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Recent advances in derivative-free optimization allow for ef-

ficient approximation of the global optimal solutions of so-

phisticated functions, such as those with many local optima,

non-differentiable and non-continuous functions. This arti-

cle describes the ZOOpt (zeroth order optimization) tool-

box that provides efficient derivative-free solvers that are de-

signed for easy use. ZOOpt provides single-machine parallel

optimization based on the python core and multi-machine

distributed optimization for time consuming tasks by in-

corporating the Ray framework [1] — a famous platform

for building distributed applications. ZOOpt particularly

focuses on the optimization problems in machine learning,

addressing high-dimensional and noisy problems such as hy-

perparameter tuning and direct policy search. The toolbox

is developed as a ready-to-use tool in real-world machine

learning tasks.

Classification-based optimization. Derivative-free

optimization, also termed zeroth-order or black-box opti-

mization, involves a class of optimization algorithms that do

not rely on gradient information. Model-based derivative-

free optimization algorithms share a framework that itera-

tively learns a model for promising search areas and sam-

ple solutions from the model. Different kinds of methods

usually vary in the model’s design. Classification-based

optimization algorithms learn a particular type of model:

classification model, leading to theoretically grounded prop-

erties of optimization performance. A classification model

learns to classify solutions into two categories, good or bad.

Then solutions are sampled from the good areas. SRa-

cos [2] is a recently proposed classification-based optimiza-

tion algorithm. Unlike other model-based optimization al-

gorithms, the sampling region of SRacos is learned by a

simple classifier, which maintains an axis-parallel rectan-

gle to cover all positive but no negative solutions. SRa-

cos shows outstanding performance in empirical studies.

To support machine learning tasks, ZOOpt implements a

set of classification-based methods that are efficient and

performance-guaranteed, with add-ons handling noise and

high-dimensionality.

Optimization in the continuous, discrete, or hy-

brid space. We implement SRacos [2] as the default opti-

mization method, which has shown high efficiency in a range

of learning tasks. Optional methods are Racos [3] and

ASRacos [4], respectively, which are the batch and asyn-

chronous versions of SRacos. A routine is in place to set

up the default parameters of the two methods, while users

can override them. Benefitting from the compatibility of the

classifier with multiple data types, classification-based opti-

mization naturally supports optimization in the continuous,

discrete (categorical), or hybrid space.

Optimization in the binary vector space with con-

straint. If the optimization task is in the binary vector

space with constraints, such as the subset selection problem,

POSS [5] is the default optimization method. POSS treats

the subset selection task as a bi-objective optimization prob-

lem that simultaneously optimizes some given criterion and

the subset size. POSS has been proven to have the best-so-

far approximation quality on these problems. PPOSS [6] is

the parallel version of the POSS algorithm.

Noise handling. Noise has a great impact on the per-

formance of derivative-free optimization. Resampling is the

most straightforward method to reduce noise, which evalu-

ates one sample several times to obtain a stable mean value.

Besides resampling, more efficient methods, including value

suppression [7] and threshold selection [8] are implemented.

High-dimensionality handling. An increase in the

search space dimensionality badly injures the performance

of derivative-free optimization. When a high dimensional

search space has a low effective dimension, random embed-

ding [9] is an effective way to improve the efficiency. More-

over, the sequential random embeddings [10] can be used

when there is no clear low effective dimension.

Distributed optimization. Evaluating a sampled so-

lution is usually time-consuming for many real-world op-

timization tasks, such as hyperparameter tuning in large-

scale machine learning projects. By incorporating the Ray

framework [1], ZOOpt implements an efficient distributed

optimization module that enables users to parallelize single-

machine code with little to zero code changes.

Usage. A key point we considered when designing ZOOpt

was to make its usage as easy as possible. After defin-

ing a user-specified objective function and the correspond-
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Figure 1 (Color online) Evaluate the optimization (minimization) performance of ZOOpt on four synthetic benchmark functions.

Among these, the Ackley, Rastrigin, and Schwefel functions are highly nonconvex whereas the Sphere function is convex. The

optimal values of the four functions are all zero. For all toolboxes, we choose the recommended parameters according to their

tutorials. The top row shows the convergence rate of the tested toolboxes. The middle row shows the scalability of the tested

toolbox as the dimension size increases (the number of evaluations is set to be 20 × dim size for each run). The bottom row

demonstrates the performance of optimizing noisy functions (a Gaussian noise N(0, σ2) is added when evaluating the objective

functions). Each experiment is repeated 30 times, and mean values and 95% confidence intervals are recorded. For experiments on

scalability and optimizing noisy functions, the confidence interval is omitted for clarity. It can be observed that ZOOpt achieves

the best performance in all tasks.

ing search space, only one line of code was needed to con-

duct optimization using the ZOOpt optimization interface

Opt.min. To use some advanced functionality, such as the

noise handler and the high-dimensionality handler, a more

detailed Parameter object can be defined and passed as an

attribute to Opt.min. Users can customize their optimizer

by performing fine-grained control on these parameters. Dis-

tributed optimization in ZOOpt is implemented by incorpo-

rating Ray. Currently, ZOOpt is an optional optimization

tool in Ray.tune — a library for fast hyperparameter tuning

at any scale. Users only need to provide extra server IP ad-

dresses to distribute the optimization without caring about

the communication infrastructure. For concrete examples,

we refer readers to the project homepage1) .

Access methods. ZOOpt can be downloaded from the

website1) or be installed directly from PyPi (pip install

zoopt). The full version of this paper can be found from

the website2).
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