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Abstract Reconstructing monocular fluids usually involves a tedious trial-and-error process, and editing

desired fluid behaviors is notoriously difficult to predict and control. To address these problems, we propose

an adaptive multilayer external force guiding model that alleviates the challenging parameter tuning and

satisfies user-defined requirements. External forces cause the effect of target particles on fluid particles.

The adaptive multilayer scheme makes the whole 3D fluid volume subject to the shape and motion of the

water captured by the input video or designed by users. Therefore, we can avoid the tedious and laborious

parameter tuning and easily balance the smoothness of fluid volume and the details of the water surface.

Simultaneously, to vividly reproduce the inflow and outflow of the video scene, we construct a generation and

extinction model to add or delete fluid particles according to the three-dimensional velocity field of target

particles calculated using a hybrid model coupling shape-from-shading with optical flow. Besides, we edit

fluids by subtly extracting features selected by users using the off-screen rendering method and seamlessly

integrating them using the dynamic weight approach. Experiments show that our approach is comparable to

the state-of-the-art reconstruction quality and is remarkably convenient in authoring flows by editing fluids.

Furthermore, our results can be effectively applied to any desired new scenario.

Keywords reconstructing fluids, editing fluids, monocular videos, adaptive multilayer external force guid-

ing model, generation and extinction model
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1 Introduction

Monocular fluid reconstruction is challenging because of the complex topological variation and frequent
occlusion of water [1–3]. Currently, there is no convenient method of editing fluids. The traditional
physics-based simulation methods [4–6] are consuming, challenging and have tedious parameters tuning
to generate desirable fluid behaviors captured from the real world [7]. The shape-from-shading (SfS)
methods [8–10] can reconstruct the 3D surface of the water using its 2D intensity image. However, they
are incapable of recovering the internal volume and physical property.

The latest research [11] has demonstrated the power of the external force scheme, which can solve 3D
fluid reconstruction from a monocular video by constructing the mapping between the SfS method and
the smoothed particle hydrodynamics (SPH) model. The external force scheme formulates the guidance
of turning the input monocular video to a 3D fluid volume and enables the recovery of the water surface
and volume. However, owing to the enormous height difference of the reconstructed water surface via SfS,
maintaining the fluid surface details is difficult while eliminating the fluid volume holes. Consequently, to
obtain satisfactory visual results, tedious and laborious trial-and-error parameter manually tuning steps
are inevitable. In practice, the external force scheme requires considerable time overhead because besides
parameter turning, fluid reconstruction can also consume several hours to check intermediate results.

In this paper, we considerably improve Nie’s [11] work and propose an adaptive multilayer external force
guiding model that compensates the imperfection in the height field, and decreases the effect of parameter
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values on the results. We follow the definition of fluid and target particles from [11] and combine SfS with
the optical flow to estimate the position and velocity field of target particles. Furthermore, we adaptively
interpolate the multilayer target particles with geometric and physical properties. To be consistent with
the fluid scene in the input video, we revise the initialization of fluid particles in [11] and develop their
generation and extinction model, whose inflow and outflow are embedded in the SPH model to form a
stable fluid with open boundaries. Besides, we edit fluids based on the off-screen rendering technique and
the dynamic weight method. Our work develops a low-consumption and easy-to-use reconstructing and
editing framework to intuitively and efficiently reconstruct fluids from real-world videos; we further edit
them under the users’ specified target. The main contributions of this paper are as follows.

• We propose an adaptive multilayer external force guiding model to reconstruct and edit fluids. We
show that the advantage of the “adaptive multilayer” framework based on the SPH model is that the
guiding strategy can be significantly simplified because there is no need to tune parameters through
laborious and tedious trial-and-error manual processes.

• We introduce a generation and extinction model of fluid particles to reproduce the inflow and outflow
behaviors of the fluid in the video, preserving the observed fluid properties in the real world. We believe
this is an essential step toward bridging the gap between the reconstructed result and the input video.

• We introduce the off-screen rendering technique and present the dynamic weight method to edit
fluids. This method can extract features from arbitrary target particles and combine them to create the
desired animation. Furthermore, we provide real-time visual feedback that allows users to set features in
the required editing process.

2 Related work

In this section, we summarize previous studies that are related to our approach. We focus our discussion
on physics-based simulation and video-based reconstruction approaches for monocular fluid reconstruction
and fluid editing.

2.1 Physics-based simulation

In computer graphics communities, forward simulation of fluids has been an important research topic and a
fast-growing research field. Physics-based simulation methods track the fluid motion to generate desirable
effects by solving Navier-Stokes equations. To track smoke’s 3D density and motion based on single-view
video sequences, Eckert et al. [12] used Eulerian simulation algorithms to resolve motion uncertainty along
the lines of sight in the single-camera view and disambiguate a sparse set of 2D observations. Takahashi et
al. [7] proposed a real-to-virtual parameter transfer framework to determine the set of physical variables
and viscosity parameters from example videos capturing fluid flows in real-world phenomena. Their
method avoids tedious trial-and-error physics-based simulation parameter tuning steps.

Recently, physics-based fluid simulation has achieved interesting results by efficiently controlling the
dynamic behavior of the fluid. The previous physics-based simulation work concentrated on the forward
control method to control fluid motion using parameters tuning [13–16]. The forward control method
requires a trial-and-error approach to achieve the desired scenes, because the efficiency is very low. Here,
we aim to develop a reverse control method that will effectively control fluid keyframes and efficiently
match the target shape [17, 18]. Similar to the keyframe-based control method, particle-based con-
trol method [19–21], guiding method [22–25], rigid inspired method [26–28], and skeleton-based control
method [29] have performed well and generated desirable animation results, for instance, a fluid water
man rising, dancing, fighting, and running, and a fluid character jumping, collapsing, and finally forming
other characters.

Our work focuses on the natural water phenomena, which play an essential role in numerous special
effect applications. For liquids, particle-based Lagrangian approaches such as the SPH method are trend-
ing [30] among researches in this area. Thürey et al. [19] used the SPH method to calculate the control
force that makes the particles control the fluid to fill the target shape. Yang et al. [31] demonstrated
how their pairwise-force SPH model could capture various interactions, such as interfaces between egg
white, egg yolk, air, and solid, a stream of strawberry sauce flows over a ball, and the close connection
between droplets and bubbles. SPH method can be implemented and has a beneficial effect on fluid detail
expression and scalability.
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Figure 1 (Color online) An overview of our method. The input is a monocular video, and the output is a 3D fluid volume. Based

on the denoising video, we construct fluid particles using the generation and extinction model and adaptively generate multilayer

target particles with 3D position data and velocity field. Under the action of the adaptive multilayer external force guiding model,

the reconstructed or edited 3D fluid volume can represent the geometric appearance and 3D motion of the video to life. Thus, it

can be effectively applied to any desired new scenario.

2.2 Video-based reconstruction

Monocular video-based 3D fluid reconstruction approaches use SfS. The SfS method takes a single im-
age [32] or a sequence of images as input and uses image formation assumptions to recover surface shape.

Murase [33] reconstructed the surface shape of water from clear motion of the observed pattern based
on the optical and statistical analysis of the distortions. However, the limitations of the water are strict:
(1) the average slant of the wave surface over a long time is zero; (2) the water is transparent and
refractive; (3) the pattern in the water is static and fat. These assumptions make the method impossible
to be applied to large-scale outdoor water.

Li et al. [34, 35] made significant progress in reconstructing the water surface from monocular video.
They discovered that SfS could reconstruct the appearance and dynamic behaviors of water using example
videos of the public DynTex dataset [36], which are recorded using a single static camera in the outdoor
environment. Although water surface properties normally violate the Lambertian condition of SfS, the
water scenes in this dataset [36] appear visually opaque owing to their depth and suspension of dirt,
mud, and air. The SfS reproduces a water surface animation with a similar dynamic behavior. As
dynamics of the surface (e.g., the evolution of waves with time) play a more significant role in human
perception and are the more noticeable part, the geometric inaccuracies on such a free-form surface are
considered inconsequential and within acceptable limits. Regrettably, Li et al. [34,35] only reconstructed
the geometry shape and 3D velocity field of a single-layer water surface, lacking further simulation of 3D
fluid volume.

Following this landmark study, Nie et al. [11] introduced fluid external forces to a tailored combined
SfS and SPH model, which successfully reconstructs the volume movement and surface details of the
fluid based on a single monocular video. They used target particles to represent the surface height
field recovered using SfS and fluid particles to represent 3D fluid volume. Then, they quantified the
relationship between the 3D fluid volume and the input video by calculating the external forces applied
by the target particles to the fluid particles. Their reconstructed approach can achieve desirable favorable
effects in terms of global fluid volume motion features and fluid surface details. Nonetheless, this method
requires elaborate manual parameter tuning. The tedious and laborious trial-and-error challenges human
patience and persistence.

3 Overview

Our aim is to reconstruct and edit fluids as close as possible to the water phenomena captured from the
monocular video or a user-desired target. Figure 1 illustrates that our framework comprises two stages:
the particle preparation stage and the external force guidance stage. In the particle preparation stage,
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(a) (b) (c)

Figure 2 (Color online) The sketches of target particles. The green dots represent target particles, and the blue dots represent

fluid particles. (a) Target particles of [11] were placed directly above the 3D fluid volume; (b) the top sub-figure shows the smaller

∆H, and the bottom sub-figure shows the larger ∆H in [11]; (c) the target particles of our adaptive multilayer external force

guiding model.

our framework takes a large-scale and opaque water video as input. First, we preprocess the video by
removing the illumination and high-frequency noises. Then, we construct multilayer target particles with
positional data and the 3D velocity field using the SfS and optical flow method. Simultaneously, we
directly deform the corresponding target particles to edit the 3D fluid volume. Besides, we initialize the
fluid particles based on the generation and extinction model. The external force guidance stage is an
iterative process. First, using the SPH model, we perform fluid simulation by calculating the internal
forces between fluid particles. Next, we employ target particles to guide fluid particles based on the
adaptive multilayer external force guiding model to vividly reproduce the geometric appearance and
motion field of the input video. Our framework iteratively adds or deletes fluid particles based on the
generation and extinction model to realize the inflow and outflow of the 3D fluid volume.

4 Adaptive multilayer external force guiding model

We uniformly represent inputs as target particles G = {g ∈ G | g = 1, 2, 3, . . . , ng}, and sample the fluid
continum to fluid particles I = {i ∈ I | i = 1, 2, 3, . . . , ni}. Here ni and ng denote the number of fluid
particles and target particles, respectively. We transform the reconstructing and editing problems into
the external forces of target particles on fluid particles. To achieve the desired behavior, each target
particle g should act as a local magnet to attract nearby fluid particles. Moreover, the motions of target
particles should be like wind force to drive fluid particles along their moving path [37]. Therefore, each
fluid particle i is subject to two external forces of its neighbor target particle g:

FX(i) = wa

g∈G∑

g=1

αg

Xg −Xi

||Xg −Xi||
W (Xgi, h), (1)

FV (i) = wV

g∈G∑

g=1

(Vg − Vi)W (Xgi, h), (2)

where FX(i) and FV (i) are determined by the distance and velocity difference between the fluid particle
i and the target particle g, respectively. αg = 1 − min(1,

∑ni

i=1
mi

ρi
W (Xgi, h)) scales down the FX(i)

force when the target particle’s influence region is already sufficiently covered with fluid. wa and wV

are global constants that define the strength of the two external forces, respectively. Xgi = ||Xg −Xi||
denotes Euclidean distance between the target particle g and the fluid particle i. Vi, Xi, ρi and mi denote
the velocity, position, density, mass of the fluid particle i, respectively. Vg and Xg denote the velocity,
position of the target particle g, respectively. h denotes the smooth radius, and W denotes the target
particle kernel function. Here we use a normalized spline kernel [4, 19] to be the target particle kernel
function the same as the density approximation.

In [11], target particles were placed directly above the 3D fluid volume as shown in Figures 2(a) and
(b), so only the fluid particles on the surface are subject to external forces. They caused the parameter
tuning process too time-consuming, especially the overall relative height difference ∆H of target particles
and fluid particles. Smaller ∆H results in some holes in the 3D fluid volume, and larger ∆H results in
too flat surface and misses surface details. Meanwhile, ∆H value is also related to the smooth radius h,
the external force weight coefficients wa and wV , the time step ∆t, and other physical parameters.

To address this problem, we adopt adaptive multilayer external forces to guide fluid particles on the
surface and inside the 3D fluid volume. We only need to ensure target particles are just above the
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initialized 3D fluid volume as follows:

∆H > max (zi(t = 0)), (3)

where zi(t = 0) is the vertical component of the position Xi(x, y, z) of the fluid particle i in the initial
state t = 0. The max is a function of the maximum. Note, the initial state t = 0 refers to the equilibrium
state in the initialization stage of the 3D fluid volume (Figure 3(c)). The specific solution process of ∆H
involves the following steps: determining the time t = 0, counting the fluid depth at t = 0, calculating
the maximum value of the fluid depth max(zi(t = 0)), determining the value range of ∆H according
to (3). The value of the ∆H only needs to satisfy (3) in theory, but it is not appropriate to be too large,
otherwise it will increase the calculation of particles, and it is slightly larger than max(zi(t = 0)).

To enable FX(i) and FV (i) to act on the fluid particles inside of the 3D fluid volume, we interpolate
target particles along with the depth of 3D fluid volumes as follows:

Xg+λ(x, y, z) = Xg(x, y, z − λ× h), (4)

where λ is an adaptive interpolation coefficient:

λ← λ+ 1, (5)

and λ value is a non-negative integer. The number of layers of target particles is determined by the
adaptive coefficient radius of λ. When λ = 0, target particles are only single-layer as in [11]. The larger λ
value, the more layers target particles have. So fluid particles will be guided by multilayer external forces.
Note that the maximum value of λ needs to ensure that target particles cannot cross the bottom of the
3D fluid volume. As shown in Figure 2(c), these target particles are interpolated in the vertical direction
as a whole without changing the relative horizontal position and velocity field. In (4), the smooth radius
h determines the interpolation step size of multilayer target particles and determines the spacing of fluid
particles. Accordingly, the target particles maintain spatial consistency with the fluid particles.

The set of multilayer target particles is Ĝ = {g ∈ Ĝ | (g = 1, 2, 3, . . . , ng, . . . , 1 + λ × ng, 2 + λ ×
ng, . . . , ng + λ × ng, . . .). Accompanied by the generation of multilayer target particles, the 3D fluid
volume is guided by multilayer external forces. Eqs. (1) and (2) can be written as

FX(i) = wa

g∈Ĝ∑

g=1

αg

Xg −Xi

||Xg −Xi||
W (Xgi, h), (6)

FV (i) = wV

g∈Ĝ∑

g=1

(Vg − Vi)W (Xgi, h). (7)

We embed the adaptive multilayer external force guiding model into the SPH method. The SPH
governs fluid particles by calculating the internal forces, including pressure force FP and viscosity effect
force Fµ(i). FP and Fµ(i) can be written as

FP (i) = −

N∑

j=1

mj

(
Pi + Pj

2ρj

)
∇Wspiky(Xi −Xj, h), (8)

Fµ(i) = µ

N∑

j=1

mj

(
Vj − Vi

ρj

)
∇2Wviscosity(Xi −Xj , h), (9)

where j denotes the index of neighbor fluid particles of i, N is the number of neighbor particles, Wspiky

and Wviscosity are smoothing kernel functions, µ is viscosity coefficient, and P is pressure. The pressure
field of fluid is computed by WCSPH [38]. Finally, the total force function for the fluid particle i can be
described as follows:

Ftotal(i) = FP (i) + Fµ(i) + FX(i) + FV (i) +G(i), (10)

where G(i) is gravity.
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Figure 3 (Color online) The generation and extinction model of fluid particles. (a) Four particle generators (blue points) outside

the open bounding box (black dashed frame); (b) the region of the generation and extinction; (c) an equilibrium state of the 3D

fluid volume (blue points).

5 Particles representation

Our adaptive multilayer external force guiding model is based on SPH methods, so the initialization
of fluid particles is essential. We propose a generation and extinction model to initialize fluid scenar-
ios. Besides, we borrow the concept of target particles [11] to describe the inputs like videos or user’s
requirements. We combine SfS and optical flow to generate target particles from a video.

5.1 The generation and extinction model

Minor changes in the initial conditions can drastically change the resulting animation. Hence, the ini-
tialization of fluid particles has tremendous significance for the layout of the fluid scene. The up-to-date
research [11] generated fluid particles according to the aspect ratio of video frames. These fluid particles
move in a fixed bounding box to produce a surface appearance similar to target particles. For the water
example with apparent inflow and outflow, a fixed number of fluid particles cannot accurately track the
flow movement at a fixed boundary. To overcome these problems, we propose a generation and extinction
model to add or delete fluid particles to approximate the water’s dynamic variation in videos.

As shown in Figure 3(a), our scene is a bounding box whose size is proportional to the input video
frame’s height and width, and only the bottom is fixed, and the other five sides are open. Clinging close
to the front, back, left, right outer edges of the bounding box, we place four particle generators. The
particle generators iteratively generate fluid particles with the initial velocity of Vi = (0, 0, 0) and the
particle spacing of h (i.e., the smooth radius) according to a fixed frequency, as shown in Figure 3(a).
The region length of each particle generator is set as the same as the corresponding bounding, and the
width and height of each other are the same. The settings of the four particle generators are the same to
ensure that the generation of particles in the four directions is balanceable, to avoid unexpected turmoil
of the 3D fluid volume.

The generated particles flow to both sides of particle generators under the action of gravity, which
will add particles to our scene and form the phenomenon of fluid inflow. The particles flow out to the
boundary during the free motion of particles, and the newly generated particles also flow out of the
boundary under the push of the outflow particles. These outflow particles form the phenomenon of fluid
outflow. Open fluid boundaries and fluid generators have met the demand for water inflow and outflow.
The open fluid boundaries and particles generators have already met the demand of water inflow and
outflow, but the reconstruction will become more and more time-consuming with the increase of the
number of particles. In addition, it makes little sense to calculate the physical quantities of particles
beyond the fluid scene area. To solve this problem, we introduce the extinction model. As shown in
Figure 3(b), when a fluid particle flows out of the central region surrounded by particle generators for a
certain distance, the life cycle of the particle is considered being over and the particle is deleted from the
reconstruction system. We set a particle buffer region with a width of ω between the particle generation
region and the extinction region to avoid the newly generated particles being immediately deleted in
subsequent iterations, resulting in the loss of support to the boundary and the excessive loss of fluid
particles.

Throughout the fluid reconstruction, we add the particles entering the bounding box into the 3D fluid
volume and treat this process as the generation of fluid particles, that is, the inflow phenomenon of fluid.
Likewise, we remove the particles that flow out the bounding box boundary from the 3D fluid volume
and treat this process as the extinction of fluid particles, that is, the outflow phenomenon of fluid.
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(a) (b) (c) (d)

Figure 4 (Color online) The height field and velocity field of target particles. (a) Input video frame; (b) the height field;

(c) (ug=k, vg=k); (d) (ûg=k, v̂g=k).

In the initialization stage of the 3D fluid volume, it is reasonable to generate a certain amount of
particles within the scene boundary before entering the reconstruction stage. This is because fluid recon-
struction without particles is meaningless. We drive the particles flowing into the bounding box to reach
an equilibrium state (Figure 3(c)), i.e., relative stillness only under the action of gravity and internal
forces in SPH. There is no violent movement such as water splashing in the equilibrium state. In this
way, it can also suppress the falling, splashing, collision of the generated particles caused by the influence
of gravity during the reconstruction and editing stage.

5.2 Target particles generation

To reconstruct the desired liquid motion from the input video, the generation of target particles is of
utmost importance. In general, users often design expected flow shapes using an implicit function, a
sequence of target shapes or another fluid simulation to generate target particles [19]. As with [11, 35],
we sample the height field (as shown in Figure 4(b)) of water surface acquired by the SfS method to
produce target particles. Thus, each target particle’s position information is obtained and expressed as
Xg(x, y, z).

In this paper, we use (u, v, w) to represent the velocities along (x, y, z) directions. In [11], they ignored
the horizontal velocity u and v of target particles when external forces were applied. Therefore, fluid
particles were only affected by the force FV of the target particle in the vertical direction. Here, the fluid
particles only moved up and down in the z-direction, without front, back, left and right movements in
the x- and y-directions. This was extremely inconsistent with the fluid scenes with inflow and outflow.

To solve this issue, we combine SfS and optical flow to estimate the 3D velocity field Vg(u, v, w) of the
target particle. This hybrid algorithm is described in detail in [34]. As shown in Figure 4(c), in the area
with gentle motion, the horizontal velocity field approaches (0, 0). This result seriously violates water
motion’s physical laws; that is, there are no stationary particles in the flowing water. Since the fluid’s
motion in the peaceful area accords with the overall fluid scene’s moving trend, we use the global direction
of motion and the average speed to amend the velocity field in this area. As shown in Figure 4(d), the
amending problem is formulated as

(ûg=k, v̂g=k) =

(∑ng

g=1 ug

ng − n0
,

∑ng

g=1 vg

ng − n0

)
, (ug=k, vg=k)→ (0, 0), (11)

where (ûg=k, v̂g=k) denotes corrected horizontal velocity field, k denotes the index of the target particles.
n0 denotes the number of particles whose horizontal velocity field approaches (0, 0). To reduce the error
effect of the wrong velocity field, we subtract the number of such particles when calculating the flow
field’s average velocity; otherwise, the average velocity value will be relatively smaller.

6 Fluid editing

Authoring fluid to match what the user intended is notoriously tricky. There is to date no convenient
way of editing a fluid. Here we edit the 3D fluid volume by directly deforming the corresponding target
particles. First, we accurately extract users’ interest feature area based on the off-screen rendering
technique. Then, we realize the seamless fusion of features based on the dynamic weight method.
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6.1 Feature extraction based on off-screen rendering

Our feature extraction method is to identify and display target particles by drawing twice in OpenGL
drawing mode. The first drawing is the off-screen rendering that helps select objects by drawing some
auxiliary graphics in the frame cache. These auxiliary graphics are invisible. So after determining the
selected features, we should remove the auxiliary graphics from the frame cache before the second drawing.
The second drawing is the on-screen rendering. Here we utilize the screen space fluid rendering method
to display target particles in real time.

The process of the feature extraction method based on off-screen rendering is as follows. The first step
is to draw the auxiliary graphics. Auxiliary graphics usually use color to distinguish between selected
and unchecked objects. We paint the ‘Fountain’ feature area in red and the other target particles in
blue. The red area’s target particles are the selected feature points and constitute an auxiliary graphic
in the off-screen rendering. Since our input is a set of target particle sequences, we use the ID value of
particles for coloring to ensure the selected feature area’s consistency. The second step is to search for
target particles. By traversing all particles, we determine whether to select the particle depending on the
auxiliary graphic’s information, such as the color of its position. In the last step, we render all target
particles using the SSFR method in our system. To achieve real-time editing, we interactively select
desired features from the top view perspective. Users click one pixel on the screen, and then resize the
operations’ radius, so they could locate the feature area.

6.2 Feature fusion based on dynamic weight

Our feature selection method can select any particles’ area, such as the edited area M. Given an interpo-
lation weight in [39], they produced an intermediate space-time mesh by linearly interpolating between
the positions of vertices of S and their corresponding points on M. This blending approach is completely
unproductive because we focus on fluid editing in a local region. In [40], they progressively dilated the
grid form of M until it filled the bounding box of size S. Then, they oriented the displacements to deform
the M by using the difference of normals between S and M. However, our extent of the editing area M

completely depends on users’ preferences and wishes and is not affected by the size of the selected feature
area S. The method in [40] is just a special case that the edited area is the same size as the selected
feature area size(M) = size(S). Moreover, our editing object is particles, rather than grids.

To realize the seamless fusion of S and M, we propose a feature fusion method based on the dynamic
weight ζ as follows:

H
M̂
= HM × (1− ζ) +HS × ζ, (12)

where M̂ is the edited area after fusion features. And H is the height field and attracts our undivided
attention. The horizontal range of M̂ is determined only by the user-defined M that r(x, y)

M̂
= r(x, y)M.

ζ is a dynamic weight which is associated with the distance D between the particle g in the edited area
and the edge of the edited area Medge.

Inspired by the linked-list nearest neighboring particle searching algorithm in the SPH method, we
propose a definition of the distance D between g and Medge. We overlay a temporary mesh on the edited
area M and the selected feature area S. Because the target particle is a single layer of water surface, a
two-dimensional horizontal mesh is enough to location g’s position and edge Medge. We initialize each
grid value using the edited area’s height field HM. Then for a given target particle g (g ∈ M), we take
it as the origin and count separately the total number of particles (signified by C1, C2, C3, C4) in each
grid cell in its four quadrants. We use the minimum C1, C2, C3, C4 to define the distance D between the
particle g in the edited area and the edge of the edited area Medge.

D = min(C1, C2, C3, C4). (13)

According to (12), when g is close to the edge Medge, ζ is as small as possible to ensure the seamless
fusion of M and S. When g is within the M, the bigger ζ is better to retain the information of S as
much as possible. Given a threshold ̟ of particles number according to statistics of all C1, C2, C3, C4,
we quantitatively estimate g and Medge as

ζ ∝ 1/D, when D < ̟,

ζ ∝ D, when D > ̟.
(14)
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(a) (b) (c) (d)

Figure 5 (Color online) Video preprocessing. First, we extract the illumination component (b) of input video (a). Then, we

remove the illumination noise (c). Finally, we remove the high-frequency noise (d).

(a) (b) (c) (d)

Figure 6 (Color online) Comparison between the effect of video denoising on the height field recovered by the SfS method.

(a) The original video; (b) before video denoising; (c) after removing the illumination noise; (d) after removing the video noise.

Eq. (14) can be unified into

ζ = min (D, ̟)× τ, (15)

where τ is the proportion coefficient.

7 Results

We tested our method on a PC with a 3.6 GHz Intel Core i7-7700 CPU. We implement our iterative
process with C++ and CUDA. Houdini render is utilized to render our results. In the following, we
first remove the video noise and verify our reconstruction method’s reliability with experiments on the
synthetic data, and then present comparisons to state-of-the-art studies. Subsequently, we evaluate our
model with fluid videos in the public Dyntex dataset [36] or on the Internet. Each video is about 10 s
(250 frames) in length, and resolution is 352× 288. The overall computation time depends on the video
resolution, the number of video frames, and the experimental environments. Then, we show the editing
effect of the fluid. Finally, we provide some application scenarios for the reconstructed 3D fluid volume.

7.1 Video preprocessing

Owing to the influence of weather, illumination, and reflective characteristics of the object surface, the
illumination distribution in the obtained fluid video is not uniform. It not only seriously affects the visual
effects of an image but also leads to a distorted surface height field during the capture and reconstruction
processes (Figure 5(b)). We use the Gaussian function to extract the illumination component of the
water video and then use their distribution characteristics to adjust the 2D gamma function parameters
so that the intensity value can be increased in low-illumination regions and decreased in high-illumination
regions [41–45]. As shown in Figures 5(b) and (c), this can reduce the negative impacts such as distortion
and aberration from non-uniformity of illumination conditions and enhance the visual quality across
different water scenarios.

There are also high-frequency phenomena such as foam, splash, or spray in video frames, which cause
a large amount of noise in the acquired height field and significantly reduce the accuracy of the fluid
reconstruction (Figures 6(b) and (c)). For fluid reconstruction, the low-frequency variation is often the
most exciting factor in the time series, while the high-frequency fluctuation quickly hides the visual
movement trend. For this reason, we use low-pass Gaussian filtering to blur water image and control
the standard deviation of the Gaussian to determine smoothing [46–49]. As shown in Figure 6(d), we
remove high spatial frequency components from an image and preserve movement trends and appearance
of water details simultaneously.
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Figure 7 (Color online) Validation with ground truth. Multiple comparisons between synthetic data (first column) and our

reconstructed 3D fluid volume (second column). The third column is the residual depth.

Table 1 Statistics results of the depth errors

Frame number Error Frame number Error Frame number Error

1 0.0052 61 0.0032 121 0.0036

11 0.0026 71 0.003 141 0.0018

21 0.0026 81 0.0023 151 0.002

31 0.0067 91 0.0039 161 0.0035

41 0.0074 101 0.0027 171 0.0023

51 0.0022 111 0.0083 181 0.021

In Figure 6, we compared the effect of video denoising on the height field recovered by the SfS method.
Figure 6(b) shows the height field recovered directly from a frame of the original video (Figure 6(a)). The
height field of the high-illumination regions is larger than low-illumination regions. The denoising for the
illumination reduces the height field difference, as shown in Figure 6(c). Since white splashes have no
concept of height field, we filter out this high-frequency noise to eliminate their negative affects on the
height field (Figure 6(d)).

7.2 Validation with synthetic data

To verify our model, we generated a video using our SPH fluid solver and used the synthetic data as
input. This experiment validates that our 3D fluid volume can reproduce the geometric appearance and
3D motion field. As shown in Figure 7, the first column shows the ground truth, and the second column
shows the reconstructed 3D fluid volume. The first and second rows show comparisons from different
render views. The third column shows the residual depth of this frame from a top view. The visual
differences between the ground truth and the reconstructed result are not significant. For each frame, we
evaluate the depth error of the ground truth zGT

i and the reconstruction results zRE
i based on the formula

e =
√

1
n

∑n

i=1(z
GT
i − zRE

i )2 [11]. Table 1 shows the quantitative analysis of the reconstructed errors. The

maximum standard deviation of depth is 0.021. This shows that the deviation from the reconstruction
results is slight and acceptable.

7.3 Comparative experiments to verify the innovation points

We compare with [11] using the same fluid video with the identical running environment. To reconstruct
a similar 3D fluid volume as shown in Figure 8, Nie et al. [11] spent an average of 291.1 s, while we took
an average of 220.3 s. Figure 9 shows the time-consuming contrast of reconstructing a video sequence.
Although our adaptive multilayer external force guide model requires more target particles, our generation
and extinction model reduces the number of fluid particles, thus immensely reducing time consumption.
However, this is only the consumption when Nie et al. [11] chose the appropriate parameters that take
into account both the volume smoothness and the surface details. Even worse, the time, physical and
mental sports involved in trial-and-error parameter tuning steps behind are immeasurable, taxing, and
oppressive.

Our adaptive multilayer external force guiding model solves the difficulty of balancing holes and details.
This is because our model expands the influence range of external forces so that the whole 3D fluid volume
is uniformly guided. The advantage of our model makes it easy to determine an appropriate overall relative
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Figure 8 (Color online) A result example of Nie et al. [11]. The left is the input and the right is the reconstructed 3D fluid

volume.
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Figure 9 (Color online) The time-consuming comparison between [11] (green) and our method (red).

(a) (b) (c)

Figure 10 (Color online) Comparison between Nie et al.’s method and ours. (a) ∆H = 0 of Nie et al.’s. The reconstructed result

is too smooth and missing surface details because the ∆H value is enormous. (b) ∆H = −0.015 of Nie et al.’s. There are some

holes in the 3D fluid volume because the ∆H value is small. (c) Our reconstruction result. We preserve rich details and maintain

the smoothness of the 3D volume.

height ∆H of target particles and fluid particles. Even ∆H is too large, the surface of the 3D fluid volume
can also be correctly guided. This is because multilayer target particles are generated downward from
the surface layer for external force guidance. Figures 10(a) and (b) show Nie et al.’s reconstruction
results in the same rendering environment, where ∆H = 0 and ∆H = −0.015, respectively. As shown
in Figure 10(a), the reconstructed surface is very flat. This is due to the extreme value of ∆H , which
results in a significant portion of the surface fluid particles not being guided by sufficiently large external
forces. There are some obvious holes on the surface in Figure 10(b). This is because target particles only
guide the surface fluid particles but have a feeble influence on the internal fluid particles. This leads to
the inner hollow of the protruding surface and results in the instability of the geometric details of the
fluid surface. Figure 10(c) shows our reconstruction result. Because of the multilayer external forces, the
whole 3D fluid volume is guided to preserve rich details and maintain the smoothness of the 3D volume.

Furthermore, we designed an experiment to verify the effectiveness of our generation and extinction
model. In the initialization stage of the 3D fluid volume, a ball drops into the still water. Then, the ball
particles move respectively under the action of Nie et al.’s [11] model and our model. Figure 11 shows
the four states of the ball’s falling process, falling into the 3D fluid volume, guiding movement, and the
end of reconstruction. The first row shows the results of Nie et al. We can see that the number of ball
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Figure 11 (Color online) The verified experiment of the generation and extinction model. The first row shows Nie et al.’s results,

and the second row shows our results. The columns show the four states of the ball particles (red points) at the corresponding

moment. The blue points denote the 3D fluid volume.

(a) (b)

(c) (d) (e)

Figure 12 (Color online) The qualitative comparsion between different methods. (a) Input video frame; (b) Wang et al. [51];

(c) Nie et al. [11]; (d) Hu et al. [50]; (e) our method.

particles has not changed, and their horizontal positions have changed a little. The second row shows
our results. The number of ball particles has an apparent decrease, and these particles have a distinct
horizontal motion. Our result vividly reproduces the inflow and the outflow of the video scene. This
significant promotion owes to our generation and extinction model and the guidance of target particles’
3D velocity field.

Here, we provide qualitative analysis of our model, using comparisons with alternative approaches.
Figure 12 visually compares the output models from different methods. It can be seen that Nie et
al. [11] reconstructed oversharpened 3D fluid volumes while Hu et al. [50] reconstructed oversmoothed
3D fluid volumes. And Wang et al.’s [51] reconstructed result is very different from the original frame.
In contrast, our model appears sharper than [50] and smoother than [11], which indicates that a more
complete solution is found.

7.4 Reconstruction from real video

We selected real-world videos from the Dyntex dataset (13) and the Internet (14). We design two sets of
experiments: gentle motions (Figures 13(a) and 14(a)) and complex motions (Figures 13(b) and 14(b)).
First, we use pure SPH simulation to initialize the fluid particles. We set the time step to 0.01 (∆t = 0.01).
Based on the generation and extinction model, it takes about 150 iterations to obtain a relatively still 3D
fluid volume. The time step of the reconstruction process is 0.002 (∆t = 0.002). We adopt an adaptive
time step selection strategy. A large time step is used to accelerate the simulation of the initialization
phase, which does not require high precision, and a small-time step is used to improve the accuracy
of reconstruction. For each frame, target particles guide 20 iterations of the fluid particles. This can
maintain time consistency with the frame rate of the video. For all videos, we adopt wa = 0.018/h,
wV = 0.005/h to define the weight of FX(i) and FV (i), respectively. Our results (Figures 13 and 14)
show that our algorithm is capable of realistically reconstructing several large-scale liquid phenomena.
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(a) (b)

Figure 13 (Color online) Our reconstructed results from the Dyntex dataset. Given three frames of each monocular video (on

the top-left corner of each picture in the first and third rows), we render them with the same texture (the first and third rows)

as the input video to show the 3D motion field. Our method generates a series of opaque and transparent 3D fluid volumes (the

second and fourth rows) to illustrate the surface details better. (a) Gentle motions; (b) complex motions.

(a) (b)

Figure 14 (Color online) Our reconstructed results from the Internet. The four videos are the Yangtze River, the Weizhou

Island, the Yalu River, and the Baotu Spring from left to right and from top to bottom, respectively. (a) Gentle motions;

(b) complex motions.

7.5 Fluid editing

In Figure 15, we illustrate the capability of our method to extract features based on off-screen rendering
and combine them to create desired target particles based on dynamic weight. We develop a practical
edit system to deform target particles in real time, which integrates feature selection and feature fusion
as shown in Figure 15. Users can import target particles’ files, select, extract and save their interest
features, and import new scenes to merge features with these scenes seamlessly. The edit system can
automatically implement batch processing.

We use the edited area after feature fusion M̂ to realize the fluid edit based on the adaptive multilayer
external force guiding model. We extract ‘Fountain’ and ‘Surge’ features in batches. Then, we apply
‘Fountain’ features to the original scene (Figure 16(a)) and new scene (Figure 16(b)). In addition, we
edit ‘Fountain’ scene (Figure 16(c)) by fusing ‘Surge’ features.

7.6 Application scenarios

It is worth mentioning that the reconstructed 3D fluid volume can be flexibly utilized, e.g., for re-
simulation, domain modification, or guiding purposes, and has wide applications in films, cartoons,
computer games, AR, and so on. Figure 17 shows some application examples such as the fabulous indoor
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(a) (b)

(c) (d) (e)

Figure 15 (Color online) Deformation of target particles. (a) and (b) detail the feature extraction. (c) and (d) show the feature

fusion. First, users select the ‘Fountain’ feature (a) and obtain the result of the feature extraction S (b). Then, users choose the

edited area M from a new scene or a new position (c). Finally, the selected feature area S and the edited area M are fused and

transformed into the edited area after feature fusion M̂ (d). (e) shows the fusion result M̂ from a fresh perspective.

(a)

(b)

(c)

Figure 16 (Color online) Fluid editing results. Each set of results shows features (the first column of the first row), the scene to be

edited (the first column of the second row), the deformed target particle (the second to fifth columns of the first row), and the edited

three-dimensional fluid (the second to fifth columns of the second row). (a) Applying ‘Fountain’ features to the Fountain scene;

(b) applying ‘Fountain’ features to the Gentlewaves scene; (c) applying ‘Surge’ features to the Fountain scene.

or square Fountain (Figure 17(a)), the stunning shopping mall Gentlewaves (Figure 17(b)). Slightwaves
of the beach (Figure 17(c)) in the summer let us feel comfortable and cozy. The 3D fluid volume of
the Surge blends and harmonizes with the bridge (Figure 17(d)) and presents us with a fast-flowing and
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(a) (b) (c) (d)

Figure 17 (Color online) Application scenarios of the reconstructed results. (a) Fountain; (b) Gentlewaves; (c) Slightwaves;

(d) Surge.

treacherous river.

8 Conclusion

Our approach efficiently reconstructs 3D fluid volumes with rich surface details and no loopholes and it
conveniently edits user-specified fluid behaviors. Our framework considers the monocular fluid video as
a reference to guide the 3D fluid volume simulation. We proposed an adaptive multilayer external force
guiding model to promote the guidance, which appends the position traction and velocity guidance of
the two external forces to SPH, avoiding the trial-and-error parameter tuning step. Simultaneously, we
simulated the inflow and outflow behaviors of the 3D fluid volume using the 3D velocity field of target
particles as well as the generation and extinction model of fluid particles. Moreover, we confirmed that
our model could efficiently generate fluid behaviors visually, which was consistent with the requirements
of the videos or the user.

However, our approach has a few limitations, which can be addressed in future work. We subtly
set up the generation and extinction of fluid particles, but the addition and deletion of fluid particles
inevitably led to the 3D fluid volume boundary jitters. Further refinement of the generation and extinction
model would be a promising future research direction. Moreover, the input videos have no background,
which weakens the universality of our reconstruction method. Thus, exploring some techniques to obtain
meaningful and reliable fluid information from general videos available in public would be necessary.
Furthermore, we would like to advocate seeking novel strategies for the water surface reconstruction,
such as investigating the machine learning approach [52, 53] and advanced computer vision techniques,
to replace the SfS method that is limited by several assumptions.
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39 Raveendran K, Wojtan C, Thürey N, et al. Blending liquids. ACM Trans Graph, 2014, 33: 1–10

40 Manteaux P, Vimont U, Wojtan C, et al. Space-time sculpting of liquid animation. In: Proceedings of the 9th International

Conference on Motion in Games, Burlingame, 2016. 61–71

41 Jian M, Guo F, Yin C, et al. Automatic correction of non-uniform illumination for 3D surface heightmap reconstruction.

In: Proceedings of the IEEE International Conference on Multimedia and Expo, New York City, 2009. 1402–1405

42 Liu Z C, Wang D W, Liu Y, et al. Adaptive adjustment algorithm for non-uniform illumination images based on 2D Gamma

function (in Chinese). Trans Beijing Inst Tech, 2016, 36: 191–196, 214

43 Rahman S, Rahman M M, Abdullah-Al-Wadud M, et al. An adaptive gamma correction for image enhancement. J Image

Video Proc, 2016, 2016: 35

44 Wang D, Yan W, Zhu T, et al. An adaptive correction algorithm for non-uniform illumination panoramic images based

on the improved bilateral gamma function. In: Proceedings of 2017 International Conference on Digital Image Computing:

Techniques and Applications (DICTA), 2017. 1–6

45 Han P, Wang D, Yang X, et al. An improved adaptive correction algorithm for non-uniform illumination panoramic image.

In: Proceedings of IEEE 2nd International Conference on Electronic Information and Communication Technology (ICEICT),

2019. 258–262

46 Karmakar S, Ghosh K, Sarkar S, et al. Design of a low-pass filter by multi-scale even order Gaussian derivatives. Signal

Process, 2006, 86: 3923–3933

47 Ruoho-Airola T, Salmi T, Amnel T. Visualization of air quality time series by low-pass Gaussian filtering. In: Proceedings of

the 20th International Conference for Environmental Protection, Graz, 2006. 291–294

48 Qu F, Ren D, Liu X, et al. A face image illumination quality evaluation method based on Gaussian low-pass filter. In: Pro-

ceedings of the 2nd IEEE International Conference on Cloud Computing and Intelligence Systems, Hangzhou, 2012. 176–180

49 Guo X, Li Y, Ma J, et al. Mutually guided image filtering. IEEE Trans Pattern Anal Mach Intell, 2020, 42: 694–707

50 Nie X, Hu Y, Shen X. Physics-preserving fluid reconstruction from monocular video coupling with SFS and SPH. Vis Comput,

2020, 36: 1247–1257

51 Wang C, Wang C, Qin H, et al. Video-based fluid reconstruction and its coupling with SPH simulation. Vis Comput, 2017,

33: 1211–1224

52 Li Z, Murez Z, Kriegman D J, et al. Learning to see through turbulent water. In: Proceedings of IEEE Winter Conference on

Applications of Computer Vision, Lake Tahoe, 2018. 512–520

53 Stets J D, Li Z, Frisvad J R, et al. Single-shot analysis of refractive shape using convolutional neural networks. In: Proceedings

of IEEE Winter Conference on Applications of Computer Vision, Waikoloa Village, 2019. 995–1003

https://doi.org/10.1145/882262.882337
https://doi.org/10.1145/2508363.2508429
https://doi.org/10.1016/j.gmod.2008.12.007
https://doi.org/10.1002/cav.1637
https://doi.org/10.1002/cav.1801
https://doi.org/10.1145/2010324.1964978
https://doi.org/10.1002/cav.1781
https://doi.org/10.1002/cav.1502
https://doi.org/10.1111/cgf.13856
https://doi.org/10.1145/3197517.3201334
https://doi.org/10.1007/s00371-010-0526-y
https://doi.org/10.1109/TVCG.2017.2706289
https://doi.org/10.1109/TVCG.2012.302
https://doi.org/10.1016/j.patrec.2010.05.009
https://doi.org/10.1145/2601097.2601126
https://doi.org/10.1186/s13640-016-0138-1
https://doi.org/10.1016/j.sigpro.2006.07.005
https://doi.org/10.1109/TPAMI.2018.2883553
https://doi.org/10.1007/s00371-019-01735-1
https://doi.org/10.1007/s00371-016-1284-2

	Introduction
	Related work
	Physics-based simulation
	Video-based reconstruction

	Overview
	Adaptive multilayer external force guiding model
	Particles representation
	The generation and extinction model
	Target particles generation

	Fluid editing
	Feature extraction based on off-screen rendering
	Feature fusion based on dynamic weight

	Results
	Video preprocessing
	Validation with synthetic data
	Comparative experiments to verify the innovation points
	Reconstruction from real video
	Fluid editing
	Application scenarios

	Conclusion

