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Abstract Visual localization is considered an essential capability in robotics and has attracted increasing

interest for the past few years. However, most proposed visual localization systems assume that the sur-

rounding environment is static, which is difficult to maintain in real-world scenarios due to the presence

of moving objects. In this paper, we present DFR-SLAM, a real-time and accurate RGB-D SLAM based

on ORB-SLAM2 that achieves satisfactory performance in a variety of challenging dynamic scenarios. At

the core of our system lies a motion consensus filtering algorithm estimating the initial camera pose and

a graph-cut optimization framework combining long-term observations, prior information, and spatial co-

herence to jointly distinguish dynamic and static visual features. Other systems for dynamic environments

detect dynamic components by using the information from short time-span frames, whereas our system uses

observations from a long period of keyframes. We evaluate our system using dynamic sequences from the

public TUM dataset, and the evaluation demonstrates that the proposed system outperforms the original

ORB-SLAM2 system significantly. In addition, our system provides competitive localization accuracy with

satisfactory real-time performance compared to closely related SLAM systems designed to adapt to dynamic

environments.
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1 Introduction

Visual localization has received a considerable amount of attention in recent years due to the require-
ments for autonomous driving [1, 2] and robot navigation [3, 4]. Many state-of-the-art visual localization
systems [5–8] are proposed with high accuracy and robustness. These vision-based localization systems,
which include visual simultaneous localization and mapping (vSLAM) and visual odometry (VO), can
estimate the ego-motion of the camera using only consecutive images captured from the surrounding
environment. To simplify the problem formulation, most existing systems make the premise that the
surrounding environment is static. However, because moving objects, such as humans, are always present
in real-world scenes, suitable systems for these scenes are strictly limited. Traditional SLAM algorithms
would easily intermingle the movement of moving objects and the camera, resulting in poor localization
accuracy and even system failure. For the scenarios in that the camera view is occluded by a small
number of moving objects, general methods like robust cost function [6] and random sample consensus
(RANSAC) [9] can remove the majority of the interference caused by moving objects. In contrast, when
moving objects occupy the majority of the camera view, and especially when the majority of visual fea-
tures are located within these areas, the quality of visual localization can be severely compromised. To
address the problem of localization accuracy reduction or system failure in highly dynamic scenes, the
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SLAM community has adopted some methods such as prior knowledge generation [10, 11] and analysis
based on short-term observations [12]. Prior knowledge, such as semantic information, can, however,
hardly recognize objects that have not been pre-trained, and such methods work well at the expense of
a significantly high computational cost on the learning part. In addition to prior knowledge, observa-
tions over a short time span of frames are insufficient for determining dynamic visual features, because
some dynamic objects may remain stationary for a short time interval and be misidentified as static
components. Therefore, it still is challenging to improve the performance of vSLAM and VO in dynamic
scenes.

Different from the above two types of methods, in this paper, we propose an effective RGB-D SLAM
method to detect and eliminate dynamic visual features. The key components of our method are inspired
by the idea that observations over long-term timescales can provide sufficient information to distinguish
visual features, and nearby visual features tend to have the same motion patterns. Specially, we first
estimate the initial camera pose with the temporally labeled static and dynamic identification generated
by the proposed motion consensus filtering algorithm. In this step, the properties of indoor scenarios
and RGB-D camera are considered. Then we build a sparse undirected graph using Delaunay triangula-
tion [13] from all tracked visual features to determine their adjacency relationship and apply a graph-cut
optimization framework to assist in dynamic visual feature detection. The step fully utilizes the obser-
vations of corresponding visual features extracted from keyframes over a long time span, as well as the
prior property and spatial coherence of visual features in the current frame. The graph-cut optimiza-
tion framework is used in our method to compute the optimal binary segmentation by minimizing the
established energy function. Using the graph-cut model to solve the detection problem yields satisfactory
results. Finally, we seamlessly integrate the proposed method into the original ORB-SLAM2 [6], and
a real-time and accurate RGB-D SLAM system named dynamic visual feature removal SLAM (DFR-
SLAM) is developed, which eliminates the influence of dynamic objects without external sensors as well
as prior knowledge. The system is evaluated on public benchmarks [14], and the results demonstrate
that DFR-SLAM accurately estimates the camera pose and achieves a more comprehensive performance
than some closely related SLAM systems in most sequences. The main contributions of our work are
summarized as follows.

(1) A motion consensus filtering algorithm is proposed, which can coarsely estimate the initial camera
pose. It exploits the geometry constraint and the motion consistency of visual features belonging to the
background.

(2) We propose an effective dynamic visual feature removal method based on a graph-cut optimization
framework that considers long-term observations, prior information, and spatial correlations of the visual
features.

(3) In dynamic environments, we propose a real-time RGB-D SLAM system that is seamlessly inte-
grated with our dynamic visual feature removal method and achieves high accuracy of pose estimation
while having a lower computational cost without the use of external sensors or pre-training models.

The remaining of this paper is structured as follows. Section 2 discusses various accomplishments in
respect of vSLAM and VO for dynamic environments. In Section 3, the technical details of the proposed
method are elaborated. Section 4 presents our experimental results and analysis. Finally, in Section 5, a
brief conclusion is summarized and future work is given.

2 Related work

As most existing vSLAM and VO systems can only eliminate part of the influence of dynamic components
in low-dynamic scenarios, many algorithms have been proposed to address more specifically the dynamic
scenario content related to visual localization. These methods can be roughly categorized into the follow-
ing categories: methods based on dynamic factor removal, methods incorporating external sensors, and
methods based on deep learning technologies.

2.1 Methods based on dynamic factor removal

The motivation of this kind of method is to remove dynamic visual features on the same moving object
by motion consistency. Li and Lee [15] used frame-to-keyframe registration to obtain the reprojection
errors of edge points and weight the edge points according to the reprojection errors. The likelihood of
an edge point being maintained for localization is decided by the weight. Cheng et al. [16] proposed to
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detect and track dynamic regions utilizing a Bayesian framework; the probability propagation model is
built by combining the temporal information from the consecutive frames and the observations between
the reference frame and the current frame. Dai et al. [17] built a sparse graph using the tracked 3D land-
marks and then segmented the graph based on point correlations. The size of the connected component
distinguishes static and dynamic visual features. This method detects dynamic components by utilizing
temporal information from frame-to-keyframe or consecutive frame registration, whereas we propose to
use long-term observations and spatial coherence to distinguish static and dynamic visual features, which
have not been considered in other related work based on dynamic factor removal.

2.2 Methods incorporating external sensors

Incorporating external sensors like wheel-encoders and inertial measurement units (IMUs), which can
compensate for the unreliable pose estimation, is another efficient way to address the problem. Kim et
al. [18] utilized inertial data between two consecutive frames, which are relatively accurate, to compen-
sate for the rotation components of estimation and then introduce a motion vector filter to classify the
extracted visual features as dynamic or static ones. Yang et al. [19] fused the observations of wheel-
encoders and RGB-D camera to estimate the robot movement. The combination of the deep learning
method and a geometric method whose reprojection error is obtained from wheel-encoder compensation
is used to identify dynamic pixels. Although combining additional sensors improves the accuracy of visual
localization systems, the systems’ applications are also limited to scenarios that include these additional
sensors. Furthermore, the process of multi-sensor calibration and combination can introduce additional
implementation challenges. In contrast to this kind of method, our method eliminates the influence of
dynamic visual features without external sensors and can be extended to other kinds of cameras if the
depth of visual features can be accurately obtained.

2.3 Methods based on deep learning technologies

More than that, with the development of deep neural networks, more and more learning-based methods
are introduced into SLAM systems to improve their performance [20, 21]; several SLAM systems utilize
semantic information to detect pre-trained dynamic objects and exclude visual features extracted from
the moving objects. Yuan et al. [22] presented SaD-SLAM in which semantic and depth information
is used to distinguish visual features extracted from static, movable, and moving objects. Bescos et
al. [23] employed Mask R-CNN [24] to perform instance segmentation and utilize visual features to track
dynamic objects; the trajectories of both dynamic objects and camera are tightly optimized within a
novel bundle adjustment proposal. Deep learning based methods can perform well in scenarios with
pre-defined dynamic objects; however, in general dynamic environments, it is still necessary to combine
geometry models and deep learning technologies because moving objects that are not in the training set
are difficult to detect by semantic segmentation. Furthermore, because sparse visual features, rather than
all pixels belonging to dynamic objects, are processed in the part of dynamic visual feature detection,
our method has better real-time performance.

3 Methodology

3.1 Problem statement

For most feature-based VO and vSLAM systems, bundle adjustment (BA) is performed to optimize
camera pose by minimizing the reprojection errors [6] between the 3D landmarks and their corresponding
2D visual features. The optimization function can be formulated as

min
Rk,tk

∑

(i,k)∈C

ρ
(

‖uik − π (RkP i + tk)‖
2
Σik

)

, (1)

where Rk ∈ SO (3) and tk ∈ R
3 are the orientation and position of camera for frame k, respectively. C is

all the association set, uik ∈ R
2 denotes the i-th 2D visual feature observed by frame k. P i ∈ R

3 is the
matched 3D landmark in world coordinates. π : R3 → R

2 stands for the projection functions. Σik is the
covariance matrix and ρ (·) is the Huber function for eliminating the interference of outliers.
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Figure 1 (Color online) BA optimization in a dynamic scenario. Γk is a moving object at time k and d
k+1
i indicates the

displacement from uik+1 to u′

ik+1 in the frame k + 1.

BA optimization performs well and the accuracy of pose estimation can be guaranteed when no moving
object appears in the camera view; however, in real scenes, moving objects are always present. Figure 1
illustrates the process of BA in dynamic environments. The location of the 3D landmark Pi is changed
due to the motion of moving object Γ, making the observation of Pi in frame k + 1 move from uik+1 to
u
′
ik+1. If these kinds of visual features are used in BA optimization and the displacement vector of uik

is represented as dik, Eq. (1) can be reformulated as

min
Rk,tk

∑

(i,k)∈C

ρ
(

‖uik + dik − π (RkP i + tk)‖
2
Σik

)

. (2)

In dynamic environments, the camera movement and object movement are difficult to predict, and dik

in (2) is non-negligible, which lead to a poor result of BA optimization. For improving the performance
of BA optimization, we should ensure all the visual features used in the optimization process are static.

3.2 Method overview

The overview of our method is illustrated in Figure 2. The inputs consist of the current RGB-D image
represented by (Icur, Dcur), the reference RGB-D image represented by (Iref , Dref), and a number of
previous images (IKF, DKF) called keyframes, where I(·) ∈ R

2 and Z(·) ∈ R
2 denote the colour and depth

images, respectively. First, visual features are extracted in Icur and matched with the visual features in
Iref . Then the matched visual features in Icur are grouped into N clusters by applying the k-means++ [25]
to the 3D coordinates of those features having depth values. With the N clusters, we use the proposed
motion consensus filtering algorithm to obtain some visual features, which are indeed static, to coarsely
estimate the camera pose [R | t]. Subsequently, the initial camera pose is employed to track local map
similar to [6], which aims at obtaining more matched features to improve the performance of system;
however, tracking local map can introduce some dynamic visual features. To address the problem, we
then create a sparse graph using Delaunay triangulation for all corresponding features and utilize the
long-term reprojection errors, prior probability, and spatial information of visual features to distinguish
dynamic and static visual features within a graph-cut optimization framework. Finally, the dynamic
visual features are eliminated and the remaining static ones are used for pose refinement.
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Figure 2 (Color online) Overview of the proposed method. A pair of RGB-D images (Icur, Dcur) and (Iref , Dref ) are processed.

After the two main stages (initial camera pose estimation and graph-based dynamic visual feature removal) finishing, the static

visual feature-tracking local map is determined and applied to refine the camera pose [R | t].

3.3 Initial camera pose estimation

In our approach, the camera pose is estimated within a coarse-to-fine scheme. For every current frame, in
the coarse stage, we perform feature extraction and match the extracted features with the visual features
in the reference frame, then estimate the camera pose by applying EPnP [26] to the corresponding 3D
landmarks and matched 2D feature points. Influenced by the moving objects in dynamic environments,
parts of 3D to 2D data associations violate the multiple view geometry constraints [27] and the estimated
camera pose is inaccurate. In order to obtain a reliable initial camera pose, the features used to estimate
the camera pose are supposed to be indeed static.

In this stage, we firstly apply k-means++ algorithm to group the matched visual features that have
reliable depth values in the current frame regionally into N geometric clusters C = {Ci, i = 1, . . . , N}
using their corresponding 3D landmarks. The reliable depth value is associated with the property of
RGB-D camera and the property is that depth measurement uncertainty of RGB-D camera is significantly
positively correlated with the square of the measured value [28]. In general, a threshold is set to determine
whether a depth value is reliable, which is empirically set to be 4.5 m in our experiment. We assume that
visual features in the same cluster have motion consistency. This assumption is plausible because we aim
at seeking a certain cluster that has the same motion property with static background, not eliminating
all the dynamic visual features in this step. After obtaining N clusters, we apply EPnP to estimate the
transformation TCi

of cluster Ci from the coordinate of the reference frame to the current frame, where
TCi

= [RCi
|tCi

]. Moreover, the number of clusters needs to be considered. Too many leads to a small
number of visual features in each cluster, which is likely to influence the accuracy of TCi

. Conversely,
if few clusters are retrieved, the visual features belonging to the same cluster may have different motion
properties. In our experiment, we empirically set N as 5.

As only the matched visual features with reliable depth values in the current frame are used for
clustering, there must be some matched visual features left having unreliable depth values. We define
these left 2D visual features with their corresponding 2D visual features in the reference frame as XB,
XB = {(uir,uic) | i = 1, . . . , n}, where uir,uic ∈ R

2 denote the i-th 2D visual feature observed in the
reference and current frame, respectively. Given the fact [29] that in indoor scenarios, distant observations
are more likely to be extracted from the static components (furniture, ceiling, wall, etc.) and moving
objects which are far distant from the camera can be regarded as approximately static ones across a
very short time span. Combined with the mentioned property of RGB-D camera, we assume that visual
features with unreliable depth values are almost from the fixed elements of the surroundings. Then a
voting process is applied to determine which cluster has the most similar motion to the static background.
The voting scheme is inspired by epipolar geometry constraints [27], associated with the fundamental
matrix F , which indicates motion of moving object and is defined as

F = K
−T [t]×RK

−1,

where K represents the intrinsic camera parameter and [·]× is a skew-symmetric matrix defined as

[t]× =
[

[0, t3,−t2]
T
, [−t3, 0, t1]

T
, [t2,−t1, 0]

T
]

.
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(a) (b)

Figure 3 (Color online) Results of visual features determination generated by the proposed motion consensus filtering algorithm.

The green feature points in (a) are all the features matched with the visual features in the reference frame, and those in (b) are

the indeed static visual features.

According to the properties of fundamental matrix, feature points extracted from moving objects have
different matrix F and their corresponding feature points do not lie on the corresponding epipolar lines.
We adopt the Sampson distance [27] to measure the distance from the feature points to their corresponding
epipolar line and decide how to vote. For each cluster, it receives a vote if a 2D to 2D matching pair in
XB satisfies the following formula:

[

(ũir)
T
FCi

(ũic)
]2

(FCi
ũic)21 + (FCg

ũic)22 + (FCi
ũir)21 + (FCi

ũir)22
< σd, (3)

where FCi
is the fundamental matrix of motion of cluster Ci , (ũir , ũic) are the homogeneous coordinate

form of (uir,uic), (·)k denotes the k-th entry of vector (·), σd is an adaptive threshold associated to the
scale of (uir,uic).

After obtaining the vote VCi
of each cluster, we select the transform matrix TCi

whose corresponding
cluster has the highest vote to obtain the initial camera pose T init and then iteratively estimate T init.
For each 3D to 2D matching pair (P i,uic) with reliable depth values, its corresponding reprojection error

is ei = ‖uic − π (RinitP i + tinit)‖
2
Σi

, and only the pair whose reprojection error is below a pre-defined
threshold σr, which we empirically set as 3.944, can be added to the pair set S for the next EPnP
iteration. P i is 3D landmark in world coordinates generated by the i-th matched 2D visual features in
the reference frame using the camera intrinsics. Σi = σiI2×2 and σi is the variance associated to the scale
of uic. T init is iteratively updated using the pairs in S and the termination condition only considers the
iteration number Niter which we set as 20. An example result is shown in Figure 3, and the effectiveness
of this module to our system is verified in Subsection 4.2. The detailed procedures of initial camera pose
estimation are given in Algorithm 1.

3.4 Graph-based dynamic visual feature removal

For improving the robustness and accuracy of our system, local map points generated by the visual fea-
tures in previous keyframes are projected to the current frame to obtain more feature matches. However,
in dynamic environments, tracking local map brings some unreliable feature matches. The motion consen-
sus filtering algorithm identifies visual features that are indeed static and provide a coarse camera pose.
Thus, in this stage, we are committed to further detecting and eliminating dynamic visual features from
the tracked features. The basis of our method is that visual features extracted from the static environ-
ment have consistent motion over a long time, while those extracted from moving objects have different
motion patterns and can be easily determined by comparing information from multiple keyframes. Fur-
thermore, we note that the visual features distribute regionally and the motion patterns of nearby visual
features tend to be the same, which mean a visual feature near a dynamic visual feature (respectively
static visual feature) is more likely to be dynamic (respectively static visual feature). Motivated by the
above insights, we formulate the problem of distinguishing dynamic and static visual features as a binary
classification problem, which is developed based on a graph-cut optimization framework [30].

In the first step, to represent visual feature correlations, a sparse undirected graph G is constructed
based on Delaunay triangulation, in which for a given set of discrete visual features, no visual feature is
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Algorithm 1 Motion consensus filtering

Input: The current RGB-D image (Icur, Dcur) and the reference RGB-D image (Iref , Dref );

Output: The initial camera pose of current frame T init;

1: Extract visual features from Icur and match features between Icur and Iref ;

2: Apply k-means++ to group the matched visual features in Icur into N clusters;

3: Estimate the motion TCi
of each cluster by EPnP;

4: for i = 1 to N do

5: for (uir ,uic) ∈ XB do

6: if
(

uir,uic,TCi

)

satisfies (3) then

7: VCi
← VCi

+ 1;

8: end if

9: end for

10: end for

11: Find the highest VCi
and obtain T init via its corresponding motion TCi

;

12: iterations← 1;

13: repeat

14: S ← ∅;

15: for each matched pair (P i,uic) do

16: if ‖uic − π (RinitP i + tinit)‖
2
Σi

< σr then

17: Add (P i,uic) to S;
18: end if

19: end for

20: Estimate T new using the 3D to 2D matching pair in S by EPnP;

21: T init ← T new ;

22: iterations← iterations + 1;

23: until iterations > Niter;

24: return T init.

inside the circumcircle of any triangle, as shown in Figure 4(a). Each vertex in G denotes a matched
visual feature in the current frame. The adjacent visual features are connected in the constructed graph
and this kind of structure is the basis of binary label assignment.

The next step is label assignment. Let L =
{

l1, l2, . . . , l|L|
}

denote the label set whose entry specifies
assignment to each vertex in G, |L| is the number of the matched visual features and li ∈ {0, 1}. For the
sake of simplicity, we set static labels as 0 and dynamic labels as 1. The problem of distinguishing dynamic
and static visual features is reformulated as a binary classification problem optimized by minimizing the
following energy function:

E (L) =
∑

i

Rli (uic) + λ
∑

(uic,ujc)∈K

B (uic,ujc)ψ (li , lj ) . (4)

Eq. (4) combines unary energy term Rli (uic) and pairwise energy term B (uic,ujc)ψ (li , lj ), using λ as
the proportionality parameter. ψ (li , lj ) = 1, if li 6= lj , otherwise ψ (li , lj ) = 0. E (L) represents the sum
of all the energies and K is the set of pairs of connected visual features in G.

Unary energy term. The unary energy term decides the individual penalties for assigning visual
features to dynamic or static ones. This term for visual feature uic is defined as

Rli (uic) = − logli
(

pdi
)

log1−li (psi ) , (5)

where pdi and psi denote dynamic and static probability of visual feature uic, respectively. In our experi-
ment, pdi = 1− psi . p

s
i contains two sources of information and is defined as psi ∝ pli · p

p
i .

The first information pli emphasizes the long-term observations by assigning a high static probability
to the i-th visual feature with low reprojection error, which is described as

pli ∝
1

√

|Σi|
exp (−eproj (uic)) ,

where eproj (uic) is the long-term reprojection error by averaging all the reprojection errors of the i-th
visual feature, and is expressed as

eproj (uic) =
1

Ni

Ni
∑

k=1

∥

∥

∥
u

k

i − π

(

T
k

wT init
−1

π
−1 (uic, zi)

)
∥

∥

∥

2

Σi

,

where u
k
i and T

k
w represent the corresponding 2D observation of the i-th visual feature in the k-th

keyframe and the pose of the k-th keyframe, respectively. Ni denotes the total number of the keyframes,
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(a) (b)

Figure 4 (Color online) Results of graph construction and visual features determination. A sparse graph is shown in (a), the

green points and yellow lines represent the tracked visual features and edges between adjacent visual features, respectively. In (b),

visual features extracted from moving objects are colored in red, and the green points represent the visual features extracted from

the static objects.

where the i-th visual feature can be seen. The visual feature uic is back-projected into the 3D space in
world coordinates with its depth value zi and the initial camera pose T init, using the back-projection
function π−1 (·). The inspiration of this term is that short-term analysis leads to inaccurate detection,
while long-term information can be more reliable which is determined by projecting a visual feature to
the keyframes where the visual feature corresponding 3D landmark can be seen for comparison.

The second information p
p
i represents the prior static probability, taking into account that distant

observations are likely to be static and dynamic components of the scenarios tend to remain moving
through time, which mean a visual feature has a lower prior static probability if it is close to a dynamic
feature in the last frame and is not a distant observation. In our experiment, we define ppi as

p
p
i =











0.9, if zi > zmax,

0.25, if zi < zmax and ∃m, d2D (uic,uml) 6 dth,

0.7, otherwise,

where zmax is an adaptive threshold, which is set as the mean depth of all matched visual features
multiplied by two. uml corresponds to the m-th visual feature in the last frame, which is determined as
a dynamic feature. d2D (uic,uml) denotes the distance between uic and uml in the image plane. dth is
an empirical threshold that is set as 25. We think the number of visual features extracted from static
objects is more than that extracted from moving objects, which means a visual feature is more likely to
be static; thus the general prior static probability is set to 0.7.

Pairwise energy term. The pairwise energy term represents the spatial regularization, which aims
to penalize the connected visual features in G that does not share the same label. This term is based
on the idea that the nearby visual features with similar eproj (·) are more likely to have the same labels.
The B (uic,ujc) term is defined as

B (uic,ujc) ∝
exp(−ω · (eproj (uic)− eproj (ujc))

2
)

d3D (uic,ujc)
, (6)

where d3D (uic,ujc) = ‖π−1 (uic, zi) − π−1 (ujc, zj) ‖2, corresponding to the distance of 3D landmarks
associated to uic and ujc. ω is a pre-defined constant. B (uic,ujc) is large when the absolute value of
difference of the average reprojection error between visual features uic and ujc is small, while B (uic,ujc)
is close to zero when the absolute value of difference between them is very large. Furthermore, the
corresponding penalty decreases as the distance d3D (uic,ujc) increases.

For reducing the runtimes, we use an efficient graph-cut algorithm [31], which builds two reusable
breadth-first search trees, starting from source terminal and sink terminal to detect augmenting paths,
solve the binary labeling problem and determine the optimal label vector L∗. An example result is shown
in Figure 4. After dynamic visual feature removal, the remaining static visual features are employed to
refine pose estimation by performing BA.
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Table 1 Information of the selected sequences used in our experiments

Sequence Duration (s) Trajectory length (m) Person movement Camera movement

fr3/w/xyz 28.83 5.791 Walk around an office Move along xyz

fr3/w/rpy 30.61 2.698 Walk around an office Rotate along rpy

fr3/w/half 35.81 7.686 Walk around an office Move on a small halfsphere

fr3/w/static 24.83 0.282 Walk around an office keep static manually

fr3/w/xyz/v – – Walk around an office Move along xyz

fr3/w/rpy/v – – Walk around an office Rotate along rpy

fr3/w/half/v – – Walk around an office Move on a small halfsphere

fr3/w/static/v – – Walk around an office Keep static manually

fr3/s/xyz* 42.50 5.496 Sit, talk, and gesticulate Move along xyz

fr3/s/half* 37.15 6.503 Sit, talk, and gesticulate Move on a small halfsphere

fr2/d/person* 142.08 17.044 Sit and interacte with the objects Move around an office

“*” indicates that the sequences are low-dynamic sequences.

“–” indicates that the sequence has no corresponding public information.

4 Experiments

In this section, we provide an experimental evaluation to verify the effectiveness of our method and show
the comprehensive performance of the proposed DFR-SLAM on the public TUM RGB-D dataset [14].
Each sequence in the dataset contains both the RGB-D images with 640×480 resolution and ground-truth
trajectories. The sequences we use are recorded with a handheld Kinect camera in an office scene and
belong to the dynamic objects category, in which the camera moves with different patterns (xyz, rpy,
halfsphere and static), while people in the scene also walk or sit. The sequences are classified into two
types based on the size of the camera view covered by dynamic parts of the environment: low-dynamic
sequences and high-dynamic sequences. People sit with parts of their bodies moving in low-dynamic
sequences, while people walk through an office scene in high-dynamic sequences. The localization system
faces difficulties because different sequences have different characteristics. The name of each sequence,
which includes the robot number, the motion of the people, and how the camera moves, describes the
characteristics of the sequence. For instance, the name freiburg3 walking rpy indicates the sequence is
recorded by a robot named freiburg3 when the persons are walking around the office, and the camera
is rotated along the principal axes (roll-pitch-yaw). The difficulties with freiburg3 walking rpy are that
high-dynamics cause the major portion of the camera view to be occupied by moving objects, and rotating
along rpy leads to many mismatches. More detailed information of each sequence is shown in Table 1.
In the implementation, for demonstrating the efficiency of our system, all the experiments are performed
on a low computing power desktop PC with Intel i3-6100 CPU and 16 GB RAM.

4.1 Performance of dynamic visual feature detection

In this subsection, we validate the effectiveness of dynamic visual feature removal. Figure 5 shows eight
results of dynamic visual feature detection from different dynamic sequences. The detected dynamic visual
features are represented by red points, while the static visual features are represented by green ones. The
results show that our method provides satisfactory performance in high-dynamic sequences. For instance,
in fr3/w/static, the dynamic visual features extracted from two moving persons are all detected accurately.
Despite performing well in high-dynamic scenarios, our method suffers from misclassifications caused by
the presence of low-dynamic scenarios and the unavoidable mismatch of visual features. In low-dynamic
scenarios, like fr3/s/xyz, some visual features extracted from the person in the plaid shirt are identified as
static features since some parts of the person keep still for a long time. This type of misclassification has
no significant impact on localization accuracy, because these visual features are extracted from movable
but static objects that do not violate the geometry constraints. Inevitable mismatches of visual features,
which can cause large reprojection errors and result in a wrong unary energy term in (6), are caused by
visual descriptor performance limitations. As we can see in Figure 5(e), several visual features belonging
to the static scene are identified as dynamic ones, but these visual features only occupy an extremely
small proportion of all the tracked visual features. Therefore, the performance of pose estimation is
guaranteed.
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(a) (b)

(e) (f)

(c)

(g)

(d)

(h)

Figure 5 (Color online) Dynamic visual feature detection in multiple sequences. (a) fr3/w/xyz; (b) fr3/w/rpy; (c) fr3/w/static;

(d) fr3/w/halfsphere; (e) fr3/w/rpy/v; (f) fr3/w/halfsphere/v; (g) fr3/s/xyz; (h) fr3/s/halfsphere. The colored points represent

the visual features matched with the local map. The red points are determined as belonging to moving objects and the green ones

belong to the static scenes. The sequences (g) and (h) are low-dynamic sequences, in which the persons are sitting and part of

their bodies are moving.

Table 2 Comparison of the absolute trajectory error (ATE) for the translation part between original ORB-SLAM2 and DFR-

SLAM

Sequence
ORB-SLAM2 (m) DFR-SLAM (ours) (m) Improvements (%)

RMSE Mean Median S.D. RMSE Mean Median S.D. RMSE Mean Median S.D.

fr3/w/xyz 0.7616 0.6186 0.5166 0.4442 0.0140 0.0120 0.0104 0.0071 98.16 98.06 97.99 98.40

fr3/w/rpy 0.7495 0.6504 0.6340 0.3723 0.0398 0.0301 0.0214 0.0261 94.69 95.37 96.62 92.99

fr3/w/half 0.6798 0.5806 0.3935 0.3536 0.0367 0.0311 0.0250 0.0193 94.60 94.64 93.64 94.54

fr3/w/static 0.4474 0.4299 0.4030 0.1238 0.0076 0.0069 0.0064 0.0033 98.30 98.40 98.41 97.33

fr3/w/xyz/v 1.5339 1.3919 1.2256 0.6446 0.0117 0.0105 0.0098 0.0052 99.24 99.25 99.20 99.19

fr3/w/rpy/v 0.6556 0.5141 0.3671 0.4068 0.0310 0.0249 0.0187 0.0185 95.27 95.16 94.91 95.45

fr3/w/half/v 0.6885 0.5745 0.4781 0.3795 0.0304 0.0251 0.0198 0.0171 95.58 95.63 95.86 95.49

fr3/w/static/v 0.6190 0.4622 0.3414 0.4117 0.0070 0.0062 0.0057 0.0032 98.87 98.66 98.33 99.22

fr3/s/xyz* 0.0095 0.0084 0.0077 0.0045 0.0101 0.0085 0.0076 0.0055 −6.32 −1.19 1.30 −22.22

fr3/s/half* 0.0194 0.0147 0.0118 0.0127 0.0177 0.0156 0.0143 0.0084 8.76 −6.12 −21.18 33.86

fr2/d/person* 0.0715 0.0692 0.0683 0.0179 0.0708 0.0697 0.0699 0.0121 0.97 −0.72 −2.34 32.40

“*” indicates that the sequences are low-dynamic sequences.

4.2 Performance of visual localization accuracy

In this subsection, we show the quantitative and qualitative results of our DFR-SLAM system. The
control variable method is used to ensure that the number of extracted visual features, keyframe selection
strategy, and optimization method is all the same. On the TUM dynamic sequences, a detailed comparison
of original ORB-SLAM2 and DFR-SLAM is also provided. For quantitative evaluations, we employ
absolute trajectory error (ATE) [14] as the evaluation metric. Table 2 presents the evaluation results.
In our experiment, the root mean square error (RMSE) and standard deviation (S.D.) values are more
concerned and highlighted because they are better suited for indicating the system’s robustness and
stability. Furthermore, the quantitative results of our system for the ORB-SLAM2 improvements are
reported to demonstrate the efficacy of our method. The improvement values brought by DFR-SLAM
are calculated as

η =
α− β

α
× 100%,

where η indicates the RMSE improvement, and α and β denote the RMSE value obtained from ORB-
SLAM2 and DFR-SLAM. The qualitative evaluation results are shown in Figure 6, which display ATE
plots of ORB-SLAM2, our system without the module of initial camera pose estimation, and DFR-SLAM
to show the improvements of localization accuracy.

As shown in Table 2, DFR-SLAM achieves tremendous improvements in the high-dynamic sequences
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Figure 6 (Color online) Estimated trajectories of sequences fr3/w/xyz ((a), (d), (g)), fr3/w/halfsphere/v ((b), (e), (h)), and

fr3/s/halfsphere ((c), (f), (i)). Blue trajectories in (a)–(c) are generated by ORB-SLAM2, those in (d)–(f) correspond to the results

without the motion consensus filtering algorithm, and those in (g)–(i) are the results achieved by our DFR-SLAM. The differences

in red for each subfigure represent ATE.

in terms of localization accuracy. Taking RMSE and S.D. as the standard, the average improvement
values are all over 92% for the high-dynamic sequences. Note that, our system brings more improvements
in the xyz and static sequences than those in the rpy and halfsphere sequences. The reason for this
case is that in the xyz and static sequences, the rotation components of camera movements are less,
the estimated initial camera pose could be more accurate, which is important to decide the individual
penalties in our graph-cut optimization framework. In the low-dynamic sequences, our approach only
provides slightly better results, and in fr3/s/xyz the performance is even degraded. This is because the
visual features extracted from moving objects in low-dynamic sequences are easily identified and discarded
using RANSAC and the robust cost functions used in ORB-SLAM2. Furthermore, our method considers
the prior probability and spatial continuity, which may incorrectly classify some static visual features as
dynamic in low-dynamic sequences, causing the system’s accuracy to slightly degrade.

The qualitative results are presented by the selected ATE plots in Figure 6, which intuitively show the
localization accuracy through a comparison between the estimated and ground-truth trajectories. In each
subfigure, the estimated and ground-truth trajectories are shown; the red segments indicate estimation
errors between the ground-truth and the estimated trajectories. The trajectory results achieved by
ORB-SLAM2 are shown in the first row of Figure 6, while the bottom ones correspond to the proposed
DFR-SLAM trajectory result. Notably, a comparison of original ORB-SLAM and DFR-SLAM reveals
that DFR-SLAM achieves a more comprehensive performance than ORB-SLAM2 in all shown sequences,
and especially in high-dynamic sequences, where our method outperforms ORB-SLAM2 significantly.

Although the module of graph-based dynamic visual feature removal is the core of our method, the
initial camera pose estimation is indispensable to our system. In Figure 6, the middle column shows the
ATE plots generated by our system without the module of the initial camera pose estimation, whose
initial camera pose is estimated by velocity prediction. The system without the module of initial camera
pose estimation has larger errors when compared with the ATE plots in Figure 6(g)–(i) generated by
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Figure 7 (Color online) Quantified results of localization accuracy in sequence fr3/w/xyz. (a) The result without the proposed

motion consensus filtering algorithm; (b) the result of the proposed DFR-SLAM.

Table 3 Comparison of the RMSE of ATE metric of the proposed DFR-SLAM and the other three systems for dynamic environ-

ments (unit: m)

Sequence
Translational RMSE of trajectory alignment

SPW-SLAM DSLAM SaD-SLAM Ours

fr3/w/xyz 0.0601 0.0874 0.0167 0.0140

fr3/w/rpy 0.1791 0.1608 0.0318 0.0398

fr3/w/half 0.0489 0.0354 0.0257 0.0367

fr3/w/static 0.0261 0.0108 0.0166 0.0076

fr3/s/xyz 0.0397 0.0091 0.0124 0.0101

fr3/s/rpy – 0.0225 0.0288 0.0215

fr3/s/half 0.0432 0.0235 0.0151 0.0177

fr3/s/static – 0.0096 0.0060 0.0060

“–” indicates that the result is not reported in the original paper.

the DFR-SLAM system, demonstrating the effectiveness of the module of initial camera pose estimation.
This occurs because, in the absence of a reliable initial camera pose, the long-term reprojection error
in our graph-cut optimization framework can be significantly inaccurate, and the dynamic and static
probabilities of visual features can be incorrect. Besides, as shown in Figure 7, without the module of
initial camera pose estimation, the APEs are significantly greater in the selected sequence fr3/w/xyz,
and the error fluctuation shows that the module of initial camera pose estimation increases the stability
of DFR-SLAM a lot.

4.3 Comparison of localization accuracy with the state-of-the-art

In this subsection, we compare our DFR-SLAM with three other closely related systems that all con-
sider the influence of moving objects: SPW-SLAM [15], DSLAM [17], and SaD-SLAM [22]. Recent
systems based on frame-to-keyframe registration and point correlations, respectively, are SPW-SLAM
and DSLAM. To address dynamic scene content, SaD-SLAM employs deep learning techniques that com-
bine multiple view geometry cues. The results of the three systems for evaluation are those reported in
their papers, and the performance comparison is shown in Table 3.

The results show that DFR-SLAM achieves significantly lower RMSE values of ATE than those pro-
vided by SPW-SLAM in the tested dynamic sequences. This is due to the fact that our method makes
extensive use of long-term observations, prior probability, and spatial coherence. Furthermore, our DFR-
SLAM outperforms DSLAM slightly in low-dynamic sequences and significantly in high-dynamic se-
quences that ignore spatial coherence. Furthermore, our system performs competitively compared with
SaD-SLAM because, in scenarios with people sitting, the majority of their body remains stationary, with
only their heads and hands moving. Deep learning-based methods could identify static but movable image
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Table 4 Analysis of runtime for each step of the dynamic visual feature removal

Module Medium (ms) Mean (ms) Std (ms)

Initial camera pose estimation 4.58 6.329 3.858

Dynamic visual feature removal
Building the graph 6.031 6.592 5.289

Segmenting the graph 5.526 7.249 6.046

Total 18.387 20.17 13.361

Table 5 Comparison of average runtime of different systems in dynamic environments

System Mean (ms)

Static world assumption ORB-SLAM2 45.75

Deep learning technologies
DynaSLAM* 421.13

DS-SLAM* 59.4

Dense motion removal
SFVO 80

BAMVO 143.85

Sparse visual features removal
DSLAM 30.65

Ours 48.21

“*” indicates that the system needs GPU acceleration.

regions as dynamic objects and ignore them, resulting in a big loss of useful information and decreasing
accuracy.

4.4 Analysis of system efficiency

In this subsection, we evaluate the efficiency of our proposal, and the statistics of the runtimes for different
stages of the dynamic visual feature removal module are presented in Table 4. The sequence fr3/s/xyz is
chosen to evaluate the efficiency of our proposal because the pose of the camera changes over time, and
there are some moving objects in the sequence. The results in Table 4 show the main cost of the runtime
is the step of segmenting the graph, which is influenced by the number of visual features. The more
visual features there are, the more time it takes to segment the graph. In order to maximize efficiency
and localization accuracy, we limit the number of visual features in our tracking step to 80–120. The
whole procedure of dynamic visual feature removal needs 20.17 ms on average without GPU acceleration,
which implies the proposed DFR-SLAM satisfies the needs of real-time applications.

For further evaluating the real-time performance of DFR-SLAM, a comparison with other systems on
the fr3/w/static sequence is conducted and Table 5 presents the results. Compared with ORB-SLAM2,
the average runtime of DFR-SLAM just increases a little. The reason for this is that dynamic visual
features have been removed from DFR-SLAM, resulting in a reduction in the number of visual features
used in BA. For DynaSLAM [32] and DS-SLAM [10], which are based on deep learning technologies
and perform well in high-dynamic sequences, such methods are highly computationally expensive on the
learning part and need the help of edge inference computers to achieve real-time localization. With
regard to the time consumption of methods based on motion consistency, SFVO [29] and BAMVO [33]
utilize dense operation leading to higher runtime even though the image they use is already downsampled
at QVGA resolution. Among these systems, DSLAM and DFR-SLAM perform better because of sparse
visual features, rather than all pixels that belong to dynamic objects, are processed in the part of dynamic
visual features detection.

5 Conclusion

We have provided a real-time and accurate RGB-D SLAM system named DFR-SLAM that adds an
efficient dynamic visual feature removal method, which makes the proposed system adapt to dynamic
environments. To exclude dynamic visual features, the method is used in a coarse-to-fine scheme that
employs the proposed motion consensus filtering algorithm and a graph-cut framework that combines
long-term observations, prior probability, and spatial coherence. The experiments on the public dataset
demonstrate our system’s effectiveness and accuracy in both high-dynamic and low-dynamic scenes.

At the coarse stage, the initial camera pose estimation limits the ability of our system to accurately
estimate the camera pose in a slightly dynamic environment. In the future, we plan to incorporate IMU
factors into our framework in order to obtain a more accurate initial camera pose, which is critical in
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our method. We could also tightly couple IMU measurements and feature observations to improve the
accuracy and robustness of pose estimation in various dynamic scenarios.

Acknowledgements This work was supported in part by National Natural Science Foundation of China (Grant Nos. 61922076,

61873252).

References

1 Bresson G, Alsayed Z, Yu L, et al. Simultaneous localization and mapping: a survey of current trends in autonomous driving.

IEEE Trans Intell Veh, 2017, 2: 194–220

2 Qin T, Chen T, Chen Y, et al. AVP-SLAM: semantic visual mapping and localization for autonomous vehicles in the parking

lot. In: Proceedings of International Conference on Intelligent Robots and Systems, Las Vegas, 2020. 5939–5945

3 Fang B, Mei G, Yuan X, et al. Visual SLAM for robot navigation in healthcare facility. Pattern Recogn, 2021, 113: 107822

4 Zhao C H, Fan B, Hu J W, et al. Homography-based camera pose estimation with known gravity direction for UAV navigation.

Sci China Inf Sci, 2021, 64: 112204

5 Yang D F, Sun F C, Wang S C, et al. Simultaneous estimation of ego-motion and vehicle distance by using a monocular

camera. Sci China Inf Sci, 2014, 57: 052205

6 Mur-Artal R, Tardos J D. ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE

Trans Robot, 2017, 33: 1255–1262

7 Lv W J, Kang Y, Qin J H. FVO: floor vision aided odometry. Sci China Inf Sci, 2019, 62: 012202

8 Yunus R, Li Y, Tombari F. ManhattanSLAM: robust planar tracking and mapping leveraging mixture of manhattan frames.

2021. ArXiv:2103.15068

9 Fischler M A, Bolles R C. Random sample consensus. Commun ACM, 1981, 24: 381–395

10 Yu C, Liu Z, Liu X J, et al. DS-SLAM: a semantic visual SLAM towards dynamic environments. In: Proceedings of

International Conference on Intelligent Robots and Systems, Madrid, 2018. 1168–1174

11 Li A, Wang J, Xu M, et al. DP-SLAM: a visual SLAM with moving probability towards dynamic environments. Inf Sci, 2021,

556: 128–142

12 Cheng J, Zhang H, Meng M Q H. Improving visual localization accuracy in dynamic environments based on dynamic region

removal. IEEE Trans Automat Sci Eng, 2020, 17: 1585–1596

13 Barber C B, Dobkin D P, Huhdanpaa H. The quickhull algorithm for convex hulls. ACM Trans Math Softw, 1996, 22: 469–483

14 Sturm J, Engelhard N, Endres F, et al. A benchmark for the evaluation of RGB-D SLAM systems. In: Proceedings of

International Conference on Intelligent Robots and Systems, Vilamoura, 2012. 573–580

15 Li S, Lee D. RGB-D SLAM in dynamic environments using static point weighting. IEEE Robot Autom Lett, 2017, 2: 2263–

2270

16 Cheng J, Wang C, Meng M Q H. Robust visual localization in dynamic environments based on sparse motion removal. IEEE

Trans Automat Sci Eng, 2019, 17: 658–669

17 Dai W, Zhang Y, Li P, et al. RGB-D SLAM in dynamic environments using point correlations. IEEE Trans Pattern Anal

Mach Intell, 2022, 44: 373–389

18 Kim D H, Han S B, Kim J H. Visual odometry algorithm using an RGB-D sensor and IMU in a highly dynamic environment.

In: Robot Intelligence Technology and Applications 3. Cham: Springer, 2015. 11–26

19 Yang D, Bi S, Wang W, et al. DRE-SLAM: dynamic RGB-D encoder SLAM for a differential-drive robot. Remote Sens, 2019,

11: 380

20 Hyun D, Park C, Yang M C, et al. Target-aware convolutional neural network for target-level sentiment analysis. Inf Sci,

2019, 491: 166–178

21 Bruno H M S, Colombini E L. LIFT-SLAM: a deep-learning feature-based monocular visual SLAM method. Neurocomputing,

2021, 455: 97–110

22 Yuan X, Chen S. SaD-SLAM: a visual SLAM based on semantic and depth information. In: Proceedings of International

Conference on Intelligent Robots and Systems, Las Vegas, 2020. 4930–4935

23 Bescos B, Campos C, Tardos J D, et al. DynaSLAM II: tightly-coupled multi-object tracking and SLAM. IEEE Robot Autom

Lett, 2021, 6: 5191–5198

24 He K, Gkioxari G, Dollár P, et al. Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision,

Venice, 2017. 2961–2969

25 Arthur D, Vassilvitskii S. k-means++: the advantages of careful seeding. In: Proceedings of the 18th Annual ACM-SIAM

Symposium on Discrete Algorithms, New Orleans, 2007

26 Lepetit V, Moreno-Noguer F, Fua P. EPnP: an accurate O(n) solution to the PnP problem. Int J Comput Vis, 2009, 81:

155–166

27 Moulon P, Monasse P, Perrot R, et al. OpenMVG: open multiple view geometry. In: Proceedings of International Workshop

on Reproducible Research in Pattern Recognition, 2016. 60–74

28 Khoshelham K, Elberink S O. Accuracy and resolution of Kinect depth data for indoor mapping applications. Sensors, 2012,

12: 1437–1454

29 Jaimez M, Kerl C, Gonzalez-Jimenez J, et al. Fast odometry and scene flow from RGB-D cameras based on geometric

clustering. In: Proceedings of the IEEE International Conference on Robotics and Automation, Singapore, 2017. 3992–3999

30 Boykov Y Y, Jolly M P. Interactive graph cuts for optimal boundary & region segmentation of objects in ND images.

In: Proceedings of the IEEE international conference on computer vision, Vancouver, 2001. 105–112

31 Boykov Y, Kolmogorov V. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision.

IEEE Trans Pattern Anal Machine Intell, 2004, 26: 1124–1137

32 Bescos B, Facil J M, Civera J, et al. DynaSLAM: tracking, mapping, and inpainting in dynamic scenes. IEEE Robot Autom

Lett, 2018, 3: 4076–4083

33 Kim D H, Kim J H. Effective background model-based RGB-D dense visual odometry in a dynamic environment. IEEE Trans

Robot, 2016, 32: 1565–1573

https://doi.org/10.1109/TIV.2017.2749181
https://doi.org/10.1016/j.patcog.2021.107822
https://doi.org/10.1007/s11432-019-2690-0
https://doi.org/10.1007/s11432-013-4884-8
https://doi.org/10.1109/TRO.2017.2705103
https://doi.org/10.1007/s11432-017-9306-x
https://arxiv.org/abs/2103.15068
https://doi.org/10.1145/358669.358692
https://doi.org/10.1016/j.ins.2020.12.019
https://doi.org/10.1109/TASE.2020.2964938
https://doi.org/10.1145/235815.235821
https://doi.org/10.1109/LRA.2017.2724759
https://doi.org/10.1109/TASE.2019.2940543
https://doi.org/10.1109/TPAMI.2020.3010942
https://doi.org/10.3390/rs11040380
https://doi.org/10.1016/j.ins.2019.03.076
https://doi.org/10.1016/j.neucom.2021.05.027
https://doi.org/10.1109/LRA.2021.3068640
https://doi.org/10.1007/s11263-008-0152-6
https://doi.org/10.3390/s120201437
https://doi.org/10.1109/TPAMI.2004.60
https://doi.org/10.1109/LRA.2018.2860039
https://doi.org/10.1109/TRO.2016.2609395

	Introduction
	Related work
	Methods based on dynamic factor removal
	Methods incorporating external sensors
	Methods based on deep learning technologies

	Methodology
	Problem statement
	Method overview
	Initial camera pose estimation
	Graph-based dynamic visual feature removal

	Experiments
	Performance of dynamic visual feature detection
	Performance of visual localization accuracy
	Comparison of localization accuracy with the state-of-the-art
	Analysis of system efficiency

	Conclusion

