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Dear editor,

Single-pixel imaging (SPI) is an indirect image measurement

technique that can capture images using a detector without

spatial resolution [1]. The principle of SPI is using a se-

quence of structured light patterns to sample the object im-

age and recording the reflected or refracted light intensity us-

ing a single-pixel detector. The image can be reconstructed

by correlating the structured patterns and the detected light

intensity results. Compared to capturing images using a de-

tector array, SPI offers multiple unique advantages such as

wide spectrum range, low cost, and high signal-to-noise ra-

tio.

Despite these advantages, SPI requires numerous mea-

surements to reconstruct a high-quality image [1]. There-

fore, the balance between the imaging quality and speed

is important in the SPI technique. The reconstruction of

higher-quality target images with fewer structured patterns

has become a research hotspot. Recently, in SPI, deter-

ministic orthogonal basis patterns have been used. Com-

pared with random patterns, the deterministic orthogonal

basis patterns form a completely orthogonal set, with the

benefits of imaging quality improvement and measurement

reduction. Fourier single-pixel imaging (FSI) is one of the

representative SPI techniques using deterministic orthogo-

nal basis patterns. FSI uses grayscale Fourier basis pat-

terns for illumination and an inverse Fourier transform to

reconstruct the object image. However, with an increase in

the number of image pixels, the FSI speed is considerably

limited by the modulator’s frequency. FSI requires con-

siderable time to obtain full sampling of object spectrum,

rendering it unfeasible for real-time imaging [2]. To solve

this limitation, previous studies [3, 4] only made use of the

low-frequency region of the Fourier spectrum to reduce the

number of samples as the spectrum energy is mostly concen-

trated in its low-frequency component. However, doing so

reduces the imaging resolution and causes a ringing effect in

the reconstructed image. To remove the ringing effect and

improve the image quality, the deep learning method can be

used for under-sampling FSI. The image recovered from the

low-frequency Fourier spectrum is processed via a deep neu-

ral network to achieve denoising-deringing and detail reten-

tion [5]. However, this method requires a long-time network

training and must retrain a new network when the image

size or other parameters change. Moreover, it attempts to

fit a brute-force mapping between the reconstructed and the

desirable images, thus ignoring the FSI model. Recently, re-

searchers have proposed a new sparse Fourier single-pixel

imaging based on the compressed sensing (CS) algorithm to

reduce the number of samples [6]. Compared to the method

of only acquiring the low-frequency region of the Fourier

space, it can improve the FSI reconstruction quality at the

same sampling ratio. However, it uses the total variation

(TV) regularization as a hand-crafted prior, which results

in watercolor-like artifacts. Therefore, a method for high-

quality image reconstruction with a low sampling ratio is

desired in FSI.

In this study, we present a new high-quality under-

sampling FSI method, namely PnP-FSI. By combining the

benefits of Plug-and-Play (PnP) framework and generalized

alternating projection algorithm (GAP), the proposed PnP-

FSI method can well reconstruct the object images and over-

come the ringing effect in the case of under-sampling. Exten-

sive simulation and real experimental results demonstrate

that the PnP-FSI method outperforms the existing FSI al-

gorithms and is quite suitable for practical SPI applications.

Fourier single-pixel imaging. According to the Fourier

transform theorem, FSI uses grayscale Fourier basis pat-

terns for illumination and receives light reflected from the

object image using a single-pixel detector. Mathematically,

the received reflection light intensity Iϕ can be expressed as

follows:

Iϕ(u, v) =
∑

x

∑

y

Pϕ(x, y;u, v)O(x, y), (1)

where O(x, y) is the object image, x and y are the coordi-

nates in the spatial domain, u and v are the coordinates in

the Fourier domain, and ϕ is the phase parameter. Pϕ is the
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grayscale Fourier basis pattern, which can be represented as

follows:

Pϕ(x, y; u, v) = a+ b cos
(

2πx
u

M
+ 2πy

v

N
+ ϕ

)

, (2)

where a is the average intensity of patterns and b is the am-

plitude of the modulation pattern. M and N are the sizes

of the object image. In this study, we adopt the four-step

phase-shifting illumination. Therefore, the values of ϕ are

0, π/2, π, and 3π/2.

The Fourier spectrum of the image O(x, y) is given as

follows:

F (u, v) = F{O(x, y)}

=

M−1
∑

x=0

N−1
∑

y=0

O(x, y)exp
(

−j2π
(ux

M
+

vy

M

))

. (3)

Using trigonometric transforms, the relationship between

the FSI measurements Iϕ and the Fourier spectrum F (u, v)

can be obtained and written as follows:

F (u, v) =
1

2b
[(I0 − Iπ) + j(I

π/2 − I3π/2)]. (4)

From (4), the Fourier spectrum of the target object can be

obtained using the four-step phase-shifting approach. After

the Fourier spectrum acquisition, the object image can be

reconstructed via inverse Fourier transformation.

In theory, the reconstruction of an image with M×N pix-

els requires 4×M ×N measurements. To reduce the num-

ber of measurements, the most commonly used method only

samples the low-frequency spectrum. Three sampling or-

der schemes exist for the low-frequency acquisition method,

namely square, diamond, and circle sampling orders. It has

been demonstrated that the circular sampling order can re-

alize higher-quality images in a low-frequency situation [3].

However it usually reduces the imaging resolution and ex-

hibits the ringing effect. To acquire a larger range of fre-

quency spectrum in fewer measurements rather than the

low frequencies only, we adopt a variable density random

sampling scheme to select the spectrum [6]. This strategy

is based on the circular sampling order and the object spec-

trum characteristics, i.e., high-frequency sparseness and low-

frequency concentration. The probability density function

of the variable density random sampling can be expressed

as follows:

ρ(d) =

{

1, d 6 D,

1/(1 − d)p, otherwise,
(5)

where d is the distance from the sampling point to the spa-

tial center and p is the polynomial coefficient. Report-

edly, a high-quality image cannot be well reconstructed

from this under-sampling Fourier spectrum using inverse

Fourier transformation [6]. Therefore, we propose the PnP-

FSI method for high-quality FSI reconstruction in under-

sampling situation.

Plug-and-Play based FSI algorithm. To recover high-

quality image from the variable density random sampling

of the Fourier spectrum, FSI reconstruction can be modeled

as an optimization problem. Based on the FSI principle, we

define this optimization problem as follows:

argmin
O,Z

1

2
‖O − Z‖22 + λg(Z), subject to FO = Im, (6)

where O is the object image and Z is the auxiliary param-

eter for variable splitting, Im is the under-sampling mea-

surements acquired by the single-pixel detector, F is the

under-sampling Fourier transform, g(Z) is a regularization

term containing certain prior information of the object im-

age, and λ is the regularization parameter.

According to GAP algorithm [7], this optimization prob-

lem can be divided into two sub-problems in which O and

Z are alternately updated. Letting k denote the iteration

number, we derive a closed-form expression of O update as

follows:

Ok+1 = Zk + F
−1{Im − F{Zk}}, (7)

where F−1{·} is the inverse Fourier transform and F{·} is

the Fourier transform.

Inspired by the PnP framework [8], the sub-problem Z

is regarded as a denoising problem and replaced by an off-

the-shelf image denoising algorithm. Hence, the Z update

is expressed as follows:

Zk+1 = Dσ(O
k+1), (8)

where Dσ is the denoiser that can use the state-of-the-art

image denoising algorithms, such as pre-trained CNN de-

noising networks [9]. σ =
√
λ is the denoising strength of

the denoiser. The proposed PnP-FSI algorithm is summa-

rized in Appendix A.

Experimental results. The performance of the proposed

PnP-FSI method is confirmed by extensive simulations and

real experiments are shown in Appendix B.

Conclusion. This study proposes a novel method for

under-sampling FSI. By utilizing the advantages of the Plug-

and-Play framework and the advanced denoising algorithm,

the reconstructed image quality of FSI is considerably im-

proved. The proposed algorithm is confirmed by simulations

and experiments, demonstrating its great potential in the

practical SPI application, particularly in large-size image

reconstruction.
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