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Abstract Autonomous landing in non-cooperative environments is a key step toward full autonomy of

unmanned aerial vehicles (UAVs). Existing studies have addressed this problem by finding a flat area of

the ground as the landing place. However, all these methods have poor generalization ability and ignore the

semantic feature of the terrain. In this paper, we propose a well-designed binocular-LiDAR sensor system

and a robust terrain understanding model to overcome these deficiencies. Our model infers both morphologic

and semantic features of the ground by simultaneously performing depth completion and semantic segmen-

tation. Moreover, during the inference phase, it self-evaluates the accuracy of the predicted depth map and

dynamically selects the LiDAR accumulation time to ensure accurate depth prediction, which greatly im-

proves the robustness of the UAV in completely unknown environments. Through extensive experiments on

our collected low-altitude aerial image dataset and real UAVs, we verified that our model effectively learned

two tasks simultaneously and achieved better performance than existing depth estimation-based landing

methods. Furthermore, the UAV can robustly select a safe landing site in several complex environments with

about 98% accuracy.

Keywords UAV, autonomous landing, terrain understanding, depth completion, semantic segmentation

Citation Chen L J, Xiao Y, Yuan X M, et al. Robust autonomous landing of UAVs in non-cooperative environ-

ments based on comprehensive terrain understanding. Sci China Inf Sci, 2022, 65(11): 212202, https://doi.org/10.

1007/s11432-021-3429-1

1 Introduction

Autonomous landing is the most fundamental and crucial function of unmanned aerial vehicles (UAVs),
which is closely related to various civilian and military missions, such as search and rescue, payload
delivery, and emergency landing. Due to the complexity of near-ground situations, it is a very accident-
prone task. The autonomous landing in cooperative environments that directly exchanges information
through wireless communication [1,2], or manually provides a landing place, such as graphical signs [3–6],
two-dimensional bar code signs [7–9], and natural runways [10, 11], has been well-studied for decades.

Recently, the rapid development of robotics and perception technology has propelled many studies to
explore autonomous landing in non-cooperative environments, of which the core problem is to select a safe
landing site. Among most mitigating approaches, the mainstream approach is finding a flat ground as
the landing place. Most studies perform depth estimation using onboard sensors, such as the monocular
camera [12–14], binocular camera [15,16], or ultrasonic radar [17], to obtain the relative distance between
the ground and the UAV. Further, the slope and roughness of the terrain can be calculated. Other
studies directly detect the horizontal area of the ground by homography estimation [18] or a deep-learning
method [14]. However, these studies have common shortcomings. The primary problem is that due to the
lack of reliable range sensors and robust algorithms, these methods cannot self-evaluate and correct their
results, which in turn results in poor generalization ability in unfamiliar environments and crashing of
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Figure 1 (Color online) The overview of our work. The UAV predicts a dense depth map and a semantic segmentation map

based on the image and sparse depth measurement acquired by the onboard camera and LiDAR, thereby selecting the safe landing

site.

drones. More importantly, only recognizing the flatness of the terrain can lead UAVs to choose the wrong
landing sites (e.g., calm lake) or land on suboptimal places (e.g., grassland with unnoticeable stones or
the roof of a building).

In this paper, we propose a well-designed sensor system and robust terrain understanding model that
simultaneously infers the flatness and safeness of the ground to overcome these problems, illustrated in
Figure 1. Specifically, we built a UAV platform equipped with a lightweight and high-precision binocular-
LiDAR system. The LiDAR has an advantage in that the areas scanned inside the field of view grow
over time until 100% coverage. Thus, we proposed a model named TerrainNet to achieve a comprehen-
sive terrain understanding from both morphologic and semantic aspects by simultaneously performing
depth completion and weakly supervised semantic segmentation. During the inference phase, our model
self-evaluated the accuracy of the predicted depth map and dynamically selected the LiDAR accumu-
lation time. It adaptively balanced the accuracy and speed while ensuring accurate depth estimation.
This feature greatly improved the model robustness and guaranteed that the UAV can safely land in a
completely unknown environment.

To train this model, we exploit our UAV platform to collect a new low-altitude aerial image dataset,
containing about 30000 automatically sparsely annotated depth maps and 3000 manually annotated
semantic segmentation maps using scribbles. Based on this dataset, we verified that TerrainNet can
effectively learn two tasks simultaneously, even with unbalanced data size, and obtain better results
than separately learning each task. Using a carefully designed network structure, loss function, and the
multitask learning paradigm, our model outperformed existing depth estimation-based landing meth-
ods. Our landing site selection method is validated to successfully find a safe area in different complex
environments, with an accuracy of up to 98%. Moreover, we conducted complete autonomous landing
experiments on real UAVs, verifying the effectiveness and robustness of our overall landing strategy. The
detailed video is available at the website1).

The contribution of this article can be summarized as follows.
(1) We for the first time addressed the autonomous landing problem in non-cooperative environments

1) https://youtu.be/zeYe-tihIwQ.

https://youtu.be/zeYe-tihIwQ


Chen L J, et al. Sci China Inf Sci November 2022 Vol. 65 212202:3

by considering both the morphologic and semantic features of the ground.
(2) We proposed a robust inference strategy that ensures an accurate depth map and adaptively

balances the accuracy and speed of our model.
(3) We collected the first low-altitude aerial image dataset with both weakly annotated depth maps

and semantic segmentation maps.
(4) We applied our landing method to real UAVs and achieved safe landing in various complex envi-

ronments.

2 Related work

2.1 Autonomous landing in non-cooperative environments

The autonomous landing problem in non-cooperative environments investigates how to select a safe
landing site without guidance. Most studies conduct depth estimation or image segmentation to find
a flat area for landing. For example, Ref. [17] perceived the depth using ultrasonic sensors for UAV
safe landing at a low altitude of 150 cm. Refs. [15, 16] estimated the altitude of drones in indoor scenes
using a stereo vision system. Refs. [12, 13] applied traditional visual methods to realize a monocular
depth prediction. Ref. [14] proposed deep-learning methods to estimate the depth and orientation of
the plane in an end-to-end way. Ref. [18] proposed the combination of a homography estimation and
a strategy of adaptive thresholding of correlation scores to segment the plane area. Another series of
methods have addressed this problem by estimating the safeness or surface type of the ground. For
example, Refs. [19,20] directly performed patch-level classification to evaluate the danger of the regions.
Ref. [21] conducted regional segmentation and classification to recognize the grassland. Besides, some
other factors have been considered for this problem. Ref. [16] considered the energy consumption of the
drone. Ref. [22] applied geographic information system data to estimate the landing position. Ref. [23]
tracked moving vehicles using aerial videos. In general, these existing methods considered only a single
characteristic of the terrain. However, in this paper, we discussed a comprehensive terrain understanding
from both morphologic and semantic aspects.

2.2 Depth completion

Depth completion [24–29] refers to completing the depth estimation given a sparse depth map and corre-
sponding RGB image. It has been widely studied and used for robotics and unmanned vehicles. Benefiting
from the partially known depth values, the performance of depth completion significantly outperforms
methods using monocular depth prediction and binocular depth matching. Several studies have investi-
gated depth completion in aerial scenes. For example, Ref. [30] used depth completion on sparse feature
maps to enable place recognition at extreme viewpoint changes. Ref. [31] performed both depth comple-
tion and confidence estimation using an image-guided approach. However, these studies are implemented
on virtual datasets with no real range sensors. In this paper, we carefully built our UAV platform and
perception system to use high-precision LiDAR for depth completion in real environments.

2.3 Weakly supervised semantic segmentation

Weakly supervised semantic segmentation uses alternative annotations, such as image-level tags [32–34],
labeled points [35], scribbles [36,37], and bounding boxes [38,39] to learn segmentation tasks. Among the
several methods, image-level tags and bounding box annotations are more suitable for training images
that have clear foreground objects. To adapt to our semantic segmentation task for ground surface type,
we employed the scribble-style annotation, which is a highly efficient and relatively low-cost solution.
Previously [36,40], scribbles were used to generate fake full masks and to train models based on unreliable
ground truth. However, recent studies [37, 41] are prone to directly use cross-entropy loss for partially
labeled pixels.

3 System overview

In this section, we briefly introduce our UAV platform as well as the onboard perception system, based
on which we construct a new aerial image dataset and propose our terrain understanding methods. The
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Figure 2 UAV hardware system overview. The solid arrowed lines indicate the data communication between each module and

the interfaces are marked in italic. The dotted arrowed lines represent the connection of the power supply.

illustration of connection and communication between each module is shown in Figure 2.

3.1 UAV platform

The flight platform we used in this paper is DJI Matrice 600 Pro, a commercial hexacopter UAV equipped
with a carbon-fiber airframe, the A3 Pro flight controller, Lightbridge 2 HD transmission system, six
4500 mAh intelligent batteries, and a built-in battery management system. The vehicle is 1133 mm in
the diagonal wheelbase and weighs 9.5 kg including batteries. Its maximum payload capacity is about
6 kg. The flight time in hovering is about 16 min with full payload and 32 min without payload. The
A3 Pro Flight Controller consists of a flight controller, three GPS-Compass Pro, two IMU Pro, and a
power management unit (PMU), which provides triple modular redundancy, improving the system’s anti-
risk performance. Self-adaptive systems will automatically adjust flight parameters based on different
payloads. Other sensors and devices are mounted on our designed two-layer carbon-fiber board at the
bottom of the center airframe.

3.2 LiDAR

We adopt Livox Mid-40 as our onboard LiDAR because it is lightweight (760 g), low-cost ($599), and has
two unique advantages fit for UAV landing scenes. First, it detects toward one side, thus very suitable
to downward mount on the UAV. Another advantage is that it has a non-repetitive scanning pattern in
which the areas scanned inside the field of view (FOV) grow the longer the integration time, increasing
the likelihood of objects and other details within the FOV being detected. Its coverage performance is
equivalent to the 32-line and 64-line products when the integration time is 0.1 and 0.5 s, respectively. As
integration time increases, the FOV coverage will approach 100% (≈ 1.5 s). This feature enables UAVs
to dynamically choose different LiDAR integration times according to the needs of the algorithm.

3.3 Stereo camera

In this paper, although we use the fusion of monocular image and LiDAR points for depth completion,
the binocular camera is still necessary. It can provide more self-supervision during the training phase, and
more importantly, it helps to evaluate the accuracy of the predicted depth map during the inference phase,
which is a key component of our robust landing strategy. More details are provided in Subsection 4.3. For
this reason, we chose MYNT EYE Standard/Color (S2110-95/Color) binocular camera, which provides
a stereo color image with a resolution of 1280×400@60 FPS. The baseline length is 8 cm and the FOV
angle is 95◦. To ensure the consistent quality of stereo images, the camera provides automatic image
signal processing (ISP) exposure and automatic white balance functions. The global shutter function
also effectively reduces the image distortion during rapid shooting scenes. At the same time, the camera
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provides hardware-level time synchronization and binocular frame synchronization at millisecond-level
accuracy.

3.4 Onboard computer

To accelerate the inference speed of the depth completion model with modern GPU, we choose DJI
Manifold 2-G as the onboard computer. Its processor is the NVIDIA Jetson TX2, which is built around
an NVIDIA GPU with 256 CUDA cores and it has 8 GB 128-bit LPDDR4 memory. The added UART
ports are used to connect with the A3 Pro flight controller for accessing the flight status and manipulating
the UAV. Since Manifold 2-G supports two external power supplies independently and can automatically
choose the power source with a higher voltage, we use both a reserved output 18V power supply from the
Matrice 600 Pro and a separate 5300 mA 5S LiPo battery to power the computer. In this way, Manifold
2-G will prefer the separate battery because it has a higher voltage. This not only saves more power
to the vehicle but also ensures the availability of the onboard computer when the separate battery fails.
In the whole system, all sensors except LiDAR support global time synchronization, so we use precision
time protocol (PTP) to synchronize the timestamp of the onboard computer and LiDAR.

3.5 Others

The DJI power distribution unit is connected to the separate battery to power the Manifold 2-G and
LiDAR since its electromagnetic compatibility can reduce interference to the GNSS or Wi-Fi signal from
the power supply. However, because the battery voltage is higher than the working requirement of LiDAR,
we use a DC-DC voltage converter module (LM2596) to provide 12 V power for LiDAR.

Through the LightBridge HD transmission system, we can monitor the status of UAV and the algorithm
result of the onboard computer in real time. Also, we develop a mobile app based on DJI UXSDK to
switch the flight mode of UAV, i.e., the auto landing mode and the manual control mode.

The software has been developed in C++ and Python as ROS (robot operating system) package, using
the well known OpenCV libraries to process the images and PyTorch for model inference.

4 Robust landing site selection

In this section, we first introduce a method of calibration and alignment between stereo cameras and
LiDAR to generate synchronized images and depth maps. Then we detail the network structure and
training losses for two terrain understanding tasks. For the model inference, we propose a self-evaluation
method to assess the depth prediction results. Based on it, the inference strategy is improved to balance
the speed and accuracy of the model. Finally, with the accurate depth and semantic segmentation results,
a robust landing site selection method is derived.

4.1 Calibration and alignment

The calibration and alignment are the basis for dataset construction and depth completion algorithm. The
intrinsic and extrinsic parameters of the stereo camera are calculated using [42], while the calibration
between LiDAR and the camera needs a special conversion. Exploiting the advantage of high FOV
coverage of Livox Mid-40, we project a few seconds of LiDAR points of a static scene to a virtual image
plane and allocate the grayscale colors based on their intensity to form an intensity-based LiDAR image.
The corner points of the calibration chessboard from the LiDAR image and camera image respectively
correspond to the 3D points in the world and the 2D projections. This constructs a perspective-n-
point (PnP) problem [43], which can be effectively resolved to acquire the rotation matrix Rc,l and the
translation tc,l between the camera and LiDAR frame.

To generate the depth map corresponding to image I0 captured at time t0, we first perform time
alignment to transform LiDAR data of several seconds to the LiDAR coordinate system l0 at time t0.
Specifically, given a LiDAR point pl1 measured at time t1, we can get pl0 by using the transformation as
pl0 = Tl0,l1p

l1 , in which

Tl0,l1 = Tl0,wTw,l1 = Tl,iTi0,wTw,i1Ti,l = Tl,iT
−1
w,i0

Tw,i1T
−1
l,i , (1)

where Tl,i is a fixed transformation matrix between LiDAR and the inertial measurement unit (IMU),
and Tw,i0 , Tw,i1 are the position and attitude of the IMU in the world coordinate system at time t0, t1.
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(a) (b) (c)

Figure 3 (Color online) Calibration between LiDAR and the camera. Corner points in the intensity-based LiDAR image (a) and

the camera image (b); (c) generated depth map corresponding to the camera image.
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Figure 4 (Color online) The network structure of TerrainNet.

However, since the data acquisition frequency of various sensors is different, Tw,i0 , Tw,i1 are obtained by
conducting a linear interpolation and a spherical linear interpolation to GPS and IMU data, respectively.

The second step is to spatially align the LiDAR point to the camera. Given a LiDAR point pl =
(xl, yl, zl)T, its coordinate in the camera coordinate system is pc = (xc, yc, zc)T = Rc,l · p

l + tc,l, the
corresponding projection coordinate in the image plane is (x, y) = (f ·xc/zc+ cx, f · yc/zc+ cy), where f
is the focal length in pixel unit and (cx, cy) is the principal center point. Since x, y are generally not the
integer, we assign it to the nearest pixel (u, v). If one pixel is allocated multiple times, we only select the
point closest to the image in time. The generated depth map is shown in Figure 3.

4.2 Terrain understanding

We tackle the terrain understanding problem by learning two tasks, i.e., depth completion and weakly
supervised semantic segmentation.

Network structure. Since both tasks produce pixel-level results, we construct our network on the
basis of DeepLabv3+ [44]. As shown in Figure 4, we use two separate branches to estimate the depth
map and semantic segmentation map respectively after a shared representation produced by a mutual
backbone.

For the depth completion branch, we use a shallow encoder to process the input of the sparse depth
map and then perform late fusion with the image feature produced by the ASPP module. As the feature
map continues to be upsampled, the low-level features of both the image and the sparse depth map are
gradually fused for estimating the final dense depth map.

For the semantic branch, we use the original decoder of DeepLabv3+. According to the safety levels,
six terrain semantic categories are chosen, i.e., paved area, vegetation, obstacle, vehicle, building, and
water. We combine trees and grass as ‘vegetation’ since it is too hard to manually separate them in the
aerial images. Also, through the experiments on separately labeled data, we find that our model cannot
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implicitly distinguish them well even with depth information. However, trees and grass have different
safety levels, so we reckon them as a single category in network training while separating them in the
post-processing with altitude differences, which achieves better results.

This network structure greatly reduces the model parameters and accelerates the inference speed.
What is more, these two tasks are predicted at the same time, so it also eliminates the need to align the
model results produced at different times.

Training losses. The training losses C of our network are composed of CD for the depth completion
task and CS for the semantic segmentation task. Specifically, given input image as well as its corre-
sponding sparse depth d, predicted depth pd, and the ground truth depth map gd, we define CD as a
combination of four terms,

CD = Cd + Cr + Cp + Cs, (2)

where Cd, Cr, Cp, Cs are depth loss, depth ratio loss, photometric loss, and smoothness loss, respectively.
The weakly supervised depth loss Cd penalizes the differences between the network output and the
ground truth depth map on the set of pixels with known sparse depth, which helps the training for fast
convergence, defined as

Cd =
∥

∥1{gd>0} · (pd − gd)
∥

∥

2

2
. (3)

In addition, we propose a new depth ratio loss specialized for landing scenarios. During the landing
process, we expect the predicted depth map to be increasingly fine-grained as the altitude goes down.
Therefore, the depth error with the same absolute value should attach more supervision at a lower
altitude, which can be realized by penalizing the proportion of the difference between the predicted and
the ground truth value. Hence, Cr is defined as

Cr =

∥

∥

∥

∥

1{gd>0} ·
pd − gd

gd

∥

∥

∥

∥

1

. (4)

The photometric loss Cp is to indirectly supervise the predicted depth by comparing the image simi-
larity between the current image and the reconstruction image inversely warped from the nearby frame.
Supposing the current image is captured by left side of the stereo camera at time ti denoted by Il,i, we
choose the adjacent two frames on the same side Il,i−1, Il,i+1 and the image with the same timestamp
captured by the other side of the stereo camera Ir,i as the nearby frames. The relative pose between
stereo cameras is fixed while the transformation matrix between the adjacent frames can be calculated
based on known flight position and attitude with the method elaborated in Subsection 4.1. With relative
poses denoted by Ti−1,i, Ti+1,i, and Tr,l, the reconstruction images can be obtained as I ′l,i−1, I

′
l,i+1, and

I ′r,i referred to [45]. So the photometric loss is

Cp =
1

3

∑

s

α
1 − SSIM(I ′s, Is)

2
+ (1− α) ‖I ′s − Is‖1 , (5)

where s ∈ {{l, i− 1}, {l, i+ 1}, {r, i}} and α = 0.85. We use simplified structural similarity (SSIM) [46]
with a 3× 3 block filter.

The smoothness loss Cs forces a neighboring constraint to encourage depth to be locally smooth, which
is the basis to achieve the stable terrain features with depth derivatives. Here we penalize the first and
second-order derivatives of the depth predictions as

Cs = ‖∇pd‖1 +
∥

∥∇2pd
∥

∥

1
. (6)

For the semantic segmentation task, we follow the previous studies [37,41] to use partial cross entropy
loss. Formally, given the predicted segmentation map ps, the scribble-style ground truth gs, and the
labeled pixel set Ω of gs, CS can be defined as

CS =
∑

Ω

H(ps, gs) = −
∑

Ω

pslog(gs). (7)

It is worth noting that the labeled data sizes of these two tasks in our dataset are extremely unbalanced,
so we introduce a loss weight λ to stabilize the multi-task learning. Finally, the whole training loss C is
defined as

C = 1/(λ+ 1) · CD + λ/(λ+ 1) · CS . (8)
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4.3 Model inference strategy

So far, although we have carefully designed the network structure and training losses, due to the in-
sufficient generalization ability of deep learning-based methods, our model still cannot guarantee good
performance in all environments. However, for the autonomous landing task, imprecise results, especially
the inaccurate depth prediction, will result in a fatal UAV crash. Therefore, it is necessary to improve
the robustness of the model in the inference stage, which is often ignored by existing methods. Our
LiDAR can obtain accurate and high-coverage depth maps, but it takes too much time (≈ 50× slower
than network inference) to integrate data. Hence, to balance the speed and accuracy of our model, we
explore a self-evaluation method for assessing the accuracy of the depth estimation in the inference phase,
and dynamically adjusting the accumulation time of the LiDAR. This ensures that the UAV can stably
avoid obstacles in unknown conditions but also efficiently and quickly land in familiar environments.

Self-evaluation method. The self-evaluation method is proposed based on the intrinsic property of
the binocular camera. Specifically, similar to the principle of photometric loss, given the stereo images Il,
Ir, the predicted depth pd according to Il, the transformed sparse depth d, and the transformation matrix
Tr,l, we can generate the reconstructed right image Ipd

r . Without considering the imaging difference
between two cameras brought by hardware and occlusion, if the predicted depth value is completely
correct, the image similarity simpd

= SSIM(Ipd
r , Ir) will approach to 1. Otherwise, simpd

will be small.
Therefore, given simlr = SSIM(Il, Ir) and simd = SSIM(Idr , Ir) as lower and upper bounds, we can
evaluate pd by comparing the relative size between simpd

and simlr, simd. Concluding through the
statistic, when simpd

> (simlr + simd)/2 or simpd
> simlr + 0.1, the predicted depth is accurate enough

for selecting the landing place.

Inference process. Using this evaluation method, the improved inference process is realized. In
our system, the camera and the LiDAR produce the data at the frequency of 20 and 10 Hz, respectively.
Every time we get an image, a coarse depth is first predicted. As the LiDAR data continue to be acquired,
the image and gradually dense depth input are combined to refine the output depth map. After each
step, the prediction result is evaluated until the depth map is accurate enough. Generally, after about one
second of accumulation of LiDAR, the FOV coverage is more than 80%. If the result still does not meet
the accuracy requirement, we directly perform the nearest neighbor interpolation on the sparse depth
and set the depth outside the FOV area as unknown.

4.4 Landing site selection

After obtaining the accurate depth and semantic segmentation maps, we convert these two results into
the flatness mask and safeness mask of the ground.

Specifically, the flatness mask is generated through the following three steps. (1) We first convert the
original ‘perspective’ depth pd to the ‘plane’ depth pp where all points in a plane parallel to the camera
have the same depth. (2) We then perform a perspective processing on pp by correcting the roll and pitch
to zero to obtain the depth map pc that simulates the UAV is parallel to the ground. (3) The first and
second-order derivatives of depth map pc represent the slope and roughness of the ground. We define
that a flat area should satisfy ∇pc < as and ∇2pc < ar, where as and ar are the maximum acceptable
slope angle and roughness angle of the landing plane. According to this formula, a binary mask md that
indicates the flatness of the ground is calculated.

Similarly, the safeness mask is transformed through two steps. (1)We first perform the same perspective
processing on ps as the second step of the depth map to obtain the aligned segmentation map pa.
(2) Among the six terrain types for the semantic segmentation task, the paved area is the most suitable
region for landing. So the safeness mask ms is generated by setting the pixels of the paved area as 1.

The landing mask ml is produced by merging two masks through AND operation. Finally, we choose
the largest inscribed circle of the landing area as the candidate landing place. The real radius R of this
circle can be calculated with the ‘plane’ depth c of the circle center and the radius r in the image by
R = c/f×r, where f is the focal length. Referred to the UAV size, if R > 2m, we hold that the candidate
area is big enough and the center of the circle is selected as the safe landing site. It should be noted that
if the depth map is only generated by the sparse depth map, it means that the current environment and
the training scenes in our dataset are obviously different. Therefore, we will not use the segmentation
result and the landing site is just calculated by flatness mask md.
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5 Experiment

5.1 Setup

Dataset. We collected 10 real flight records in different environments using onboard sensors. By per-
forming spatial-and-temporal alignment described in Subsection 4.1 with high-frequency GPS and IMU
data, 30000 sparsely annotated depth maps were automatically generated. To reduce the cost of manual
labeling of semantic segmentation maps, we partially annotated 3000 images with scribble-style semantic
ground truth. Among them, we select 8 records as the training set and the remaining 2 as the test set.
The scenes covered by these clips are completely different. So it can effectively verify the algorithm.

Metrics. Except for the commonly used metrics such as root mean square error (RMSE), absolute
relative (REL), and δ in the depth estimation problem [47] and mean intersection over union (mIoU)
in the semantic segmentation problem [48], we also introduce a metric accL describing the accuracy of
selecting the safe landing site. It is computed on all 5000 images of the test set which is a convincing
averaged result. If the selected place is the paved area and is flat within 2 m radius, then accL = 1.
Otherwise, accL = 0. We use the ground truth depth map to evaluate the flatness and manually judge
the semantic type of the selected location. The final results are also manually double-checked.

Implementation details. To match the FOV range of the camera and the LiDAR, input images
and sparse depth maps are center-cropped to a size of 352 × 352. For the experiments of evaluating the
model performance, 50% of LiDAR points are transformed into a sparse depth map during both training
and test phase. While in the real flight test, the percentage of LiDAR data is automatically determined
by our improved inference strategy. We train the model for 80 epochs using Adam [49] optimizer with
an initial learning rate of 1E−5 for backbone and 1E−4 for ASPP module and decoders. The backbone
of our model in real flight tests is ResNet-18 while in the rest experiments it is ResNet-101 [50].

5.2 Result on TerrainNet

Influence of λ. For our multi-task learning problem with unbalanced data size, the choice of loss weight
is very important. So we evaluate the RMSE and mIoU of the two tasks under different values of λ to
find the optimal loss weight for training our model. Except for normal values, we also train our model
only with CD and CS , denoted by λ = 0 and λ = ∞. It can be seen from Figure 5 that the lowest RMSE
and highest mIoU are both achieved when λ = 2, which is also better than separately training two tasks,
validating that our multi-task learning strategy is effective and provides more supervision to each task.

Compare to existing methods and ablation study. The mainstream landing methods generally
detect the plane area by measuring the relative distance, so we then evaluate the depth prediction result
of our model by comparing it with a novel depth estimation method for UAV landing [14] and a widely-
used depth completion method [51]. The backbone models of them are both ResNet-101. To make a fair
comparison and figure out the reason for accuracy improvements, we also conduct an ablation study. It
can be seen from Table 1 that by using the multi-task learning strategy, the RMSE consistently decreases
with and without LiDAR input. Compared with SafeUAV [14] that is implemented with the same network
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Table 1 Comparison of different methods and the ablation study of TerrainNeta)

Method DeepLabv3+ Cp, Cs Cr Multi-task LiDAR RMSE (mm) ↓

SafeUAV [14] X – – – – 3340.6

Ma et al. [51] – X – – X 951.2

TerrainNet

X X X – – 3151.3

X X X X – 2953.1

X X – – X 926.3

X X X – X 917.8

X X X X X 868.5

a) All methods use basic depth loss Cd. ‘DeepLabv3+’ represents using DeepLabv3+ [44] as a backbone model. ‘Multi-task’

indicates learning with the semantic segmentation task. ‘LiDAR’ represents using the sparse depth map input to perform depth

completion. ↓ indicates the lower is better.

Table 2 Performance of the depth prediction results under different densities of LiDAR inputa)

Density RMSE (mm) ↓ REL (mm) ↓ δ < 0.25 ↑ SSIM ↑

0 2953.1 185.4 75.6% 0.595

0.1 1573.5 80.9 93.1% 0.624

0.5 868.5 42.0 97.9% 0.656

1.0 798.0 37.9 98.1% 0.662

a) ↓ indicates the lower is better and ↑ indicates the higher is better.

Input image

SSIM: 0.5842

SSIM: 0.6224Input LiDAR

105 ms

32 ms

SSIM: 0.6536Input LiDAR

521 ms

1124 ms

SSIM: 0.6914Input LiDAR

Figure 7 (Color online) As time progresses, the depth estimation becomes increasingly accurate.

structure and basic depth loss Cd, TerrainNet yields better performance owing to the use of more types
of loss functions. While for the comparison with Ma et al. [51], the introduction of dedicated loss Cr and
a more efficient network jointly improve the accuracy of our model. Further, we calculate the average
depth error at different ground truth altitudes between lines 5 and 6 in Table 1 to verify the necessity of
Cr. As shown in Figure 6, although the average depth error at high altitudes is slightly larger, the model
trained with Cr performs better when altitude is small and the overall RMSE has decreased. This result
is consistent with our expectations in Subsection 4.2, which ensures that the depth estimation results of
the UAV will gradually be accurate during the landing process.

Inference strategy. Beyond the better learning performance of our method, the more important
advantage of TerrainNet is its robust inference strategy mentioned in Subsection 4.3. The premise for
this strategy to be feasible is that the accuracy of the predicted depth map should be increasingly better
as the density of LiDAR increases. To this end, we compare the influence of the density of LiDAR input.
We use RMSE, REL, and δ to directly assess the depth map results and also introduce the average
SSIM as a metric to indirectly evaluate the model through the quality of the reconstructed images. The
numerical results are reported in Table 2 and a visualized timeline of the prediction is illustrated in
Figure 7. When using a raw image without LiDAR data for prediction, the depth map can distinguish
obvious altitude differences, such as trees and ground. As the density of the LiDAR increases, every
metric is becoming better and the predicted depth map is more fine-grained. After about one second of



Chen L J, et al. Sci China Inf Sci November 2022 Vol. 65 212202:11

Landing site

3.45 m
p

d
p

c
m

d

p
s

p
a

m
s

m
l

Figure 8 (Color online) Process of selecting the safe landing site.

Figure 9 (Color online) Selected landing sites in real scenes.

accumulation, we directly interpolate the sparse depth map to get the most refined prediction map. This
reduces the perception range of the UAV but makes it possible to identify minor height differences.

5.3 Comparison of landing site selection strategies

After verifying that TerrainNet can acquire accurate prediction results, we then evaluate the effectiveness
of our landing site selection strategy. Two angle thresholds are set to be as = 10.0, ar = 10.0. The
selection process is visualized in Figure 8, in which we perform a simple erosion and dilation to remove
minor noises. The typical safe landing sites selected in various real complex environments are shown in
Figure 9. To demonstrate the indispensability of morphologic and semantic features of the ground, we
then compared the difference of the selected landing sites in various environments with different masks,
i.e., md, ms, ml. Numerically, if we only consider the flatness of the ground as the existing methods do, the
mean accuracy of choosing the safe landing sites accL is 86%. However, when further taking the semantic
information into account, this value significantly boosts to 98%. Only very few hard-to-detect twigs and
obstacles cause the wrong choices. As shown in Figure 10, by considering the semantic information, the
UAV can avoid lakes or grassland, and always choose the most reliable hard paved ground. Similarly, the
precise depth map helps to identify hard-to-segmented small obstacles and recognize the altitude changes
within the same types of ground areas, such as ramps, road curbs, and inlets, as shown in Figure 11. The
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Figure 10 (Color online) Comparison of selected landing sites using the flatness mask (blue circle) and the landing mask (red
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Figure 11 (Color online) Comparison of selected landing sites using the safeness mask (green circle) and the landing mask (red

circle).

Table 3 Comparison of difference backbonesa)

Backbone RMSE (mm) ↓ REL (mm) ↓ δ < 0.25 ↑ mIoU ↑ accL ↑

ResNet-18 877.7 41.3 97.8% 0.7964 95%

ResNet-101 868.5 42.0 97.9% 0.8814 98%

a) ↓ indicates the lower is better and ↑ indicates the higher is better.

results demonstrate that our landing site selection method is more reliable.

5.4 Real flight test

Next, we apply our model and landing site selection method to the real UAV. Due to the limitation of the
capacity of the onboard computer, ResNet-18 is used as the backbone of the model in real flight tests. We
compare the performance with different backbones in Table 3. It can be seen that the difference in the
depth completion task is very small, which demonstrates that the design of separating the image branch
and the sparse depth branch is more robust. Although the mIoU of the semantic segmentation task has
dropped, it still maintains a very high accuracy of the landing site selection. As shown in Figure 12, we
adopt a variety of measures to ensure a robust and stable flight in the real landing process. Specifically,
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Figure 13 (Color online) 3D trajectory of the landing process in the local north-east-down (NED) coordinate.

in state 1, to eliminate the influence of the occasional errors, only the landing site that is confirmed by
five consecutive frames will be chosen. On the contrary, if no landing site is confirmed for about 5 s, then
it will shift to state 2 which performs a random wandering with a non-repetitive global path. It is also
worth noting that for each frame we always choose the previous landing place as long as it is still safe
and available to ensure continuous and stable control signals provided to the UAV. In state 4, the landing
site is double checked by using the depth map directly generated from dense LiDAR data to identify
extremely small obstacles, such as road curbs and inlets shown in Figure 11.

We conduct a series of autonomous landing experiments in a variety of environments. Under different
circumstances, our UAV successfully finds the flat ground and land safely. We record the average LiDAR
accumulation time to obtain an accurate depth map. In a familiar environment, it only takes 0.16 s,
while in an unknown environment, the average time reaches 0.8 s. This demonstrates that our model
can adaptively balance the accuracy and speed to ensure the reliability of the prediction results. A
landing trajectory is drawn in Figure 13. It can be seen that the UAV performs a horizontal and vertical
movement in order after a few seconds of hovering to select a safe landing site.

Finally, to evaluate the UAV performance in a completely unknown environment, we conduct an
autonomous landing test in a night scene. Due to the dim light, the depth map and semantic segmentation
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(a) (b)

Figure 14 (Color online) (a) Landing mask ml and selected landing site; (b) landing process in the night condition.

map predicted by TerrainNet are very poor. However, by relying on onboard LiDAR, the UAV can still
observe the small barriers in the FOV, as illustrated in Figure 14, thereby completing a safe landing.

6 Conclusion

In this paper, we studied the safe landing site selection of autonomous landing of UAVs in non-cooperative
environments. Through the well-designed UAV platform and the robust terrain understanding model, the
common problems of poor generalization ability and single terrain feature learning for existing methods
are solved. Furthermore, we verified that our model can adaptively choose the LiDAR accumulation time
to ensure accurate depth prediction. With the help of the predicted semantic segmentation result, our
landing site selection method improved its accuracy in finding a safe landing place. Additionally, we
applied our methods to real UAVs to achieve robust autonomous landing in both familiar and unknown
environments. For future work, we plan to perform tracking and prediction of moving targets to further
improve the overall safety level of the UAV landing.
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