAB under different parameters. In the simulations, the transmitted signal is modulated by
quadrature phase shift keying (QPSK), with a bandwidth of B = 200 MHz and a carrier frequency of fc
= 20 GHz. The PA has a gain of 25 dB and an input third-order intercept point (IIP3) of 15 dBm, and
the memory polynomial model is used for modeling and for simulation of the PA with a maximum order
of P = 9 and a memory depth of M = 5. The model TDL-D in the 3Rd Generation Partnership Project
Technical Report (3GPP TR) 38.901 is used as the SI channel, and the amounts of SI suppression in the
propagation and RF domains are set to 30 and 20 dB, respectively, which are easy to implement with
existing research [26]. The characteristics of the SI channel and the PA are assumed to be stable in an
estimation period. The nonlinear SI digital cancellation capability is evaluated by the power ratio of the
SI and residual SI, which is defined in (9).

Figure 2 shows the SIC capability ρ with respect to ηF under different ηR values. The results indicate
that the theoretical results of the cancellation performance are in good agreement with the simulation
results when ηF is greater than 10 dB. However, when ηF is smaller, some deviation is observed between
the simulation results and the theoretical curve. This deviation is due to the assumption that ηF is
sufficiently large, which is used in the derivation of the theoretical performance and is reasonable for
engineering applications.

In addition, as shown in Figure 2, the SIC capability exhibits a logarithmic increase with ηF, which
conforms to the mathematical relationship shown in (24). For ηF < ηR, the low signal-to-noise ratio of
the feedback channel is the main reason for the poor SIC performance, and the SIC performance increases
almost linearly with increasing ηF. For ηF = ηR, the cancellation performance is approximately 3 dB
lower than ηR, which means that the SI is suppressed to the noise floor; for ηF > ηR, the SIC capability
continues to approach the interference-to-noise ratio, ensuring almost complete SIC. In addition, for
ηF > ηR + 10 dB, the difference between the SIC capability ρ and the interference-to-noise ratio ηR can
be largely ignored, which means that the condition for complete SIC can be relaxed in actual engineering
implementation.

In Figure 3, the capability of SIC with RF signal feedback under different ηF values and that of
SIC with only a linear process versus ηR are compared. SIC with only a linear process does not use
the feedback channel for assistance but uses the baseband signal as a reference signal and performs
SIC through only linear operations. In the simulation, the transmit power is set to 30 dBm, and the
nonlinear component (approximately 9.81 dBm) is approximately 20 dB lower than the linear component
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Figure 4 (Color online) Capability ρ with nonlinear modeling vs. interference-to-noise ratio ηR with deferent sampling points.

(a) N = 160; (b) N = 800; (c) N = 1600; (d) N = 16000.

(approximately 29.95 dBm). When ηF is less than 20 dB, the noise of the receiving channel is greater
than the nonlinear component of the SI, and the nonlinear component may hardly affect the operation
of the receiver. Therefore, the capability of SIC with only a linear process is close to that of SIC with
RF signal feedback for ηF = 40,+∞ dB and is even higher than that of SIC with RF signal feedback
for ηF = 10, 20 dB. When ηR is greater than 20 dB, the nonlinear component starts to degrade the
performance of the receiver, and the capability of SIC with only a linear process is lower than that of
SIC with RF signal feedback for ηF = 40,+∞ dB. The simulation results show that the upper bound
of the linear cancellation performance is approximately 26.6 dB, which is greater than the power ratio
of the linear SI component to the nonlinear SI component of 20 dB, indicating that linear cancellation
can cancel some parts of the nonlinear component, but its cancellation capability is limited. When the
signal-to-noise ratio of the feedback channel is much greater than the power ratio of the linear component
to the nonlinear component of the SI, SIC with RF signal feedback can be guaranteed to be better than
SIC with only a linear process.

Figure 4 simulates the performance of the SIC with nonlinear modeling with changing interference-to-
noise ratio of the receiving channel under the condition that the transmit power is 25 dBm, the nonlinear
modeling order is P = 9, and the memory depth isM = 5. The results show that under the set parameters,
the performance of the SIC with nonlinear modeling based on the memory polynomial model increases
with increasing signal-to-noise ratio (interference-to-noise ratio) of the receiving channel, and the SI can
be canceled to the noise floor within the range of 0–30 dB. In addition, when N = 160, the simulation
result is significantly lower than the theoretical performance, up to 2 dB, which is due to the error caused
by the smaller number of sample points for estimation, consistent with the analysis in Section 4. With an
increasing number of sampling points for estimation, the degree of fitting between the simulation results
and theoretical performance gradually improves. For N = 1600, the fit to the theoretical performance
has basically been achieved. In actual engineering, the number of sampling points required for estimation
is not difficult to achieve.

In the scenario of a receiving channel interference-to-noise ratio of 30 dB and three different PAs,
Figure 5 compares the cancellation performances of the SIC with RF signal feedback under different
signal-to-noise ratios of the feedback channel, the SIC with nonlinear modeling under different modeling
orders, and the only linear SIC. For the same transmit power, when the gain and IIP3 of the PA are
smaller, the power of nonlinear SI components is greater, and the nonlinear SI components in the three
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Figure 5 Capability ρ of the two nonlinear SIC methods and only linear SIC vs. transmit power with different PAs. (a) PA gain

= 25 dB, IIP3 = 15 dBm; (b) PA gain = 25 dB, IIP3 = 10 dBm; (c) PA gain = 15 dB, IIP3 = 10 dBm.

scenarios shown in Figure 5 above gradually increase in sequence. Figure 5 shows that in the three
scenarios shown in (a)–(c), when the transmit power is greater than 20, 15, and 5 dBm, respectively, the
capability of the only linear SIC begins to drop significantly, as the nonlinear components begin to be
higher than the receiver noise floor. In addition, the capability of the only linear SIC is close to 0 dB when
the transmit power is 30, 25, and 15 dBm in the three scenarios because the nonlinear components with
higher power are difficult to cancel and affect the channel estimation accuracy. This result shows that for
a full-duplex communication system with high transmit power, only linear SIC can hardly address the SI
effectively, and nonlinear SIC is necessary to ensure normal communication.

In the three scenarios in Figure 5, the SIC with nonlinear modeling has the best cancellation perfor-
mance at low transmit power, which is almost equal to the interference-to-noise ratio in the receiving
channel of 30 dB. However, as the transmit power increases, the high-order nonlinearities under the noise
floor at low transmit power become larger and in turn deteriorate the performance of the receiver, and an
insufficient modeling order will lead to a decrease in the cancellation performance. The performance of
the SIC with nonlinear modeling of P = 3 has the fastest decline. In scenarios (a)–(c), when the transmit
power is greater than 20, 15, and 5 dBm, the performance begins to decrease. In (a), when the transmit
power is 30 dBm, the performance is still 18.8 dB, and in (b) and (c), when the transmit power is greater
than 30 and 15 dBm, the cancellation capability is almost 0 dB. The capability of the SIC with nonlinear
modeling of P = 5 begins to decrease when the transmit power is greater than 25, 20, and 5 dBm in
scenarios (a)–(c), respectively. When the transmit power is 30 dBm, the capability is approximately 19.9,
24.7, and 2.1 dB, respectively. The SIC with nonlinear modeling of P = 7 in (a) shows effective cancel-
lation capability in the range of 0–30 dBm transmit power. When the transmit power is 30 dBm, the
performance reaches a minimum of 29.1 dB. In scenarios (b) and (c), when the transmit power is greater
than 25 and 10 dBm, the performance begins to significantly decrease, and when the transmit power is
30 dBm, the performance drops to approximately 24.7 and 21.3 dB, respectively. For the situation of a
PA with high transmit power, low gain and low IIP3, the SIC with nonlinear modeling needs a higher
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modeling order to ensure effective cancellation capability. The SIC with RF signal feedback is almost
unaffected by the changes in the transmit power and PA parameters. The capability remains stable in
the range of 0–30 dBm with the three PAs. It is only limited by the signal-to-noise ratio of the feedback
channel. When the ratio is 20, 30, and 40 dB, the cancellation performance is approximately 19.6, 27.0,
and 29.6 dB, respectively.

For high-power full-duplex communication systems, the digital modeling cancellation method requires
a higher modeling order to achieve effective cancellation, but when the order is sufficient, its cancellation
performance is optimal, which can be regarded as complete cancellation. The RF feedback SIC method
is only limited by the noise of the feedback channel. When the feedback channel is in good condition,
the performance is stable, and an increase in power will not decrease the performance. However, its
extreme performance requires the feedback channel signal-to-noise ratio to be extremely high, which
makes achieving complete SIC difficult. The only linear cancellation method has an excellent linear SIC
ability when low transmit power and nonlinearity have not begun to cause the signal-to-noise ratio to
decrease, but as the transmit power increases, the nonlinear component power in the SI increases, and
only linear cancellation can no longer meet the needs of SIC.

6 Conclusion

This paper mainly analyzes the theoretical cancellation performances of nonlinear SIC with RF signal
feedback and nonlinear modeling and simulates the nonlinear SIC under different environmental param-
eters. The theoretical derivation shows that the performances of the above two methods have the same
upper bound. Sufficient sampling points are needed for parameter estimation to ensure excellent SIC
performance close to the upper bound, especially for the nonlinear modeling SIC method which has more
parameters to estimate. In addition, the performance of the RF signal feedback SIC method is greatly af-
fected by the noise of the feedback channel, while that of the nonlinear modeling SIC method is affected
by the power of the nonlinearities with a higher order than the modeling. Moreover, the calculation
complexity of the nonlinear modeling SIC method is relatively high while the RF signal feedback SIC
method will introduce additional hardware costs, especially in FD-MIMO communication systems. As
higher computational complexity is more likely to accept than more hardware costs, we think the SIC
with nonlinear modeling is a better choice in engineering. By simulations, the theoretical cancellation
performances are verified. The results show that the RF signal feedback SIC method has better perfor-
mance than the nonlinear modeling SIC method with a low modeling order under the situation of high
transmit power and low IIP3 of PA; conversely, the nonlinear modeling cancellation method performance
is better since the noise of the feedback channel limits the performance of the nonlinear SIC with RF
signal feedback.
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Appendix A

In appendix A, the power of the residual SI and noise of SIC with RF signal feedback is derived. As zR, z0
R and ZF are composed

of thermal noise and quantization noise, they can be regarded as completely independent and as following a Gaussian distribution.

Therefore, with (18) and (21), the power of the residual SI and noise can be given by

P
FB
e = E

∥

∥

∥
e
FB

∥

∥
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2
= E

[

Tr
(

e
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e
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2
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2
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− 2E
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0
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X

0
F
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0
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0
SI

(

ZFh
0
SI

)H
]]]

.

(A1)

To further simplify (A1), by expanding the fourth term of the above formula, the below equation can be obtained from the

matrix inversion lemma.
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X
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0
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]]]

.

(A2)

The condition number can be used to measure the error of the matrix inversion. When the matrix has a small perturbation δA,

the relative deviation between the matrix inversion result and the real inverse matrix is as follows:

∥

∥A−1 − (A + δA)−1
∥

∥

‖A−1‖
6

cond (A) ‖δA‖
‖A‖

1 − cond (A) ‖δA‖
‖A‖

. (A3)

From the above formula, the inversion error can be regarded as small when the condition number is close to 1 and the perturbation

δA is small relative to the matrix A. Therefore, when adding a small perturbation to the matrix Z0
F
−1

, which is a Gaussian

covariance matrix with a condition number of 1, the error of the inversion result can also be considered small. When ηF is large,

the elements in X0
T

−1
are much smaller than the elements in Z0

F
−1

and Z0
F, so (Z0

F
−1

+ X0
T

−1
)−1 ≈ Z0

F is established. Therefore,
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With the above approximations, when the return signal noise is relatively large, the following approximation can be considered

valid.

PFB
e = E
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∥
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, (A5)

where XF follows a Gaussian distribution with mean 0 and variance σ2
F. Thus, XF

HXF follows a noncentral Wishart distribution

with N degrees of freedom, mean XT
HXT and covariance matrix Ps + σ2

FIL, and (X0
F
H
X0

F)
−1 follows a noncentral inverse Wishart

distribution. Since the mathematical expectation of a noncentral Wishart inverse distribution has no general exact solution,
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we assume here that the signal for the channel estimation follows a Gaussian distribution, that is, X0
T ∼ N(0, Ps), and thus,

X0
F ∼ N(0, Ps + σ2

F). Therefore, (X0
F
H
X0

F)
−1 follows a central inverse Wishart distribution with N degrees of freedom and

covariance matrix (Ps + σ2
F)IL, the mathematical expectation of which is given in the paper shown in the footnote1). As XF and

X0
F are signals with different periods, the two can be assumed to be independent; thus,
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Substituting (A6) into (A5), the residual SI and noise’s power can be obtained:
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Appendix B

In Appendix B, the power of the residual SI and noise of SIC with nonlinear modeling is derived. According to (38), the coefficient

estimation error is only caused by noise, which is recorded as
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=
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0
]−1
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0
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(B1)

Then, the cancellation error can be written as

e
NM = ySI − y
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(B2)

Its energy can be calculated by the following formula:
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(B3)

where PHO is the power of residual high-order nonlinearities.

The relevant results are estimated by least squares, and the error covariance matrix is E[∆f∆fH] = σ2
R[(Ψ0)HΨ0]−1. Then,

the residual SI is
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(B4)

To further consider the magnitude of the residual SI without affecting the calculation results, the polynomial matrix is

written as

Ψ =
[

V 0 V1 · · · VM+L

]

, (B5)

where
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(B6)

is the matrix formed by the sub-terms of the signal whose memory depth is m, and
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When N is sufficiently large, the above matrix elements can be approximated to the moments of the baseband signal x. Suppose

that the signal is a stationary process; then, the value of Vm
HVm is unrelated to m and can be approximated as
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Vm ≈ N
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Thus, the polynomial matrix can be expanded into
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where Rpulse is the autocorrelation matrix of the pulse waveform, expanded as follows:

Rpulse =











Rpulse(0) Rpulse(−1) ··· Rpulse(−M−L)

Rpulse(1) Rpulse(0) ··· Rpulse(1−M−L)

.

.

.
.
.
.

. . .
.
.
.

Rpulse(M+L) Rpulse(M+L−1) ··· Rpulse(0)











, (B10)

where Rpulse is the autocorrelation function of the pulse waveform, and the matrix size is determined by the memory depth M +L.

For common pulse waveforms, the matrix is deterministic and invertible.

Substituting the above formula into (B4), we have
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Generally, the statistical characteristics of the baseband signal x are unchanged during the estimation period and the cancellation

period; thus,
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Thus, the theoretical expression of the residual SI and noise’s power is
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