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Abstract This paper focuses on the asynchronous self-triggered control scheme for a dynamic positioning

ship considering the hysteresis input. A novel self-triggered mechanism is designed to relax the limitation of

the continuous monitoring required for the triggered condition, and the next triggered instant depends on the

information at the current instant. In particular, multiple controller-thruster channels are asynchronously

self-triggered; i.e., the self-triggered mechanism for each thruster is independent and noninteracting. A neural

network observer is constructed to estimate the unavailable velocities for the control design. Meanwhile,

unknown backlash-like hysteresis inputs are considered in this scheme through the fusion of the adaptive

backstepping recursive design technique. Furthermore, the explosion of complexity existing in conventional

backstepping design is avoided on the basis of the dynamic surface technique. Through the Lyapunov theory,

considerable effort is made to guarantee semi-global uniform ultimate bounded stability. Finally, numerical

simulations are provided to validate the feasibility of the proposed scheme.
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1 Introduction

With the increasing requirements for automatic control systems in the field of ocean engineering, advanced
dynamic positioning (DP) systems have aroused wide concern. These systems play a key role in oil and
gas industries, such as drilling rigs, cable and pipe layers, and floating production storage and offloading
units (FPSOs) [1]. In practice, the limited communication bandwidth can hardly accommodate the
continuous transmission of control signals between the controller and thrusters, which can result in
network congestion, network delay, and data dropout. Moreover, hysteresis characteristics are ubiquitous
in the physical mechanical actuation devices, especially for a DP ship stabilized in a preset position.
This condition may cause instability in the closed-loop system and even lead to the invalidation of some
conventional theoretical algorithms. Therefore, the investigation of the DP control, with consideration
of the limited communication bandwidth and hysteresis characteristics, requires to play more extensive
attention and is meaningful in the ocean industry.

For some existing DP control schemes [2,3], dynamic model parameters require to be precisely known.
However, these parameters depend on the marine environment and its characteristics, so unknown uncer-
tainties in the model exist. In the presence of this problem, a multitude of theoretical research has been
reported in [4]. For instance, an adaptive fuzzy system was utilized to remodel unknown dynamic model
parameters in [5], which would further improve the control performance of the system. With an eye
to unknown model uncertainties and environmental disturbances, radial basis function neural networks
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(NNs) were employed to compensate for uncertain terms, with the NN weight matrix being updated
online [6]. Furthermore, the robust neural damping technique and dynamic surface control (DSC) were
combined to approximate the uncertain term in model [7]. Particularly, the NN weight was compressed
to reduce the computational burden; i.e., the weight was eliminated and no longer required to be updated
online.

Most existing DP systems are network control systems with the merits of easy expansion, low cost, and
resource sharing. However, the communication channel bandwidth is limited, which would easily lead to
network congestion due to the continuous signal transmission between the controller and actuator. With
this challenge, the event-triggered concept has been proposed by researchers at home and abroad [4].
In [8], an event-triggered mechanism was designed to generate non-periodic updated control input, which
would reduce the signal transmission frequency. The switching event-triggered mechanism is proposed on
the basis of the fixed threshold strategy and relative threshold strategy in [9]. For example, the relative
threshold strategy is adopted under normal circumstances, and the fixed threshold strategy is used when
the magnitude of the control signal is excessively large. Different from the conventional event-triggered
control schemes [10–12], event-based parameter estimators are designed and they are event-triggered
simultaneously using the controller [13]. The estimators are easy to calculate and do not need to perform
real-time integration. In [14], a novel dynamic event-triggered mechanism was proposed through the
fusion of the feedback domination technique. This scheme adopts the discrete-time control strategy and
provides the explicit scaling gain and selection regions of the sampling period.

However, these aforementioned schemes suffered from three major problems. The first problem is
unavailable velocities; i.e., only the ship position can be measured in practice engineering. Although
increased measurement instruments can stimulate velocity variables to be measurable in practice, dead
reckoning can only be provided by observers in the case of the sensor failure [15,16]. The second problem
is the conventional event-triggered control schemes, where triggered conditions have to be continuously
monitored. This task is difficult to achieve in hardware. Considering the applicability of control schemes,
self-triggered strategies came into being [17–19]. The third problem is hysteresis nonlinearities in actua-
tors. Actually, the hysteresis phenomenon is universal for actuating devices in marine practices [20]. This
condition may impact systems control performance and even lead to the instability of the closed-loop
system.

Motivated by the above observations, an adaptive asynchronous self-triggered DP control scheme for
a fully-actuated ship is proposed; the scheme is performed by employing an NN observer, DSC, and
hysteresis input with the merits of easy implementation, velocity observability, and small communication
burden. Different from the traditional DP control schemes [6, 21], the physical actuation process is
considered in the proposed algorithm, with the thruster pitch ratio being used as the actual control
input. The main contributions of this paper can be summarized as follows.

(1) A novel asynchronous self-triggered control scheme is proposed subject to the communication
bandwidth limitation. In the scheme, control signals in each thruster are designed with a self-triggered
mechanism. They are independent and do not influence one another; e.g., control signals can realize
asynchronous transmission in controller-thruster channels. Different from the conventional event-triggered
control scheme [8,10], the self-triggered control scheme relaxes the limitation that the triggered condition
requires to be continuously monitored. That is, the next triggered instant can be computed by the
information at the current instant. This technique not only relieves the communication burden caused
by frequently transmitting signals, but is also convenient for physical realization in practice engineering.

(2) Unavailable velocities can be estimated by the designed NN state observer. This would abolish the
restrictive condition in [22, 23] where all system states are available for measurement. Meanwhile, un-
known backlash-like hysteresis inputs, ubiquitously existing in physical actuation devices, are considered
in the proposed scheme. Hysteresis nonlinearities are compensated with the aid of the adaptive back-
stepping technique without constructing a hysteresis inverse. This technique is particularly convenient
for stability analysis.

The remaining of this paper is organized as follows. Section 2 introduces the problem formulation
and preliminaries. The observer-based asynchronous self-triggered dynamic positioning control design is
presented in Section 3. Section 4 analyzes the stability and robustness of the closed-loop system. In
Section 5, numerical simulations are provided to verify the effectiveness of the proposed scheme. Section
6 concludes the whole paper.
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2 Problem formulation and preliminaries

Throughout the paper, |·| implies the absolute operator for the scalar element. ‖·‖ indicates the Euclidean

norm of a vector and ‖·‖F denotes the Frobenius norm. The matrix ‖A‖2F = tr{ATA} =
∑m

i=1

∑n

j=1 a
2
i,j ,

where A = [ai,j ] ∈ R
m×n is a matrix. (̂·) indicates the estimate of (·) and the estimation error (̃·) =

(̂·)− (·); sgn is the sign function; “.*” implies the element-by-element multiplication; diag{c1, c2, . . . , cn}
denotes the main diagonal matrix, where c1, c2, . . . , cn describe the diagonal elements.

2.1 Problem formulation

Referring to the seakeeping and maneuvering theory [24], the three-degree of freedom (3-DOF) nonlinear
mathematical model of the DP vehicle could be described as

η̇ = R (ψ)v, Mv̇ +Dlv +Dn (v) = τ + dw, (1)

R (ψ) =







cosψ − sinψ 0

sinψ cosψ 0

0 0 1






, M =







m−Xu̇ 0 0

0 m− Yv̇ mxG − Yṙ

0 mxG − Yṙ Iz −Nṙ






, (2)

Dl =







−Xu 0 0

0 −Yv −Yr
0 −Nv −Nr






, Dn (v) =







−X|u|u |u|u+ Yv̇v |r|+ Yṙrr

−Xu̇ur − Y|v|v |v| v − Y|v|r |v| r
(Xu̇ − Yv̇)uv − Yṙur −N|v|v |v| v −N|v|r |v| r






, (3)

τ = T (β)κ (n)up. (4)

In (1), η = [x, y, ψ]
T ∈ R

3 indicates the ship attitude vector with (x,y) and ψ being the position

coordinate and the heading angle, respectively. v = [u, v, r]
T ∈ R

3 denotes the velocity vector, where
u, v, r are velocities in the surge, sway, and yaw, respectively. R (ψ) implies the velocity rotation matrix
with R−1 (ψ) = RT (ψ), ‖R (ψ)‖ = 1. M is the mass matrix with the detailed expressions being given
in (2), where Iz , m are the moment of inertia and ship’s mass, xG denotes the longitudinal coordinate
of the ship’s center of gravity in body-fixed frame, Yv̇, Yṙ are added mass, Nṙ indicates added moment
of inertia. Dl, Dn (v) are the linear and nonlinear hydrodynamic term, respectively, which are shown in
(3). Around Dl and Dn (v), Xu, X|u|u, Y|v|v, . . . are all the hydrodynamic force derivatives.

τ = [τu, τv, τr]
T ∈ R

3 indicates the control input vector, where τu, τv are the control forces in the surge

and sway, and τr is the control moment in the yaw. dw = [dwu, dwv, dwr]
T ∈ R

3 implies the marine
environmental disturbance vector, where dwu, dwv indicate the disturbance forces in the surge and sway,
and dwr denotes the disturbance moment in the yaw. T (β) ∈ R

3×q is the thrust configuration matrix
depending on the physical location of thrusters, where q indicates the number of equivalent thrusters and
β denotes the bearing angle in the rotatable thruster. κ (n) = diag{κ1 (n1) , κ2 (n2) , . . . , κq(nq)} ∈ R

q×q

is unknown force coefficient matrix associated with the propeller speed ni, where i = 1, 2, . . . , q. up =
[up1, up2, . . . , upq]

T is the control law of the system considering the hysteresis nonlinearity with upi =
|phi| phi, where phi indicates hysteresis input. Then the unknown backlash-like hysteresis phenomenon
can be described as

dupi
dt

= ξi

∣
∣
∣
∣

dvpi
dt

∣
∣
∣
∣
(kpivpi − upi) + ζi

dvpi
dt

, (5)

where vpi = |psi| psi with psi being the self-triggered controllable input (pitch ratio) for the ith thruster,
ξi, kpi, ζi indicate the unknown constant parameters.

Referring to [25], the solution of (5) can be expressed as

up = kpvp + l (vp) , (6)



Zhang G Q, et al. Sci China Inf Sci November 2022 Vol. 65 212206:4

1.0

0.5

0

−0.5

−1.0
−1.0 −0.5 0 0.5 1.0

v
pi
 (t)

u
p
i (
t)

γ
i
=4

γ
i
=5

γ
i
=6

Figure 1 (Color online) Backlash-like hysteresis input curves.

li (vpi) = [upi (0)− kpivpi (0)] e
−ξi(vpi−vpi(0))sgnv̇pi

+ e−ξivpisgnv̇pi
∫ vpi

vpi(0)

[ζi − kpi] e
ξi̟(sgnv̇pi)d̟,

(7)

where up = [up1, up2, . . . , upq]
T
, kp = diag [kp1, kp2, . . . , kpq], l(vp) = [l1(vp1), l2(vp2), . . . , lq(vpq)]

T
.

upi (0) and vpi (0) denote the initial conditions of upi and vpi, respectively. Actually, li(vpi) is bounded,
and satisfies |li(vpi)| 6 l̄i with l̄i > 0 being unknown constant [25]. The backlash-like hysteresis charac-
teristics are shown in Figure 1 with vpi = γi sin(2.3t), ξi = 12, ζi = 0.105, kpi = 1.5, upi (0) = 0.

Assumption 1. The mass matrix M is positive-define and invertible. Actually, the marine surface
ship usually satisfies the port-starboard symmetry and fore-aft approximate symmetry in practice. Thus,
this condition is satisfied automatically.

Assumption 2. The environment disturbance term dw is bounded vector; i.e., there exists an unknown
positive constant vector d̄w = [d̄wu, d̄wv, d̄wr]

T with |dwu| 6 d̄wu, |dwv| 6 d̄wv, |dwr| 6 d̄wr.

Assumption 3. The force coefficient of thruster is a constant, e.g., 0 < κi 6 κi (ni) 6 κi, i = 1, 2, . . . , q,
where κi and κi are unknown constants. This condition is satisfied automatically in practical engineering
because the thruster’s energy is certainly finite.

Remark 1. In practical engineering, the fully-actuated ship is usually equipped with the rotatable
thrusters to improve the control performance. However, this presents a serious challenge to control design;
i.e., there exists a bearing angle β in the thrust configuration matrix. Thus, the rotatable thruster can
be extended as two forces. Taking a marine surface ship with two main propellers and one rotatable
thruster as an example, the extending operation is shown as

τ =







1 1 cos (β3)

0 0 sin (β3)

ly1 −ly2 lx3 sin (β3)







︸ ︷︷ ︸

The actual matrix T (β)







κ1 0 0

0 κ2 0

0 0 κ3













u1

u2

u3







=







1 1 1 0

0 0 0 1

ly1 −ly2 0 lx3







︸ ︷︷ ︸

The extended matrix









κ1 0 0 0

0 κ2 0 0

0 0 κ3 0

0 0 0 κ3

















u1

u2

u3x

u3y









.

(8)

Furthermore, the equivalent control inputs u3x = u3 cos (β3), u3y = u3 sin (β3) can be derived by employ-
ing the logical coordinate transformation (9).

u3 = |p3| p3 =
√

u3x2 + u3y2, β3 = arctan (u3x, u3y) . (9)
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2.2 RBF NNs

In this paper, the RBF NNs are employed to approximate the model dynamic uncertainties with the
advantage of excellent function approximation capability.

Lemma 1 ([26, 27]). For any given continuous function f (x) with f (0) = 0, f (x) can be described
as (10) on the basis of the radical basic function (RBF) NN approximation and the continuous function
separation techniques.

f (x) = WTS (x) + ε (x) , ∀x ∈ Ωx. (10)

The input vector x is defined in a compact set Bx with Bx ∈ R
n. W = [w1, w2, . . . , wl]

T ∈ R
l is

the weight vector, ε (x) denotes the approximation error with the unknown upper bound ε̄. S (x) =

[s1 (x) , s2 (x) , . . . , sl (x)]
T
is an RBF vector, which is chosen as Gaussian function:

sj (x) =
1√
2πςj

exp

(

− (x− µj)
T
(x− µj)

2ς2j

)

, (11)

where j = 1, 2, . . . , l, µj = [µj1, µj2, . . . , µjm] is the center of the receptive field, ςj indicates the width
of the Gaussian function, l implies the node number of NN, m denotes the dimension number of the
state vector x. For all x ∈ Bx, the target weight vector W and the activation function S(x) are upper
bounded, e.g., ‖W ‖ 6 WM , ‖S(x)‖ 6 SM , where WM ,SM are unknown positive constants.

Assumption 4 ([28, 29]). The activation function S(x) satisfies the Lipschitz continuity condition,
such that ‖S(x̂)− S(x)‖ 6 Lx‖x̂− x‖ with Lx being a known constant.

3 Observer-based asynchronous self-triggered dynamic positioning control
design

In this section, the NN state observer is constructed to estimate the unavailable velocity in Subsection 3.1,
and the asynchronous self-triggered dynamic positioning control design procedure is shown in Subsection
3.2, which includes two steps for the kinematic and kinetic parts.

3.1 NN observer

The state observer is designed as

{
˙̂η = R (ψ) v̂ −Cη̃,

M ˙̂v = −ŴT
v
Sv (v̂) + τ −Qṽ −RT (ψ) η̃

(12)

by employing the NN approximator, where C = diag{Cu, Cv, Cr} and Q = diag{Qu, Qv, Qr} are all

design constant matrices, Ŵv = diag{Ŵu, Ŵv, Ŵr} ∈ R
3l×3, Sv (v̂) = [Su (v̂) ,Sv (v̂) ,Sr (v̂)]

T ∈ R
3l.

By fusion of Lemma 1, the RBF NNs are employed to approximate the unknown uncertainty term
Dlv +Dn (v) in the closed-loop system (1),

fNN (v) = Dlv +Dn (v) = WT
v
Sv (v) + εv, (13)

where Wv ∈ R
3l×3, Sv (v) ∈ R

3l, εv = [εu, εv, εr]
T ∈ R

3, the upper bound vector of εv is ε̄v.
Then the observer dynamic error can be described as

{
˙̃η = R (ψ) ṽ −Cη̃,

M ˙̃v = −W̃T
v
Sv (v̂)−RT (ψ) η̃ −Qṽ + εv − dw −WT

v
(Sv (v̂)− Sv (v)) .

(14)

3.2 Control design

Step 1. Define the attitude error vector ηe = ηd − η with ηd ∈ R
3 being the constant vector. Then one

can obtain

η̇e = η̇d −R(ψ)v = −R(ψ)v̂ +R(ψ)ṽ. (15)
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The virtual control law α1 could be chosen as

α1 = R−1(ψ)kηηe (16)

for the velocity variable v̂ on account of (15), where kη is the strictly positive design parameter with the
form of diagonal matrix. Note that, the DSC technique is employed to eliminate this restriction that the
differential expression of the virtual control law α1 is extremely complicated and difficult to be obtained,

χ1β̇1 + β1 = α1, β1 (0) = α1 (0) , (17)

where χ1 = diag{χu, χv, χr} indicates the time constant matrix, and β1 presents the reference signal for

the velocity vector v̂. Then one defines the filter error vector qe = [qu, qv, qr]
T = α1 − β1, ve = β1 − v̂,

the derivative of q̇e can be derived as

q̇e = −β̇1 + α̇1 = −χ−1
1 qe +Bv

(

ηe, η̇e, ψ, ψ̇
)

, (18)

where Bv (·) = [Bu (·) , Bv (·) , Br (·)]T is a vector with its elements being continuous functions. Then the
attitude dynamic error η̇e could be described as

η̇e = −kηηe +R (ψ)ve +R(ψ)qe +R(ψ)ṽ. (19)

Step 2. By the fusion of Lemma 1, (1), and (6), one can obtain

v̇e = M−1
[

Mβ̇1 + ŴT
v
Sv (v̂)− T (β)κ (n)kpvp − T (β)κ (n) l (vp) +RT (ψ) η̃ +Qṽ

]

. (20)

The immediate control law α2 is designed as

α2 = kvve + β̇1 + ŴT
v
Sv (v̂) +RT (ψ)ηe (21)

for the desired thrust term T (β)κ (n)vp.
The NN weight update law could be derived as

Ŵm = Γwm

[

Sm (v̂)me − σwm

(

Ŵm − Ŵm (0)
)]

(22)

with m = u, v, r, where Γwm ∈ R
l×l denotes the positive design matrix, σwm is the positive constant

parameter.
The self-triggered mechanism is designed as follows for the ith thruster:

vpi (t) = ωpi (tk) , ∀t ∈ [tk, tk+1) , (23)

tk+1 = tk +
δi |vpi (t)|+ ǫi

max {D, |ω̇pi (tk)|}
, (24)

where ωpi indicates the actual control law for the ith actuator’s actual control input, tk ∈ Z
+ indicates

the triggered instants, 0 < δi < 1, ǫi > 0, D > 0 are all the positive design parameters. At triggered
instants tk, the control signal vpi (tk) would be updated and transmitted to the ith thruster. And the
control signal vpi (t) would be held during the time t ∈ [tk, tk+1). The next triggered instant tk+1 is able
to be computed on the basis of control signal vpi (tk) in the last triggered instant.

Remark 2. In the practical engineering, the thruster’s energy is certainly finite. Thus, the control
signal vpi (t) is guaranteed to be bounded with ωpi (t) being bounded, and the detailed expression for

ωp = [ωp1, ωp2, . . . , ωpq]
T

has been given in (32). The boundedness of the control signal vpi (t) could
guarantee that the triggered interval time ∆t = tk+1 − tk is not infinitely great. Then the positive design
parameters δi, ǫi, and D are employed to guarantee that the term (δi |vpi (t)|+ ǫi) / (max {D, |ω̇pi (tk)|})
is strictly positive variable. Obviously, the lower bound of triggered interval time ∆t > 0 could be
guaranteed by incorporating (23) and (24). Therefore, the Zeno behavior is avoided successfully; e.g.,
there exist no triggered instants to be accumulated in this proposed algorithm.
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From the above self-triggered rule, |ωpi (t)− vpi (t)| 6 δi |vpi (t)|+ ǫi is held during all the time. Then
the following two cases are discussed.

Case 1: vpi (t) > 0. Under this case, −δivpi (t)− ǫi 6 ωpi (t)− vpi (t) 6 δivpi (t) + ǫi. Thus, one has

ωpi (t)− vpi (t) = ρi (t) (δivpi (t) + ǫi) (25)

with |ρi (t)| 6 1.

Case 2: vpi (t) < 0. Under this case, δivpi (t)− ǫi 6 ωpi (t)− vpi (t) 6 −δivpi (t) + ǫi. Then it yields

ωpi (t)− vpi (t) = ρi (t) (δivpi (t)− ǫi) . (26)

Combining the above two cases, one can obtain

ωpi (t)− vpi (t) = ρi1 (t) δivpi (t) + ρi2 (t) ǫi (27)

with ρi1 (t) and ρi2 (t) satisfying

{

ρi1 (t) = ρi2 (t) = ρi (t) , vpi (t) > 0,

ρi1 (t) = ρi (t) , ρi2 (t) = −ρi (t) , vpi (t) < 0.
(28)

Summarizing above the two cases, one has

vpi (t) =
ωpi

1 + ρi1 (t) δi
− ρi2ǫi

1 + ρi1 (t) δi
. (29)

Thus, Eq. (20) could be rewritten as

v̇e = M−1
[

Mβ̇1 + ŴT
v
Sv (v̂)− T (β)κ (n)kpAωp +Qṽ + T (β)κ (n)kpABǫ

− T (β)κ (n) l (vp) +RT (ψ) η̃
]

,
(30)

where A = diag{1/(1 + ρ11 (t) δ1), 1/(1 + ρ21 (t) δ2), . . . , 1/(1 + ρq1 (t) δq)}, B = diag{ρ12, ρ22, . . . , ρq2},
ǫ = [ǫ1, ǫ2, . . . , ǫq]

T, ωp = [ωp1, ωp2, . . . , ωpq]
T is the actual control law matrix for actual control input

matrix p = [p1, p2, . . . , pq]
T.

In the marine practice, the unknown term gpi = κ (ni) kpi/(1 + ρi1 (t) δi) may give rise to the system

gain uncertainty with gp = diag{gp1, gp2, . . . , gpq}. To sure this term, one employs λ̂i to estimate the
1/gpi. The potential singularity phenomenon could be eliminated by the special property and structure

of λ̂i. The actual control law matrix for actual control input matrix p:

p = sgn(ωp). ∗
√

|ωp| (31)

can be designed as

ωp = diag
{

λ̂1, λ̂2, . . . , λ̂q

}

T † (β)α2, (32)

where T † (β) indicates the pseudo inverse of T (β).

Then the adaptive parameters λ̂i could be derived as

˙̂
λi = Γi

[
∑

m=u,v,r

∑

n=u,v,r

T †
in (β)Tmi (β)meα2n − σi

(

λ̂i − λ̂i (0)
)
]

, (33)

where T †
in (β) denotes the element in the ith row and nth column of T † (β), Γi, σi are the positive design

parameters. It is worth mentioning that the term σi(λ̂i−λ̂i (0)) is able to protect the adaptive parameters

λ̂i from the drifting divergence.
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4 Stability analysis

In this section, the stability analysis of the closed-loop system is presented by fusion of the assessment
of the dynamic errors.

Theorem 1. Under Assumptions 1–3, the initial condition ηe (0)
T
ηe (0)+ve (0)

T
ve (0)+qe (0)

T
qe (0)+

∑

m=u,v,r W̃m (0)
T
W̃m (0) +

∑q

i=1 λ̃
2
i (0) 6 ∆2 is satisfied with any ∆2 > 0. The closed-loop system

including the ship model (1), control laws (16) and (21), weight update law (22), and adaptive parameters
(33) is stable. All the signals are semi-global uniformly ultimately bounded (SGUUB) by tuning the
parameters kη,kv,Γwm,Γi, σwm, σi, δi, ǫi, D appropriately.

Proof. The Lyapunov function candidate is constructed as

V =
1

2
η̃Tη̃ +

1

2
ṽTMṽ +

1

2
ηT
e ηe +

1

2
vT
e Mve +

1

2
qT
e qe

+
1

2

∑

m=u,v,r

W̃T
mΓ−1

wmW̃m +
1

2

q
∑

i=1

gpiλ̃
2
i

Γi
.

(34)

Then, the derivative of V can be derived as

V̇ = η̃T ˙̃η + ṽTM ˙̃v + ηT
e η̇e + vT

e Mv̇e + qT
e q̇e +

∑

m=u,v,r

W̃T
mΓ−1

wm
˙̃
Wm +

q
∑

i=1

gpi
Γi
λ̃i

˙̃λi

= η̃T (R (ψ) ṽ −Cη̃) + ṽT
(

−W̃T
v
Sv (v̂)−RT (ψ) η̃ −Qṽ −WT

v
(Sv (v̂)− Sv (v))

+ εv − dw

)

+ ηT
e (−kηηe +R (ψ)ve +R(ψ)qe +R(ψ)ṽ) + vT

e

[

Mβ̇1 + ŴT
v
Sv (v̂)

− T (β)κ (n)kpAωp +Qṽ + T (β)κ (n)kpABǫ− T (β)κ (n) l (vp) +RT (ψ) η̃
]

+ qT
e

(
−χ−1

1 qe +Bv (ηe, η̇e, ψ, r)
)
+

∑

m=u,v,r

W̃T
m

˙̂
Wm +

q
∑

i=1

gpiλ̃i
˙̂
λi.

(35)

In the practical engineering, DP ship usually has to navigate to the area near the predetermined desired
position, after that the ship automatically performs the dynamic positioning task. Then the variables
xe, ye, ψe, ψ can be guaranteed to be bounded in a compact. Actually, the asynchronous self-triggered
DP control scheme is able to guarantee that the above precondition is satisfied automatically. Therefore,
the conclusion can be obtained that Π:={(xe, ẋe, ye, ẏe, ψe, ψ̇e, ψ, ψ̇)} is compact in R

8, and there exist
positive constants B̄u, B̄v, B̄r, such that |Bu (·)| 6 B̄u, |Bv (·)| 6 B̄v, |Br (·)| 6 B̄r.

Using Young’s inequality, one can obtain the following with I being the identity matrix:

− ṽTW̃T
v
Sv (v̂) 6

1

2
ṽTṽ +

1

2

∑

m=u,v,r

W̃T
mW̃m,

v̂T
e W̃

T
v
Sv (v̂) 6

1

2
v̂T
e v̂e +

1

2

∑

m=u,v,r

W̃T
mW̃m,

ṽTεv 6
1

4
ṽTṽ + ε̄T

v
ε̄v,

− ṽTdw 6
1

4
ṽTṽ + d̄T

wd̄w,

vT
e (M − I) β̇1 = vT

e (M − I)χ−1
1 qe

6
∥
∥(M − I)χ−1

1

∥
∥
2

F
vT
e ve +

1

4
qT
e qe.

(36)

Submitting the control law (21), weight update law (22), and adaptive parameters (33) into (35), the
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derivative of V could be rewritten as follows with incorporating (36) in the calculation:

V̇ 6 −λmin {C} η̃Tη̃ −
(

λmin {Q} −
∑

m=u,v,r

Wm,MLm − 1

)

ṽTṽ − (λmin {kη} − 1)ηT
e ηe

−
∑

m=u,v,r

[(
1

χm
− 1

2
− B̄2

m

2b

)

q2m +

(

1− B2
m

B̄2
m

)
q2mB̄

2
m

2b
− b

2

]

+ vT
e

[

Mβ̇1 + ŴT
v
Sv (v̂)

− T (β) gpdiag
{

λ̂1, λ̂2, . . . , λ̂q

}

T † (β)α2 − T (β) gpdiag
{

λ̃1, λ̃2, . . . , λ̃q

}

T † (β)α2

+ T (β)κ (n)kpABǫ− T (β)κ (n) l (vp) +RT (ψ) η̃ +Qṽ
]

+
∑

m=u,v,r

W̃T
m

˙̂
Wm +

q
∑

i=1

gpiλ̃i
˙̂
λi

6 −λmin {C} η̃Tη̃ −
(

λmin {Q} −
∑

m=u,v,r

Wm,MLm − 1

)

ṽTṽ − (λmin {kη} − 1)ηT
e ηe

−
∑

m=u,v,r

(
1

χm
− 1

2
− B̄2

m

2b

)

q2m −
(

λmin {kv} −
∥
∥(M − I)χ−1

1

∥
∥
2

F
− 1

2

)

vT
e ve

−
q
∑

i=1

σigpi
2

λ̃2i −
∑

m=u,v,r

σwm
2

W̃T
mW̃m + ̺,

(37)

where ̺ = 3b/2+ ε̄T
v
ε̄v+d̄T

wd̄w+‖T (β)‖2‖κ̄(n)‖2‖l̄‖2+‖T (β)‖2‖ḡp‖2‖ǫ‖2+
∑q

i=1(σiḡpi/2)(λi− λ̂i(0))2+∑

m=u,v,r(σi/2)(Wm − Ŵm(0))
T(Wm − Ŵm(0)), ḡp = diag{ḡp1, ḡp2, . . . , ḡpq}, l̄ = [l̄1, l̄2, . . . , l̄q]

T with
ḡpi being the upper bound of gpi.

Finally, Eq. (37) can be further described as

V̇ 6 −2aV + ̺, (38)

where a = {λmin {C} , (λmin {Q} −∑m=u,v,rWm,MLm − 1), (λmin{kη} − 1),
∑

m=u,v,r(1/χm − 1/2 −
B̄2
m/2b), (λmin {kv}−‖ (M − I)χ−1

1 ‖2F−1/2), (σ1Γ1/2), . . . , (σqΓq/2), (σwuΓwu/2), . . . , (σwrΓwr/2)}. In-
tegrating (38), it yields V (t) 6 ̺/2a + (V (0)− ̺/2a) exp (−2at). Referring to the closed-loop gain
shaping algorithm [30], it is concluded that all error variables η̃, ṽ,ηe,ve, qe, W̃m, λ̃i would fall into and

remain in the attractive set Ω:={(η̃, ṽ,ηe,ve, qe, W̃m, λ̃i)| ‖η̃‖2+‖ηe‖2+‖qe‖2 6 C0, ‖ṽ‖2+‖ve‖2 6 (C0

/λmin {M}) , ‖W̃m‖2 6 (C0/λmin {Γwm}) , λ̃2i 6 (C0/Γ
−1
i )} with t→ ∞, and C0 > ̺/a is a positive con-

stant. Therefore, the error variables η̃, ṽ,ηe,ve, qe, λ̃i, W̃m are all SGUUB in the closed-loop control
system.

5 Numerical simulations

In this section, the numerical simulations are employed to illustrate and evaluate the effectiveness of
the proposed algorithm. And the simulation results are compared with the algorithm [31] employing the
hysteresis nonlinearity. Both algorithms are all designed by the fusion of the observer-based backstepping
methodology, and the state variables are all estimated by the designed observer. The similar comparison
can further demonstrate the effectiveness and superiority of the proposed algorithm. For this purpose,
the supply marine ship (length of 76.2 m, mass of 4.591× 106 kg) is equipped with two main propellers,
one rotatable thruster and two tunnel thrusters. And the thruster configuration diagram is shown in
Figure 2. The model parameters of the plant are shown in Table 1.

As to the marine environment disturbances, the sea wind and irregular wind-generated wave are sim-
ulated by the physical-based mathematical model; i.e., the NORSOK wind and the JONSWAP wave
spectrums are employed to simulate these two disturbances [32,33]. The two-dimension (2-D) wind field
and the corresponding wind-generated waves with the sixth level sea state are shown in Figure 3. The
wind direction ψwind = 180◦, mean wind speed Vwind = 15.3 m/s.

In this simulation, the desired attitude is ηd = [10 m, 10 m, 140◦]
T
. The initial states of the ship

could be described as [x (0) , y (0) , ψ (0) , u (0) , v (0) , r (0)] = [0 m, 0 m, 156◦, 0 m/s, 0 m/s, 0◦/s]
T

and
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Figure 2 (Color online) Thruster configuration diagram for the supply ship (L = 76.2 m).

Table 1 Model parameters

Item Value Item Value Item Value

Xu̇ −0.7212 × 106 Yv̇ −3.6921 × 106 Yṙ −1.0234 × 106

Iz −Nṙ 3.7454 × 109 Xu 5.0242 × 104 Yv 2.7229 × 105

Yr −4.3933 × 106 Y|v|v 1.7860 × 104 X|u|u 1.0179 × 103

Y|v|r −3.0068 × 105 Nv −4.3821 × 106 Nr 4.1894 × 108

N|v|v −2.4684 × 105 N|v|r 6.5759 × 106

150
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−50

−100

−150
−200 −100 0 100 200

x (m)

y 
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)

15.3 m/s
(a) (b)

z 
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)

x (m) y (m)

Figure 3 (Color online) Marine environment disturbances. (a) 2-D wind field; (b) the corresponding wind-generated waves.

the corresponding parameters settings are given as follows with the extending operation of configuration
matrix in Remark 1 being performed:

kη = diag{0.003, 0.003, 3.3}, χ1 = diag{0.01, 0.01, 0.01}, kv = diag{0.2, 0.2, 5.5}, C = diag{5, 5, 5},
Γwu = Γwv = Γwr = diag{0.12} ∈ R

25×25, σwu = σwv = σwr = 1.7, δi = 1, Q = diag{0.1, 0.1, 0.1},
Γ = [0.8, 0.8, 0.2, 0.2, 0.3, 0.3, 0.2]

T
, σ = [10.8, 10.8, 14, 12.2, 6.3, 4.2, 10.5]

T
, D = 0.1, ǫi = 0.1.

(39)

Furthermore, the RBF NN for fNN (v) contains 25 nodes with centers spaced in [−2.5 m/s, 2.5 m/s] for
the surge velocity u, [−2.5 m/s, 2.5 m/s] for the sway velocity v, and [−0.6 rad/s, 0.6 rad/s] for the yaw
velocity r, widths ςj = 3.

The corresponding curves of the closed-loop systems under both algorithms are given in Figures 4(a)–
(c). The ship motion trajectories and the curves of ship attitude variable are shown in Figures 4(a) and (b),
respectively. From Figures 4(a) and (b), it is easy to know that the steady performance under the proposed
control strategy is more superior compared with the scheme [31] employing the hysteresis nonlinearity. For
the quantitative purpose, one employs the following three popular performance specifications to evaluate
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Figure 4 (Color online) (a) The ship motion trajectories; (b) the attitude variables x, y, ψ; (c) the control efforts τu, τv and

moment τr.

both algorithms, including the mean absolute error (MAE), the mean absolute control input (MAI), and
the mean total variation (MTV) of the control input. MAE is employed to describe the performance
of the system response, MAI is used to evaluate the energy consumption of the closed-loop system, and
MTV is adopted to appraise the smoothness property. The corresponding quantitative comparison results
are summarized as Table 2. It is easy to note that the MAE for ψe and MAI for τr are larger under the
proposed algorithm than that under the algorithm [31] employing the hysteresis nonlinearity. Even so,
the proposed algorithm is more reasonable in the overall view on the basis of the aforementioned indices.

Furthermore, three popular performance indices are employed to check the performance of the proposed
algorithm in the aspects of communication load, i.e., triggered count (TC), maximum triggered time
interval (TTImax), and minimum triggered time interval (TTImin). In these simulations, the sampling
points are 3× 104 for the conventional DP continuous-time control scheme [31] with the time increment
being 0.01 s. However, as shown in Table 3, the TC is between 150 and 300 for each thruster in the
proposed algorithm, which would greatly ease the communication burden. Moreover, the minimum
triggered time interval reaches 1 s; i.e., there exists no Zeno behavior in this proposed algorithm. The
triggered time interval between two adjacent self-triggered sampling points for thruster No.3 is shown in
Figure 5. The triggered time interval figures of other thrusters are omitted due to space constraints, and
the evolution of the triggered time interval for other thrusters is similar to that of thruster No.3.

The evolution of adaptive parameters is shown in Figure 6. They are utilized to compensate for the
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Table 2 Quantitative comparison of performance between the proposed algorithm and the one in [31] employing the hysteresis

nonlinearity

Index Item The proposed algorithm
The algorithm in [31] employing

the hysteresis nonlinearity

1

t∞−t0

∫
t∞
t0

|xe(t)|dt (m) 1.4060 2.5781

MAE 1

t∞−t0

∫
t∞
t0

|ye(t)|dt (m) 1.5334 2.9893

1

t∞−t0

∫
t∞
t0

|ψe(t)|dt (◦) 3.8737 3.2527

1

t∞−t0

∫
t∞
t0

|τu(t)|dt (N) 1.8633 × 104 7.1767 × 104

MAI 1

t∞−t0

∫
t∞
t0

|τv(t)|dt (N) 3.9821 × 104 3.1344 × 105

1

t∞−t0

∫
t∞
t0

|τr(t)|dt (N · m) 8.6220× 105 7.1526 × 105

1

t∞−t0

∫
t∞
t0

|τu(t+ 1) − τu(t)|dt (N) 36.7429 97.0663

MTV 1

t∞−t0

∫
t∞
t0

|τv(t+ 1) − τv(t)|dt (N) 52.7663 344.2538

1

t∞−t0

∫
t∞
t0

|τr(t+ 1) − τr(t)|dt (N ·m) 1435.8208 1806.7875

Table 3 Quantitative analysis for the proposed asynchronous self-triggered control scheme

Thruster Thruster Thruster Thruster Thruster Thruster Thruster

No.1 No.2 No.3 No.4 No.5 No.6 (p6) No.6 (β6)

TC 269 279 178 185 272 209 252

TTImax (s) 1.29 1.48 4.08 4.78 3.21 2.32 2.64

TTImin (s) 1.00 1.00 1.00 1.00 1.00 1.01 1.00
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Figure 5 (Color online) The triggered time interval between

the two adjacent self-triggered sampling points for the thruster

No.3.

Figure 6 (Color online) Adaptive parameters λ̂i with hys-

teresis nonlinearity.

hysteresis nonlinearity for each thruster. To further verify the hysteresis compensation performance in
this proposed control scheme, the hysteresis corresponding parameters are chosen as ξi = 1, ζi = 0.1,
kpi = 1.5, i = 1, 2, . . . , 7. The curves of control inputs with hysteresis nonlinearity are shown in Figure 7.
The two subplots in Figure 7 reflect the relationships among the hysteresis input, self-triggered input,
and actual input for thruster No.6. The curve evolution of the hysteresis and the self-triggered inputs for
thruster Nos. 1–5 is similar to thruster No.6, and they are omitted to improve the clarity and readability.
The bearing angle, including that for thruster No.6 (azimuth thruster), seems to be unreasonable, but this
is not the case. Actually, the action range for the bearing angle is (−180◦, 180◦], and the transformation
operation is required for the azimuth thruster in practical engineering. Hence, the curves of the bearing
angle in Figure 7 are smooth and reasonable. The above simulation results verify the good performance
of the control scheme.
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Figure 7 (Color online) Control inputs with hysteresis nonlinearity.

6 Conclusion

In this paper, we describe the development of an observer-based asynchronous self-triggered control for
DP ship in the presence of the hysteresis nonlinearity. The self-triggered mechanism is designed to realize
the asynchronous aperiodic transmission of control signals in controller-thruster channels, which can ease
the communication burden caused by the frequent transmission of signals. Moreover, the NN observer
is employed to provide the estimation of velocities including the surge, sway, and yaw velocity, and they
are utilized in the controller design. Meanwhile, the unknown backlash-like hysteresis nonlinearity and
gain uncertainty are simultaneously considered with the fusion of the adaptive backstepping recursive
design technique. The SGUUB stability of the closed-loop control system has been demonstrated on the
basis of the Lyapunov theory. The numerical simulations illustrate the performance and validity of the
proposed control scheme under simulated marine environments. Aside from the DP ship, the proposed
control scheme can also be extended to other marine structures (drilling rigs, offshore platforms, and
FPSOs) and even general nonlinear systems.

Nonetheless, this work naturally cannot attend to every detail of the closed-loop system design, for
example, nonlinear dynamics existing in thrusters, including dead-zone, saturation, and fault. This would
be the problem to be solved in future work.
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